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Preface

Chiral perturbation theory (ChPT) is the effective field theory of quantum chro-
modynamics (QCD) at energies well below typical hadron masses. This means that
it is a systematic and model-independent approximation of QCD, based on the
symmetries of the underlying theory and general principles of quantum field
theory. Starting from early work on the interaction of pions, ChPT has grown to
become a valuable tool to analyze and interpret a host of low-energy experiments
involving the lowest-mass meson and baryon octets and decuplets. The application
to pp scattering and pion photoproduction are just two of the large number of
remarkable successes of ChPT.

This monograph is based on lectures on chiral perturbation theory given by one
of us (S.S.) on various occasions, supplemented with additional material. It is
aimed at readers familiar with elementary concepts of field theory and relativistic
quantum mechanics. The goal of these lecture notes is to provide a pedagogical
introduction to the basic concepts of chiral perturbation theory (ChPT) in the
mesonic and baryonic sectors. We therefore also derive and explain those aspects
that are considered well known by ‘‘experts.’’ In particular, we often include
intermediate steps in derivations to illuminate the origin of our final results. We
have also tried to keep a reasonable balance between mathematical rigor and
illustrations by means of simple examples. Numerous exercises throughout the text
cover a wide range of difficulty, from very easy to quite difficult and involved.
Ideally, at the end of the course, the reader should be able to perform simple
calculations in the framework of ChPT and to read the current literature. Solutions
to all exercises are provided for readers to check their own work.

These lecture notes include the following topics: Chapter 1 deals with QCD and
its global symmetries in the chiral limit, explicit symmetry breaking in terms of the
quark masses, and the concept of Green functions and Ward identities reflecting
the underlying chiral symmetry. In Chap. 2, the idea of a spontaneous breakdown
of a global symmetry is discussed and its consequences in terms of the Goldstone
theorem are demonstrated. Chapter 3 deals with mesonic chiral perturbation the-
ory. The principles entering the construction of the chiral Lagrangian are outlined
and a number of elementary applications are discussed. In Chap. 4, these methods
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are extended to include the interaction between Goldstone bosons and baryons in
the single-baryon sector. Chapter 5 discusses more advanced applications and
topics that are closely related to chiral perturbation theory.

This work is not intended as a comprehensive review of the status of chiral
perturbation theory. This also means that we cannot cite all of the vast literature,
especially on advanced applications. Readers interested in the present status of
applications are encouraged to consult the numerous available lecture notes,
review articles, and conference proceedings. A list of suggested references is
provided at the end of Chap. 5.

While the number of people who have contributed to our understanding of the
topics discussed in this monograph is too large to acknowledge each of them indi-
vidually, we would like to thank H.W. Fearing, J. Gegelia, H.W. Grießhammer, and
D. R. Phillips for numerous interesting and stimulating discussions that have most
directly influenced us. We are grateful to A. Neiser for the careful reading of and
helpful comments on the manuscript. We would also like to thank all students who
participated in previous classes on ChPT and gave important feedback. The support
and patience of our editor C. Caron is gratefully acknowledged. S.S. would like to
thank M. Hilt for extensive technical support. M.R.S. would like to thank the Lattice
and Effective Field Theory group at Duke University for their hospitality. This work
was carried out in part with financial support from the Center for Nuclear Studies at
the George Washington University, National Science Foundation CAREER award
PHY-0645498, and US-Department of Energy grant DE-FG02-95ER-40907.

Mainz and Columbia, SC, April 2011 Stefan Scherer
Matthias R. Schindler
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Chapter 1
Quantum Chromodynamics and Chiral
Symmetry

1.1 Some Remarks on SU(3)

The special unitary group SU(3) plays an important role in the context of the
strong interactions, because

1. it is the gauge group of quantum chromodynamics (QCD);
2. flavor SU(3) is approximately realized as a global symmetry of the hadron

spectrum, so that the observed (low-mass) hadrons can be organized in
approximately degenerate multiplets fitting the dimensionalities of irreducible
representations of SU(3);

3. the direct product SUð3ÞL � SUð3ÞR is the chiral-symmetry group of QCD for
vanishing u-, d-, and s-quark masses.

Thus, it is appropriate to first recall a few basic properties of SU(3) and its Lie
algebra su(3) [8, 34, 43].

The group SU(3) is defined as the set of all unitary, unimodular, 3 � 3 matrices
U; i.e. UyU ¼ 1;1 and detðUÞ ¼ 1: In mathematical terms, SU(3) is an eight-
parameter, simply-connected, compact Lie group. This implies that any group
element can be parameterized by a set of eight independent real parameters
H ¼ ðH1; . . .;H8Þ varying over a continuous range. The Lie-group property refers
to the fact that the group multiplication of two elements UðHÞ and UðWÞ is
expressed in terms of eight analytic functions UiðH; WÞ; i.e. UðHÞUðWÞ ¼ UðUÞ;
where U ¼ UðH; WÞ: It is simply connected because every element can be con-
nected to the identity by a continuous path in the parameter space and compactness
requires the parameters to be confined in a finite volume. Finally, for compact Lie
groups, every finite-dimensional representation is equivalent to a unitary one and

1 Throughout this monograph we adopt the convention that 1 stands for the unit matrix in n
dimensions. It should be clear from the respective context which dimensionality actually
applies.

S. Scherer and M. R. Schindler, A Primer for Chiral Perturbation Theory,
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can be decomposed into a direct sum of irreducible representations (Clebsch-
Gordan series).

Elements of SU(3) are conveniently written in terms of the exponential
representation2

UðHÞ ¼ exp �i
X8

a¼1

Ha
ka

2

 !
¼ exp �iHa

ka

2

� �
; ð1:1Þ

with Ha real numbers, and where the eight linearly independent matrices ka are the
so-called Gell-Mann matrices, satisfying

ka

2
¼ i

oU

oHa
ð0; . . .; 0Þ; ð1:2Þ

ka ¼ kya; ð1:3Þ

TrðkakbÞ ¼ 2dab; ð1:4Þ

TrðkaÞ ¼ 0: ð1:5Þ

The Hermiticity of Eq. 1.3 is responsible for Uy ¼ U�1: On the other hand, since
det½expðCÞ� ¼ exp½TrðCÞ�; Eq. 1.5 results in detðUÞ ¼ 1: An explicit representa-
tion of the Gell-Mann matrices is given by [25]

k1 ¼
0 1 0

1 0 0

0 0 0

0
B@

1
CA; k2 ¼

0 �i 0

i 0 0

0 0 0

0
B@

1
CA; k3 ¼

1 0 0

0 �1 0

0 0 0

0
B@

1
CA;

k4 ¼
0 0 1

0 0 0

1 0 0

0
B@

1
CA; k5 ¼

0 0 �i

0 0 0

i 0 0

0
B@

1
CA; k6 ¼

0 0 0

0 0 1

0 1 0

0
B@

1
CA;

k7 ¼
0 0 0

0 0 �i

0 i 0

0
B@

1
CA; k8 ¼

ffiffiffi
1
3

r 1 0 0

0 1 0

0 0 �2

0
B@

1
CA: ð1:6Þ

The set fikaja ¼ 1; . . .; 8g constitutes a basis of the Lie algebra su(3) of SU(3), i.e.,
the set of all complex, traceless, skew-Hermitian, 3� 3 matrices. The Lie product
is then defined in terms of ordinary matrix multiplication as the commutator of two
elements of su(3). Such a definition naturally satisfies the Lie properties of
anticommutativity

2 Most of the time, we will make use of the repeated-index summation convention, i.e., wherever
in any term of an expression a literal index occurs twice, this term is to be summed over all
possible values of the index. However, sometimes we will find it instructive to explicitly keep the
summation symbol including its range of summation.
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½A;B� ¼ �½B;A� ð1:7Þ

as well as the Jacobi identity

½A; ½B;C�� þ ½B; ½C;A�� þ ½C; ½A;B�� ¼ 0: ð1:8Þ

In accordance with Eqs. 1.1 and 1.2, elements of su(3) can be interpreted as
tangent vectors in the identity of SU(3).

The structure of the Lie group is encoded in the commutation relations of the
Gell-Mann matrices,

ka

2
;
kb

2

� �
¼ ifabc

kc

2
; ð1:9Þ

where the totally antisymmetric real structure constants fabc are obtained from
Eq. 1.4 as

fabc ¼
1
4i

Trð½ka; kb�kcÞ: ð1:10Þ

Exercise 1.1 Verify Eq. 1.10.

Exercise 1.2 Show that fabc is totally antisymmetric.
Hint: Consider the symmetry properties of Trð½A;B�CÞ:

The independent nonvanishing values are explicitly summarized in Table 1.1 [25].
Roughly speaking, these structure constants are a measure of the non-commutativity
of the group SU(3).

The anticommutation relations of the Gell-Mann matrices read

fka; kbg ¼
4
3
dab1þ 2dabckc; ð1:11Þ

where the totally symmetric dabc are given by

dabc ¼
1
4

Trðfka; kbgkcÞ; ð1:12Þ

and are summarized in Table 1.2 [25].

Exercise 1.3 Verify Eq. 1.12 and show that dabc is totally symmetric.

Clearly, the anticommutator of two Gell-Mann matrices is not necessarily a
Gell-Mann matrix. For example, the square of a (nontrivial) skew-Hermitian
matrix is not skew Hermitian.

Table 1.1 Totally antisymmetric nonvanishing structure constants of SU(3)

abc 123 147 156 246 257 345 367 458 678

fabc 1 1
2 �1

2
1
2

1
2

1
2 �1

2
1
2

ffiffiffi
3
p

1
2

ffiffiffi
3
p
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Exercise 1.4 Using

kakb ¼
1
2
fka; kbg þ

1
2
½ka; kb� ¼

2
3
dab1þ habckc; habc � dabc þ ifabc;

in combination with Eqs. 1.4 and 1.5, traces of products of Gell-Mann matrices
may be evaluated recursively. Verify

TrðkakbkcÞ ¼ 2habc;

TrðkakbkckdÞ ¼
4
3
dabdcd þ 2habehecd;

TrðkakbkckdkeÞ ¼
4
3

habcdde þ
4
3
dabhcde þ 2habf hfcghgde:

Hint: habc is invariant under cyclic permutations, i.e. habc ¼ hbca ¼ hcab:

Moreover, it is convenient to introduce as a ninth matrix

k0 ¼
ffiffiffi
2
3

r
1;

such that Eqs. 1.3 and 1.4 are still satisfied by the nine matrices ka: In particular,
the set fikaja ¼ 0; . . .; 8g constitutes a basis of the Lie algebra u(3) of U(3),
i.e., the set of all complex, skew-Hermitian, 3� 3 matrices. Many useful prop-
erties of the Gell-Mann matrices can be found in Sect. 8 of Ref. [12].

Finally, an arbitrary 3� 3 matrix M can be written as

M ¼
X8

a¼0

Maka; ð1:13Þ

where Ma are complex numbers given by

Ma ¼
1
2

TrðkaMÞ: ð1:14Þ

1.2 Local Symmetries and the QCD Lagrangian

The gauge principle has proven to be a tremendously successful method in ele-
mentary particle physics to generate interactions between matter fields through the
exchange of massless gauge bosons (for a detailed account see, e.g., Refs. [1, 13,
15, 43, 54]).

Table 1.2 Totally symmetric nonvanishing d symbols of SU(3)

abc 118 146 157 228 247 256 338 344 355 366 377 448 558 668 778 888

dabc
1ffiffi
3
p 1

2
1
2

1ffiffi
3
p �1

2
1
2

1ffiffi
3
p 1

2
1
2 �1

2 �1
2 � 1

2
ffiffi
3
p � 1

2
ffiffi
3
p � 1

2
ffiffi
3
p � 1

2
ffiffi
3
p � 1ffiffi

3
p
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1.2.1 The QED Lagrangian

The best-known example is quantum electrodynamics (QED) which is obtained
from promoting the global U(1) symmetry of the Lagrangian describing a free
electron,3

W 7! expðiHÞW : Lfree ¼ �W iclol � m
� �

W 7!Lfree; ð1:15Þ

to a local symmetry. In this process, the parameter 0�H\2p describing an
element of U(1) is allowed to vary smoothly in space-time, H! HðxÞ; which is
referred to as gauging the U(1) group. To keep the invariance of the Lagrangian
under local transformations one introduces a four-vector potential Al into the
theory which transforms under the gauge transformation Al 7!Al þ olH=e: The
method is referred to as gauging the Lagrangian with respect to U(1):

LQED ¼ �W icl ol � ieAl
� �

� m
	 


W� 1
4
FlmF

lm; ð1:16Þ

where Flm ¼ olAm � omAl denotes the electromagnetic field-strength tensor.4

The covariant derivative of W;

DlW � ðol � ieAlÞW;

is defined such that under a so-called gauge transformation of the second kind

WðxÞ 7! exp½iHðxÞ�WðxÞ; AlðxÞ 7!AlðxÞ þ olHðxÞ=e; ð1:17Þ

it transforms in the same way as W itself:

DlWðxÞ 7! exp½iHðxÞ�DlWðxÞ: ð1:18Þ

In Eq. 1.16, the term containing the squared field strength makes the gauge
potential a dynamical degree of freedom as opposed to a pure external field.
A mass term M2A2=2 is not included since it would violate gauge invariance and
thus the gauge principle requires massless gauge bosons.5 In the present case we
identify Al with the electromagnetic four-vector potential and Flm with the field-
strength tensor containing the electric and magnetic fields. The gauge principle has
(naturally) generated the interaction of the electromagnetic field with matter:

Lint ¼ �ð�eÞ �WclWAl ¼ �JlAl; ð1:19Þ

3 We use the standard representation for the Dirac matrices (see, e.g., Ref. [11]).
4 We use natural units, i.e., �h ¼ c ¼ 1; e [ 0; and a ¼ e2=4p � 1=137:
5 Masses of gauge fields can be induced through a spontaneous breakdown of the gauge
symmetry.
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where Jl denotes the electromagnetic current (density). If the underlying gauge
group is non-Abelian, the gauge principle associates an independent gauge field
with each independent continuous parameter of the gauge group.

1.2.2 The QCD Lagrangian

QCD is the gauge theory of the strong interactions [18, 29, 51] with color SU(3) as
the underlying gauge group. For a comprehensive guide to the literature on QCD,
see Ref. [35]. Historically, the color degree of freedom was introduced into the
quark model to account for the Pauli principle in the description of baryons as
three-quark states [28, 30]. The matter fields of QCD are the so-called quarks
which are spin-1/2 fermions, with six different flavors (u; d; s; c; b; t) in addition to
their three possible colors (see Table 1.3). Since quarks have not been observed as
asymptotically free states, the meaning of quark masses and their numerical values
are tightly connected with the method by which they are extracted from hadronic
properties (see Ref. [39] for a thorough discussion). Regarding the so-called
current-quark-mass values of the light quarks, one should view the quark-mass
terms merely as symmetry breaking parameters with their magnitude providing a
measure for the extent to which chiral symmetry is broken [46].6

The QCD Lagrangian can be obtained from the Lagrangian for free quarks by
applying the gauge principle with respect to the group SU(3). Denoting the quark
field components by qa;f ;A; where a ¼ 1; . . .; 4 refers to the Dirac-spinor index,
f ¼ 1; . . .; 6 to the flavor index, and A ¼ 1; 2; 3 to the color index, respectively, the
‘‘free’’ quark Lagrangian without interaction may be regarded as the sum of
6� 3 ¼ 18 free fermion Lagrangians:

Lfree quarks ¼
X3

A¼1

X6

f¼1

X4

a;a0¼1

�qa;f ;A cl
aa0 iol � mf daa0

� �
qa0; f ;A: ð1:20Þ

Table 1.3 Quark flavors and their charges and masses

Flavor u d s

Charge [e] 2=3 �1=3 �1=3
Mass [MeV] 1.7–3.3 4.1–5.8 101þ29

�21

Flavor c b t

Charge [e] 2=3 �1=3 2=3
Mass [GeV] 1:27þ0:07

�0:09 4:19þ0:18
�0:06

172:0� 0:9� 1:3

See Ref. [39] for details

6 The expression current-quark masses for the light quarks is related to the fact that they appear
in the divergences of the vector and axial-vector currents (see Sect. 1.3.6).
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Suppressing the Dirac-spinor index, we introduce for each quark flavor f a color
triplet

qf ¼
qf ;1

qf ;2

qf ;3

0
@

1
A: ð1:21Þ

The gauge principle is applied with respect to the group SU(3), i.e., the trans-
formations are flavor independent as all qf are subject to the same local SU(3)
transformation:

qf ðxÞ 7! q0f ðxÞ ¼ exp �iHaðxÞ
kc

a

2

� �
qf ðxÞ � UðxÞqf ðxÞ: ð1:22Þ

The eight kc
a denote Gell-Mann matrices acting in color space and the Ha are

smooth, real functions in Minkowski space. Technically speaking, each quark field
qf transforms according to the fundamental representation of color SU(3). For the
adjoint quark fields, Eq. 1.22 implies the transformation behavior

qyf ðxÞ 7! qyf ðxÞUyðxÞ: ð1:23Þ

Because of the partial derivatives acting on the quark fields, the Lagrangian of
Eq. 1.20 is not invariant under the transformations of Eqs. 1.22 and 1.23. In order
to keep the invariance of the Lagrangian under local transformations, one intro-
duces eight four-vector gauge potentials Aal into the theory, transforming as7

Al �Aal
kc

a

2
7!A0l ¼ UAlUy þ i

g3
olUUy: ð1:24Þ

The ordinary partial derivative olqf is replaced by the covariant derivative

Dlqf � ol þ ig3Al
� �

qf ; ð1:25Þ

which, by construction, transforms as the quark field. In Eqs. 1.24 and 1.25, g3

denotes the strong coupling constant. We note that the interaction between quarks
and gluons is independent of the quark flavors which can be seen from the fact that
only one coupling constant g3 appears in Eq. 1.25.

Exercise 1.5 Show that the covariant derivative Dlqf transforms as qf ; i.e.,
Dlqf 7! ðDlqf Þ0 ¼ D0lq0f ¼ UDlqf :

So far we have only considered the matter-field part of LQCD including its
interaction with the gauge fields. In order to treat the gauge potentials Aal as

7 Under a gauge transformation of the first kind, i.e., a global SU(3) transformation, the second
term on the right-hand side of Eq. 1.24 would vanish and the gauge fields would transform
according to the adjoint representation.
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dynamical degrees of freedom, one defines a generalization of the field-strength
tensor to the non-Abelian case as

Galm � olAam � omAal � g3fabcAblAcm; ð1:26Þ

with the SU(3) structure constants given in Table 1.1. Given Eq. 1.24, the field-
strength tensor transforms under SU(3) as

Glm � Galm
kc

a

2
7!UGlmU

y: ð1:27Þ

Exercise 1.6 Verify Eq. 1.27.
Hint: Equation 1.26 is equivalent to Glm ¼ olAm � omAl þ ig3½Al;Am�:

The QCD Lagrangian obtained by applying the gauge principle to the free
Lagrangian of Eq. 1.20, finally, reads [7, 40]

LQCD ¼
X

f¼u;d;s;
c;b;t

�qf i=D� mf

� �
qf �

1
4
GalmG

lm
a : ð1:28Þ

Using Eq. 1.4, the purely gluonic part of LQCD can be written as

�1
2

Trc GlmG
lm

� �
;

which, using the cyclic property of traces, TrðABÞ ¼ TrðBAÞ; together with
UUy ¼ 1; is easily seen to be invariant under the transformation of Eq. 1.27.

In contradistinction to the Abelian case of quantum electrodynamics, the
squared field-strength tensor gives rise to gauge-field self interactions involving
vertices with three and four gauge fields of strength g3 and g2

3; respectively. Such
interaction terms are characteristic of non-Abelian gauge theories and make them
much more complex than Abelian theories.

From the point of view of gauge invariance, the strong-interaction Lagrangian
could also involve a term of the type

Lh ¼
g2

3
�h

64p2
elmqrG

lm
a Gqr

a ; e0123 ¼ 1; ð1:29Þ

where elmqr denotes the totally antisymmetric Levi-Civita tensor.8 The so-called h
term of Eq. 1.29 implies an explicit P and CP violation of the strong interactions
which, for example, would give rise to an electric dipole moment of the neutron.

8

elmqr ¼
þ1 if fl; m;q;rg is an even permutation of f0; 1; 2; 3g
�1 if fl; m;q;rg is an odd permutation of f0; 1; 2; 3g
0 otherwise

8
<

: :
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The present empirical information indicates that the h term is small [44] and, in the
following, we will omit Eq. 1.29 from our discussion.

1.3 Accidental, Global Symmetries of the QCD Lagrangian

1.3.1 Light and Heavy Quarks

The six quark flavors are commonly divided into the three light quarks u; d; and s
and the three heavy flavors c; b; and t;

mu ¼ ð1:7�3:3ÞMeV

md ¼ ð4:1�5:8ÞMeV

ms ¼ ð80�130ÞMeV

0
BB@

1
CCA	 1 GeV�

mc ¼ 1:27þ0:07
�0:09 GeV

mb ¼ 4:19þ0:18
�0:06 GeV

mt ¼ ð172:0� 0:9� 1:3ÞGeV

0
BB@

1
CCA;

ð1:30Þ

where the scale of 1 GeV is associated with the masses of the lightest hadrons
containing light quarks, e.g., mq ¼ 770 MeV; which are not Goldstone bosons
resulting from spontaneous symmetry breaking. The scale associated with spon-
taneous chiral symmetry breaking, 4pFp � 1; 170 MeV; is of the same order of
magnitude. A nonvanishing pion-decay constant Fp is a necessary and sufficient
criterion for spontaneous chiral symmetry breaking (see Sect. 3.2.2).

The masses of the lightest meson and baryon containing a charmed quark,
Dþ ¼ c�d and Kþc ¼ udc; are ð1; 869:5� 0:4ÞMeV and ð2; 286:46� 0:14ÞMeV;
respectively [41]. The threshold center-of-mass energy to produce, say, a DþD�

pair in eþe� collisions is approximately 3.74 GeV, and thus way beyond the low-
energy regime which we are interested in. In the following, we will approximate
the full QCD Lagrangian by its light-flavor version, i.e., we will ignore effects due
to (virtual) heavy quark-antiquark pairs h�h:

Comparing the proton mass, mp ¼ 938 MeV; with the sum of two up and one
down current-quark masses (see Table 1.3),

mp 
 2mu þ md; ð1:31Þ

shows that an interpretation of the proton mass in terms of current-quark-mass
parameters must be very different from, say, the situation in the hydrogen atom,
where the mass is essentially given by the sum of the electron and proton masses,
corrected by a small amount of binding energy. In this context we recall that the
current-quark masses must not be confused with the constituent-quark masses of a
(nonrelativistic) quark model, which are typically of the order of 350 MeV. In
particular, Eq. 1.31 suggests that the Lagrangian L0

QCD, containing only the light-
flavor quarks in the so-called chiral limit mu;md;ms ! 0; might be a good starting
point in the discussion of low-energy QCD:
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L0
QCD ¼

X

l¼u;d;s

�qli =Dql �
1
4
GalmG

lm
a : ð1:32Þ

We repeat that the covariant derivative Dl in Eq. 1.25 acts on color indices only,
but is independent of flavor.

1.3.2 Left-Handed and Right-Handed Quark Fields

In order to fully exhibit the global symmetries of Eq. 1.32, we consider the chi-

rality matrix c5 ¼ c5 ¼ ic0c1c2c3 ¼ cy5; fcl; c5g ¼ 0; c2
5 ¼ 1; and introduce the

projection operators

PR ¼
1
2
ð1þ c5Þ ¼ PyR; PL ¼

1
2
ð1� c5Þ ¼ PyL; ð1:33Þ

where the subscripts R and L refer to right-handed and left-handed, respectively, as
will become clearer below. The 4� 4 matrices PR and PL satisfy a completeness
relation,

PR þ PL ¼ 1; ð1:34Þ

are idempotent,

P2
R ¼ PR; P2

L ¼ PL; ð1:35Þ

and respect the orthogonality relations

PRPL ¼ PLPR ¼ 0: ð1:36Þ

Exercise 1.7 Verify the properties of Eqs. 1.33–1.36.

The combined properties of Eqs. 1.33–1.36 guarantee that PR and PL are indeed
projection operators which project from the Dirac field variable q to its chiral
components qR and qL;

qR ¼ PRq; qL ¼ PLq: ð1:37Þ

We recall in this context that a chiral (field) variable is one which under parity is
transformed into neither the original variable nor its negative.9 Under parity, the
quark field is transformed into its parity conjugate,

P : qðt; x~Þ 7! c0qðt;�x~Þ;

and hence

9 In case of fields, a transformation of the argument x~ 7! �x~ is implied.
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qRðt; x~Þ ¼ PRqðt; x~Þ 7!PRc0qðt;�x~Þ ¼ c0PLqðt;�x~Þ ¼ c0qLðt;�x~Þ 6¼ �qRðt;�x~Þ;

and similarly for qL:
10

The terminology right-handed and left-handed fields can easily be visualized in
terms of the solution to the free Dirac equation. For that purpose, let us consider an
extreme relativistic positive-energy solution to the free Dirac equation with three-
momentum p~;11

uðp~;�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
E þ m
p v�

r~�p~
Eþm v�

� �
E
m! ffiffiffiffi

E
p v�

�v�

� �
� u�ðp~Þ;

where we assume that the spin in the rest frame is either parallel or antiparallel to
the direction of momentum

r~ � p̂v� ¼ �v�:

In the standard representation of Dirac matrices12 we find

PR ¼
1
2

12�2 12�2

12�2 12�2

� �
; PL ¼

1
2

12�2 �12�2

�12�2 12�2

� �
:

Exercise 1.8 Show that

PRuþ ¼ uþ; PLuþ ¼ 0; PRu� ¼ 0; PLu� ¼ u�:

In the extreme relativistic limit (or better, in the zero-mass limit), the operators PR

and PL project onto the positive and negative helicity eigenstates, i.e., in this limit
chirality equals helicity.

Our goal is to analyze the symmetry of the QCD Lagrangian with respect to
independent global transformations of the left- and right-handed fields. There are
16 independent 4� 4 matrices C; which can be expressed in terms of the unit
matrix 1; the Dirac matrices cl; the chirality matrix c5; the products clc5; and the
six matrices rlm ¼ i½cl; cm�=2: In order to decompose the corresponding 16 qua-
dratic forms into their respective projections to right- and left-handed fields, we
make use of

�qCq ¼ �qRCqR þ �qLCqL for C 2 C1 � fcl; clc5g;
�qRCqL þ �qLCqR for C 2 C2 � f1; c5; r

lmg;

�
ð1:38Þ

where13

10 Note that in the above sense, also q is a chiral variable. However, the assignment of
handedness does not have such an intuitive meaning as in the case of qL and qR:
11 Here we adopt a covariant normalization of the spinors, uðaÞyðp~ÞuðbÞðp~Þ ¼ 2Edab; etc.
12 Unless stated otherwise, we use the convention of Bjorken and Drell [11].
13 For notational convenience we write �qL and �qR instead of qL and qR:
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�qR ¼ qyRc0 ¼ qyPyRc0 ¼ qyPRc0 ¼ qyc0PL ¼ �qPL;

�qL ¼ �qPR:

Exercise 1.9 Verify Eq. 1.38.
Hint: Insert unit matrices as

�qCq ¼ �q PR þ PLð ÞC PR þ PLð Þq;

and make use of fC; c5g ¼ 0 for C 2 C1 and ½C; c5� ¼ 0 for C 2 C2 as well as the
properties of the projection operators derived in Exercise 1.7.

We stress that the validity of Eq. 1.38 is general and does not refer to
‘‘massless’’ quark fields.

We now apply Eq. 1.38 to the term in the Lagrangian of Eq. 1.32 containing the
contraction of the covariant derivative with cl: This quadratic quark form de-
couples into the sum of two terms which connect only left-handed with left-handed
and right-handed with right-handed quark fields. The QCD Lagrangian in the
chiral limit can then be written as

L0
QCD ¼

X

l¼u;d;s

�qR;li =DqR;l þ �qL;li =DqL;l

� �
� 1

4
GalmG

lm
a : ð1:39Þ

Due to the flavor independence of the covariant derivative, L0
QCD is invariant

under

uL

dL

sL

0

B@

1

CA 7!UL

uL

dL

sL

0

B@

1

CA ¼ exp �i
X8

a¼1

HLa
ka

2

 !
e�iHL

uL

dL

sL

0

B@

1

CA;

uR

dR

sR

0

B@

1

CA 7!UR

uR

dR

sR

0

B@

1

CA ¼ exp �i
X8

a¼1

HRa
ka

2

 !
e�iHR

uR

dR

sR

0

B@

1

CA; ð1:40Þ

where UL and UR are independent unitary 3� 3 matrices and where we have
extracted the factors e�iHL and e�iHR for future convenience. We have thus
decomposed the U(3)� U(3) transformations into SU(3)� SU(3)� U(1)� U(1)
transformations. Note that the Gell-Mann matrices act in flavor space. We will
refer to the invariance of L0

QCD under SUðNÞL � SUðNÞR (N ¼ 2 or 3) as chiral
symmetry.

L0
QCD is said to have a classical global U(3)L � U(3)R symmetry. Applying

Noether’s theorem one would expect a total of 2� ð8þ 1Þ ¼ 18 conserved cur-
rents from such an invariance.
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1.3.3 Noether Theorem

Noether’s theorem [6, 24, 31, 42] establishes the connection between continuous
symmetries of a dynamical system and conserved quantities (constants of the
motion). For simplicity we consider only internal symmetries. (The method can
also be used to discuss the consequences of Poincaré invariance.)

In order to identify the conserved currents associated with the transformations
of Eqs. 1.40, we briefly recall the method of Gell-Mann and Lévy [24], which we
will then apply to Eq. 1.39.

We start with a Lagrangian L depending on n independent fields Ui and their
first partial derivatives olUi (i ¼ 1; . . .; n), collectively denoted by the symbols U
and olU;

14

L ¼LðU; olUÞ; ð1:41Þ

from which one obtains n equations of motion:

oL

oUi
� ol

oL

oolUi
¼ 0; i ¼ 1; . . .; n: ð1:42Þ

Suppose the Lagrangian of Eq. 1.41 to be invariant under a continuous, global
transformation of the fields depending smoothly on r real parameters. The method
of Gell-Mann and Lévy [24] now consists of promoting this global symmetry to a
local one, from which we will then be able to identify the Noether currents. To that
end we consider transformations which depend on r real local parameters eaðxÞ;15

UiðxÞ 7!U0iðxÞ ¼ UiðxÞ þ dUiðxÞ ¼ UiðxÞ � ieaðxÞFai½UðxÞ�; ð1:43Þ

and obtain, neglecting terms of order e2; as the variation of the Lagrangian,

dL ¼LðU0; olU
0Þ �LðU; olUÞ

¼ oL

oUi
dUi þ

oL

oolUi
oldUi|fflffl{zfflffl}

¼ �ioleaFai � ieaolFai

¼ ea �i
oL

oUi
Fai � i

oL

oolUi
olFai

� �
þ olea �i

oL

oolUi
Fai

� �

� eaolJl
a þ oleaJl

a : ð1:44Þ

According to this equation we define for each infinitesimal transformation a four-
current density as

14 The extension to higher-order derivatives is also possible.
15 Note that the transformation need not be realized linearly on the fields.
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Jl
a ¼ �i

oL

oolUi
Fai: ð1:45Þ

By calculating the divergence olJl
a of Eq. 1.45

olJl
a ¼ �i ol

oL
oolUi

� �
Fai � i

oL

oolUi
olFai

¼ �i
oL

oUi
Fai � i

oL

oolUi
olFai;

where we made use of the equations of motion, Eq. 1.42, we explicitly verify the
consistency with the definition of olJl

a according to Eq. 1.44. From Eq. 1.44 it is
straightforward to obtain the four-currents16 as well as their divergences as

Jl
a ¼

odL
oolea

; ð1:46Þ

olJl
a ¼

odL
oea

: ð1:47Þ

We chose the parameters of the transformation to be local. However, the
Lagrangian of Eq. 1.41 was only assumed to be invariant under a global trans-
formation. In that case, the term olea disappears, and since the Lagrangian is
invariant under such transformations, we see from Eq. 1.44 that the current Jl

a is
conserved, olJl

a ¼ 0: For a conserved current the charge

QaðtÞ ¼
Z

d3xJ0
aðt; x~Þ ð1:48Þ

is time independent, i.e., a constant of the motion.

Exercise 1.10 By applying the divergence theorem for an infinite volume, show
that QaðtÞ is a constant of the motion for dL ¼ 0: Assume that the fields and thus
the current density vanish sufficiently rapidly for jx~j ! 1:

Exercise 1.11 Consider the Lagrangian of two real scalar fields U1 and U2 of
equal masses m with a so-called kU4 interaction:

L ¼ 1
2

olU1o
lU1 þ olU2o

lU2 � m2 U2
1 þ U2

2

� �	 

� k

4
U2

1 þ U2
2

� �2
; ð1:49Þ

where m2 [ 0 and k [ 0:

(a) Determine the variation dL under the infinitesimal, local transformation of the
fields

16 Most of the time, we follow common practice and speak of four-currents instead of four-
current densities.
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U01 ¼ U1 þ dU1 ¼ U1 � eðxÞU2; U02 ¼ U2 þ dU2 ¼ U2 þ eðxÞU1: ð1:50Þ

(b) Apply the method of Gell-Mann and Lévy to determine the corresponding
current Jl and show that Jl is conserved.

In the above discussion, we have assumed that the Lagrangian is invariant under
a global transformation of the type Eq. 1.43 which is sufficient for the present
purposes. However, we would like to mention that, demanding less restrictive
assumptions, it is still possible to derive conservation laws of the type olJl ¼ 0
(see Ref. [52]). The various possibilities are summarized in Table 1.4.

So far we have discussed Noether’s theorem on the classical level, implying
that the charges QaðtÞ can have any continuous real value. However, we also need
to discuss the implications of a transition to a quantum theory.

To that end, let us first recall the transition from classical mechanics to quantum
mechanics. Consider a point mass m in a central potential VðrÞ; i.e., the corre-
sponding Lagrange and Hamilton functions are rotationally invariant. As a result

of this invariance, the angular momentum l~¼ r~� p~ is a constant of the motion
which, in classical mechanics, can have any continuous real value. In the transition
to quantum mechanics, the components of r~ and p~ turn into Hermitian, linear
operators, satisfying the commutation relations

½x̂i; p̂j� ¼ idij; ½x̂i; x̂j� ¼ 0; ½p̂i; p̂j� ¼ 0:

The components of the angular momentum operator are given by

l̂i ¼ eijkx̂jp̂k

which, for later comparison with the results in quantum field theory, we express in
terms of the 3� 3 matrices Lad

i of the adjoint representation,

l̂i ¼ �ip̂j ð�ieijkÞ|fflfflffl{zfflfflffl}
¼ ðLad

i Þjk

x̂k: ð1:51Þ

Table 1.4 Different versions
of conservation laws

Invariant quantity Current density or charge

dL ¼ 0 Jl ¼ oL
oolUd~U

dL ¼ eolJ
l

Jl ¼ oL
oolUd~U�Jl

dL ¼ 0 Q ¼
R

d3x oL
oo0U

d~U

dL ¼ edQðtÞ
dt

Q ¼
R

d3x oL
oo0U

d~U� Q

dS ¼ 0 Explicit form of Jl not known

The transformation of the fields is symbolically written as
U 7!Uþ dU ¼ Uþ ed~U: L and S refer to the Lagrange function
and the action, respectively. The second column denotes which
quantity can be explicitly obtained from the Lagrangian
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Both the matrices of the adjoint representation and the components of the angular
momentum operator satisfy the angular momentum commutation relations,

½Lad
i ; L

ad
j � ¼ ieijkLad

k ; ½̂li; l̂j� ¼ ieijk l̂k:

Since the components of the angular momentum operator cannot simultaneously

be diagonalized, the states are organized as eigenstates of l̂îli and l̂3 with eigen-
values lðlþ 1Þ and m ¼ �l; . . .; l (l ¼ 0; 1; 2; . . .). Also note that the angular
momentum operators are the generators of rotations. The rotational invariance of
the quantum system implies that the components of the angular momentum
operator commute with the Hamilton operator,

½Ĥ; l̂i� ¼ 0;

i.e., they are still constants of the motion. One then simultaneously diagonalizes

Ĥ; l̂îli; and l̂3: For example, the energy eigenvalues of the hydrogen atom are given
by

En ¼ �
a2m

2n2
� �13:6

n2
eV;

where n ¼ n0 þ lþ 1; n0 � 0 denotes the principal quantum number, and the
degeneracy of an energy level is given by n2 (spin neglected). The value E1 and
the spacing of the levels are determined by the dynamics of the system, i.e., the
specific form of the potential, whereas the multiplicities of the energy levels are a
consequence of the underlying rotational symmetry.17

Having the example from quantum mechanics in mind, let us turn to the
analogous case in quantum field theory. After canonical quantization, the fields Ui

and their conjugate momenta Pi ¼ oL=oðo0UiÞ are considered as linear operators
acting on a Hilbert space which, in the Heisenberg picture, are subject to the equal-
time commutation relations

½Uiðt; x~Þ;Pjðt; y~Þ� ¼ id3ðx~� y~Þdij;

½Uiðt; x~Þ;Ujðt; y~Þ� ¼ 0;

½Piðt; x~Þ;Pjðt; y~Þ� ¼ 0:

ð1:52Þ

As a special case of Eq. 1.43 let us consider infinitesimal transformations that are
linear in the fields,

UiðxÞ 7!U0iðxÞ ¼ UiðxÞ � ieaðxÞta;ijUjðxÞ; ð1:53Þ

where the ta;ij are constants generating a mixing of the fields. The angular-
momentum analogue reads

17 In fact, the accidental degeneracy for n� 2 is a result of an even higher symmetry of the 1=r
potential, namely an SO(4) symmetry (see, e.g., Ref. [34]).
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x̂i 7! x̂i � iekð�iekijÞx̂j:

From Eq. 1.45 we then obtain

Jl
a ðxÞ ¼ �i

oL

oolUi
ta;ijUj; ð1:54Þ

QaðtÞ ¼ �i

Z
d3xPiðxÞta;ijUjðxÞ; ð1:55Þ

where Jl
a ðxÞ and QaðtÞ are now operators. Note the perfect analogy to the angular

momentum case of Eq. 1.51.
In order to interpret the charge operators QaðtÞ; let us make use of the equal-

time commutation relations, Eqs. 1.52, and calculate their commutators with the
field operators,

½QaðtÞ;Ukðt; y~Þ� ¼ �ita;ij

Z
d3x½Piðt; x~ÞUjðt; x~Þ;Ukðt; y~Þ�

¼ �ta;kjUjðt; y~Þ; ð1:56Þ

which corresponds to

½̂lk; x̂i� ¼ iekijx̂j:

Note that we did not require the charge operators to be time independent.

Exercise 1.12 Using the equal-time commutation relations of Eqs. 1.52, verify
Eq. 1.56.

On the other hand, for the transformation behavior of the Hilbert space asso-
ciated with a global infinitesimal transformation, we make an ansatz in terms of an
infinitesimal unitary transformation18

ja0i ¼ ½1þ ieaGaðtÞ�jai; ð1:57Þ

with Hermitian operators Ga: Demanding

hbjAjai ¼ hb0jA0ja0i 8 jai; jbi; ea; ð1:58Þ

in combination with Eq. 1.53 yields the condition

hbjUiðxÞjai ¼ hb0jU0iðxÞja0i
¼ hbj½1� ieaGaðtÞ�½UiðxÞ � iebtb;ijUjðxÞ�½1þ iecGcðtÞ�jai:

By comparing the terms linear in ea on both sides,

18 We have chosen to have the fields (field operators) rotate actively and thus must transform the
states of the Hilbert space in the opposite direction.
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0 ¼ �iea½GaðtÞ;UiðxÞ� �ieata;ijUjðxÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
¼ iea½QaðtÞ;UiðxÞ�

; ð1:59Þ

we see that the infinitesimal generators GaðtÞ; acting on the Hilbert space states,
that are associated with the transformation of the fields are identical with the
charge operators QaðtÞ of Eq. 1.55.

Finally, evaluating the commutation relations for the case of several generators,

½QaðtÞ;QbðtÞ� ¼ �iðta;ijtb;jk � tb;ijta;jkÞ
Z

d3xPiðt; x~ÞUkðt; x~Þ; ð1:60Þ

we find the right-hand side of Eq. 1.60 to be again proportional to a charge
operator, if

ta;ijtb;jk � tb;ijta;jk ¼ iCabctc;ik; ð1:61Þ

i.e., in that case the charge operators QaðtÞ form a Lie algebra

½QaðtÞ;QbðtÞ� ¼ iCabcQcðtÞ ð1:62Þ

with structure constants Cabc:

Exercise 1.13 Using the canonical commutation relations of Eqs. 1.52, verify
Eq. 1.60.

From now on we assume the validity of Eq. 1.61 and interpret the constants ta;ij
as the entries in the ith row and jth column of an n� n matrix Ta;

Ta ¼
ta;11 . . . ta;1n

..

. ..
.

ta;n1 . . . ta;nn

0
B@

1
CA:

Because of Eq. 1.61, these matrices form an n-dimensional representation of a Lie
algebra,

½Ta; Tb� ¼ iCabcTc:

The infinitesimal, linear transformations of the fields Ui may then be written in a
compact form,

U1ðxÞ
..
.

UnðxÞ

0

B@

1

CA ¼ UðxÞ 7!U0ðxÞ ¼ ð1� ieaTaÞUðxÞ: ð1:63Þ

In general, through an appropriate unitary transformation, the matrices Ta may be
decomposed into their irreducible components, i.e., brought into block-diagonal
form, such that only fields belonging to the same multiplet transform into each
other under the symmetry group.
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Exercise 1.14 In order to also deal with the case of fermions, we discuss the
isospin invariance of the strong interactions and consider, in total, five fields. The
commutation relations of the isospin algebra su(2) read

½Qi;Qj� ¼ ieijkQk: ð1:64Þ

A basis of the so-called fundamental representation (n ¼ 2) is given by

T f
i ¼

1
2
si ðf : fundamentalÞ ð1:65Þ

with the Pauli matrices

s1 ¼
0 1
1 0

� �
; s2 ¼

0 �i
i 0

� �
; s3 ¼

1 0
0 �1

� �
: ð1:66Þ

We replace the fields U4 and U5 by the nucleon doublet containing the proton and
neutron fields,

W ¼ p
n

� �
: ð1:67Þ

A basis of the so-called adjoint representation (n ¼ 3) is given by

Tad
i ¼

tad
i;11 tad

i;12 tad
i;13

tad
i;21 tad

i;22 tad
i;23

tad
i;31 tad

i;32 tad
i;33

0
B@

1
CA; tad

i;jk ¼ �ieijk ðad: adjointÞ; ð1:68Þ

i.e.

Tad
1 ¼

0 0 0
0 0 �i
0 i 0

0

@

1

A; Tad
2 ¼

0 0 i
0 0 0
�i 0 0

0

@

1

A; Tad
3 ¼

0 �i 0
i 0 0
0 0 0

0

@

1

A: ð1:69Þ

With U1;2;3 ! U~ we consider the pseudoscalar pion-nucleon Lagrangian

L ¼ �W i 6o� mNð ÞWþ 1
2

olU~ � olU~�M2
pU~

2

 �

� ig �Wc5U~ � s~W; ð1:70Þ

where g ¼ gpN ¼ 13:2 denotes the pion-nucleon coupling constant. As a specific
application of the infinitesimal transformation of Eq. 1.53 we take

U~

W

� �
7! ½1� ieaðxÞTa� U~

W

� �
; Ta ¼

Tad
a 03�2

02�3 T f
a

� �
; ð1:71Þ

(Ta block-diagonal), i.e.

W 7!W0 ¼ 1� ie~ðxÞ � s~
2

� �
W; ð1:72Þ
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U~ 7! 1� ie~ðxÞ � T~ad

 �

U~ ¼ U~þ e~� U~: ð1:73Þ

(a) Show that the variation of the Lagrangian is given by

dL ¼ ole~� �Wcls~
2
Wþ U~� olU~

� �
: ð1:74Þ

From Eqs. 1.46 and 1.47 we find

J~
l ¼ odL

oole~
¼ �Wcls~

2
Wþ U~� olU~; ð1:75Þ

olJ~
l ¼ odL

oe~
¼ 0: ð1:76Þ

We obtain three time-independent charge operators

Q~ ¼
Z

d3x WyðxÞs~
2
WðxÞ þ U~ðxÞ �P~ðxÞ

� �
: ð1:77Þ

These operators are the infinitesimal generators of transformations of the Hilbert
space states. The generators decompose into a fermionic and a bosonic piece,
which commute with each other. Using the anticommutation relations for the
fermion fields

fWa;rðt; x~Þ;Wyb;sðt; y~Þg ¼ d3ðx~� y~Þdabdrs; ð1:78Þ

fWa;rðt; x~Þ;Wb;sðt; y~Þg ¼ 0; ð1:79Þ

fWya;rðt; x~Þ;W
y
b;sðt; y~Þg ¼ 0; ð1:80Þ

where a and b denote Dirac indices, and r and s denote isospin indices, and the
commutation relations for the boson fields

½Urðt; x~Þ;Psðt; y~Þ� ¼ id3ðx~� y~Þdrs; ð1:81Þ

½Urðt; x~Þ;Usðt; y~Þ� ¼ 0; ð1:82Þ

½Prðt; x~Þ;Psðt; y~Þ� ¼ 0; ð1:83Þ

together with the fact that fermion fields and boson fields commute, we will
verify:

½Qi;Qj� ¼ ieijkQk: ð1:84Þ
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We start from

½Qi;Qj� ¼
Z

d3xd3y Wyðt; x~Þsi

2
Wðt; x~Þ þ eiklUkðt; x~ÞPlðt; x~Þ;

h

Wyðt; y~Þsj

2
Wðt; y~Þ þ ejmnUmðt; y~ÞPnðt; y~Þ

i

¼
Z

d3xd3y Wyðt; x~Þsi

2
Wðt; x~Þ;Wyðt; y~Þsj

2
Wðt; y~Þ

h i


þ eiklUkðt; x~ÞPlðt; x~Þ; ejmnUmðt; y~ÞPnðt; y~Þ
	 
�

¼ Aij þ Bij:

For the evaluation of Aij we make use of

Wya;rðt; x~ÞbO1ab;rsWb;sðt; x~Þ;Wyc;tðt; y~ÞbO2cd;tuWd;uðt; y~Þ
h i

¼ bO1ab;rs
bO2cd;tu Wya;rðt; x~ÞWb;sðt; x~Þ;Wyc;tðt; y~ÞWd;uðt; y~Þ

h i
: ð1:85Þ

(b) Verify

½ab; cd� ¼ afb; cgd � acfb; dg þ fa; cgdb� cfa; dgb ð1:86Þ

and express the commutator of fermion fields in terms of anticommutators as

Wya;rðt; x~ÞWb;sðt; x~Þ;Wyc;tðt; y~ÞWd;uðt; y~Þ
h i

¼ Wya;rðt; x~ÞWd;uðt; y~Þd3ðx~� y~Þdbcdst �Wyc;tðt; y~ÞWb;sðt; x~Þd3ðx~� y~Þdaddru:

In a compact notation:

Wyðt; x~ÞC1F1Wðt; x~Þ;Wyðt; y~ÞC2F2Wðt; y~Þ
	 


¼ d3ðx~� y~Þ Wyðt; x~ÞC1C2F1F2Wðt; y~Þ �Wyðt; y~ÞC2C1F2F1Wðt; x~Þ
	 


; ð1:87Þ

where Ci is one of the sixteen 4� 4 matrices

1; cl; c5; c
lc5; r

lm ¼ i

2
cl; cm½ �;

and Fi one of the four 2� 2 matrices

1; si:

(c) Apply Eq. 1.87 and integrate
R

d3y. . . to obtain

Aij ¼ ieijk

Z
d3xWyðxÞsk

2
WðxÞ:
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(d) Verify

½ab; cd� ¼ a½b; c�d þ ac½b; d� þ ½a; c�dbþ c½a; d�b: ð1:88Þ

(e) Apply Eq. 1.88 in combination with the equal-time commutation relations to
obtain

Ukðt; x~ÞPlðt; x~Þ;Umðt; y~ÞPnðt; y~Þ½ �
¼ �iUkðt; x~ÞPnðt; y~Þd3ðx~� y~Þdlm þ iUmðt; y~ÞPlðt; x~Þd3ðx~� y~Þdkn: ð1:89Þ

(f) Apply Eq. 1.89 and integrate
R

d3y. . . to obtain

Bij ¼ ieijk

Z
d3xeklmUlðxÞPmðxÞ:

Adding the results for Aij and Bij we obtain

½Qi;Qj� ¼ ieijk

Z
d3xWyðxÞsk

2
WðxÞ þ

Z
d3xeklmUlðxÞPmðxÞ

� �

¼ ieijkQk:

1.3.4 Global Symmetry Currents of the Light-Quark Sector

The method of Gell-Mann and Lévy can easily be applied to the QCD Lagrangian
by calculating the variation under the infinitesimal, local form of Eqs. 1.40,

dL0
QCD ¼ �qR

X8

a¼1

oleRa
ka

2
þ oleR

 !
clqR þ �qL

X8

a¼1

oleLa
ka

2
þ oleL

 !
clqL;

ð1:90Þ

from which, by virtue of Eqs. 1.46 and 1.47, one obtains the currents associated
with the transformations of the left-handed or right-handed quarks,

Ll
a ¼

odL0
QCD

ooleLa
¼ �qLc

lka

2
qL; olLl

a ¼
odL0

QCD

oeLa
¼ 0;

Rl
a ¼

odL0
QCD

ooleRa
¼ �qRclka

2
qR; olRl

a ¼
odL0

QCD

oeRa
¼ 0;

Ll ¼
odL0

QCD

ooleL
¼ �qLc

lqL; olLl ¼
odL0

QCD

oeL
¼ 0;

Rl ¼
odL0

QCD

ooleR
¼ �qRclqR; olRl ¼

odL0
QCD

oeR
¼ 0:

ð1:91Þ
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Note that a summation over color indices is implied in Eqs. 1.90 and 1.91. For
example, the detailed expression for Ll

a reads

Ll
a ¼ �qLa;f ;Acl

aa0
kaff 0

2
dAA0qLa0;f 0;A0 :

The eight currents Ll
a transform under SUð3ÞL � SUð3ÞR as an ð8; 1Þ multiplet, i.e.,

as octet and singlet under transformations of the left- and right-handed fields,
respectively. Similarly, the right-handed currents transform as a ð1; 8Þ multiplet
under SUð3ÞL � SUð3ÞR: Instead of these chiral currents one often uses linear
combinations,

Vl
a ¼ Rl

a þ Ll
a ¼ �qclka

2
q; ð1:92Þ

Al
a ¼ Rl

a � Ll
a ¼ �qclc5

ka

2
q; ð1:93Þ

transforming under parity as vector and axial-vector currents, respectively,

P : Vl
a ðt; x~Þ 7!Valðt;�x~Þ; ð1:94Þ

P : Al
aðt; x~Þ 7! � Aalðt;�x~Þ: ð1:95Þ

Exercise 1.15 Verify Eqs. 1.92 and 1.93.

From Eq. 1.91 one also obtains a conserved singlet vector current resulting
from a transformation of all left-handed and right-handed quark fields by the same
phase,

Vl ¼ Rl þ Ll ¼ �qclq;

olVl ¼ 0: ð1:96Þ

The singlet axial-vector current,

Al ¼ Rl � Ll ¼ �qclc5q; ð1:97Þ

originates from a transformation of all left-handed quark fields with one phase and
all right-handed quark fields with the opposite phase. However, such a singlet
axial-vector current is only conserved on the classical level. Quantum corrections
destroy the singlet axial-vector current conservation and there are extra terms,
referred to as anomalies [3, 4, 10], resulting in

olAl ¼ 3g2
3

32p2
elmqrG

lm
a Gqr

a ; e0123 ¼ 1: ð1:98Þ

The factor of three originates from the number of flavors. In the large Nc (number
of colors) limit of Ref. [49] the singlet axial-vector current is conserved, because
the strong coupling constant behaves as g2

3
N�1
c :
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1.3.5 The Chiral Algebra

The invariance of L0
QCD under global SUð3ÞL � SUð3ÞR � U(1)V transformations

implies that also the QCD Hamilton operator in the chiral limit, H0
QCD; exhibits a

global SUð3ÞL � SUð3ÞR � U(1)V symmetry. As usual, the ‘‘charge operators’’ are
defined as the space integrals of the charge densities,

QLaðtÞ ¼
Z

d3xqyLðt; x~Þ
ka

2
qLðt; x~Þ ¼

Z
d3xqyðt; x~ÞPL

ka

2
qðt; x~Þ; ð1:99Þ

QRaðtÞ ¼
Z

d3xqyRðt; x~Þ
ka

2
qRðt; x~Þ ¼

Z
d3xqyðt; x~ÞPR

ka

2
qðt; x~Þ; ð1:100Þ

QVðtÞ ¼
Z

d3x qyLðt; x~ÞqLðt; x~Þ þ qyRðt; x~ÞqRðt; x~Þ
h i

¼
Z

d3xqyðt; x~Þqðt; x~Þ: ð1:101Þ

For conserved symmetry currents, these operators are time independent, i.e., they
commute with the Hamiltonian,

½QLa;H
0
QCD� ¼ ½QRa;H

0
QCD� ¼ ½QV ;H

0
QCD� ¼ 0: ð1:102Þ

The commutation relations of the charge operators with each other are obtained by
using Eq. 1.87 applied to the quark fields,

qyðt; x~ÞC1F1qðt; x~Þ; qyðt; y~ÞC2F2qðt; y~Þ
	 


¼ d3ðx~� y~Þ qyðt; x~ÞC1C2F1F2qðt; y~Þ � qyðt; y~ÞC2C1F2F1qðt; x~Þ
	 


; ð1:103Þ

where Ci and Fi are 4� 4 C matrices and 3� 3 flavor matrices, respectively.19

After inserting appropriate projectors PL=R; Eq. 1.103 is easily applied to the
charge operators of Eqs. 1.99–1.101, showing that these operators indeed satisfy
the commutation relations corresponding to the Lie algebra of SUð3ÞL�
SUð3ÞR � U(1)V ;

½QLa;QLb� ¼ ifabcQLc; ð1:104Þ

½QRa;QRb� ¼ ifabcQRc; ð1:105Þ

½QLa;QRb� ¼ 0; ð1:106Þ

½QLa;QV � ¼ ½QRa;QV � ¼ 0: ð1:107Þ

For example (recall P2
L ¼ PL)

19 Strictly speaking, we should also include the color indices. However, since we are only
discussing color-neutral quadratic forms a summation over such indices is always implied, with
the net effect that one can completely omit them from the discussion.
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½QLa;QLb� ¼
Z

d3xd3y qyðt; x~ÞPL
ka

2
qðt; x~Þ; qyðt; y~ÞPL

kb

2
qðt; y~Þ

� �

¼
Z

d3xd3yd3ðx~� y~Þqyðt; x~Þ PLPL|ffl{zffl}
¼ PL

ka

2
kb

2
qðt; y~Þ

�
Z

d3xd3yd3ðx~� y~Þqyðt; y~ÞPL
kb

2
ka

2
qðt; x~Þ

¼ ifabc

Z
d3xqyðt; x~ÞPL

kc

2
qðt; x~Þ ¼ ifabcQLc:

Exercise 1.16 Verify the remaining commutation relations, Eqs. 1.105–1.107.

It should be stressed that, even without being able to explicitly solve the
equation of motion of the quark fields entering the charge operators of
Eqs. 1.104–1.107, we know from the equal-time commutation relations and the
symmetry of the Lagrangian that these charge operators are the generators of
infinitesimal transformations of the Hilbert space associated with H0

QCD: Fur-
thermore, their commutation relations with a given operator specify the trans-
formation behavior of the operator in question under the group SUð3ÞL�
SUð3ÞR � Uð1ÞV :

1.3.6 Chiral Symmetry Breaking by the Quark Masses

So far we have discussed an idealized world with massless light quarks. The
finite u-, d-, and s-quark masses in the QCD Lagrangian explicitly break the
chiral symmetry, resulting in divergences of the symmetry currents. As a
consequence, the charge operators are, in general, no longer time independent.
However, as first pointed out by Gell-Mann, the equal-time commutation
relations still play an important role even if the symmetry is explicitly broken
[22]. As will be discussed later on in more detail, the symmetry currents give
rise to chiral Ward identities relating various QCD Green functions to each
other. Equation 1.47 allows one to discuss the divergences of the symmetry
currents in the presence of quark masses. To that end, let us consider the quark-
mass matrix of the three light quarks and project it onto the nine k matrices of
Eq. 1.13,

M ¼
mu 0 0
0 md 0
0 0 ms

0

@

1

A: ð1:108Þ

Exercise 1.17 Express the quark-mass matrix in terms of the k matrices k0; k3;
and k8:
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In particular, applying Eq. 1.38 we see that the quark-mass term mixes left- and
right-handed fields,

LM ¼ ��qMq ¼ � �qRMqL þ �qLMqRð Þ: ð1:109Þ

The symmetry-breaking term transforms under SUð3ÞL � SUð3ÞR as a member of a
ð3; 3�Þ � ð3�; 3Þ representation, i.e.,

�qR;iMijqL;j þ �qL;iMijqR;j 7!UL;jkU�R;il�qR;lMijqL;k þ ðL$ RÞ;

where ðUL;URÞ 2 SUð3ÞL � SUð3ÞR: Such symmetry-breaking patterns were
already discussed in the pre-QCD era in Refs. [26, 27].

From LM one obtains the variation dLM under the infinitesimal transforma-
tions corresponding to Eqs. 1.40,

dLM ¼ �i �qR

X8

a¼1

eRa
ka

2
þ eR

 !
MqL � �qRM

X8

a¼1

eLa
ka

2
þ eL

 !
qL

"

þ�qL

X8

a¼1

eLa
ka

2
þ eL

 !
MqR � �qLM

X8

a¼1

eRa
ka

2
þ eR

 !
qR

#

¼ �i
X8

a¼1

eRa �qR
ka

2
MqL � �qLM

ka

2
qR

� �
þ eR �qRMqL � �qLMqRð Þ

"

þ
X8

a¼1

eLa �qL
ka

2
MqR � �qRM

ka

2
qL

� �
þ eL �qLMqR � �qRMqLð Þ

#
; ð1:110Þ

which results in the following divergences,20

olLl
a ¼

odLM

oeLa
¼ �i �qL

ka

2
MqR � �qRM

ka

2
qL

� �
;

olRl
a ¼

odLM

oeRa
¼ �i �qR

ka

2
MqL � �qLM

ka

2
qR

� �
;

olLl ¼ odLM

oeL
¼ �i �qLMqR � �qRMqLð Þ;

olRl ¼ odLM

oeR
¼ �i �qRMqL � �qLMqRð Þ:

ð1:111Þ

The anomaly has not yet been considered. Applying Eq. 1.38 to the case of the
vector currents and inserting projection operators for the axial-vector current, the
corresponding divergences read

20 The divergences are proportional to the mass parameters which is the origin of the expression
current-quark mass.
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olVl
a ¼ �i�qR

ka

2
;M

� �
qL � i�qL

ka

2
;M

� �
qR ¼
ð1:38Þ

i�q M;
ka

2

� �
q;

olAl
a ¼ �i �qR

ka

2
MqL � �qLM

ka

2
qR

� �
þ i �qL

ka

2
MqR � �qRM

ka

2
qL

� �

¼ i �qL
ka

2
;M

� �
qR � �qR

ka

2
;M

� �
qL

� �

¼ i �q
1
2
ð1þ c5Þ

ka

2
;M

� �
q� �q

1
2
ð1� c5Þ

ka

2
;M

� �
q

� �

¼ i�qc5
ka

2
;M

� �
q;

olVl ¼ 0;

olAl ¼ 2i�qc5Mqþ 3g2
3

32p2
elmqrG

lm
a Gqr

a ; e0123 ¼ 1; ð1:112Þ

where the axial anomaly has also been taken into account.
We are now in the position to summarize the various (approximate) symmetries

of the strong interactions in combination with the corresponding currents and their
divergences.

1. In the limit of massless quarks, the sixteen currents Ll
a and Rl

a or, alternatively,
Vl

a and Al
a are conserved. The same is true for the singlet vector current Vl;

whereas the singlet axial-vector current Al has an anomaly.
2. For any values of quark masses, the individual flavor currents �uclu; �dcld; and

�scls are always conserved in the strong interactions reflecting the flavor
independence of the strong coupling and the diagonal form of the quark-mass
matrix. Of course, the singlet vector current Vl; being the sum of the three
flavor currents, is always conserved.

3. In addition to the anomaly, the singlet axial-vector current has an explicit
divergence due to the quark masses.

4. For equal quark masses, mu ¼ md ¼ ms; the eight vector currents Vl
a are con-

served, because ½ka; 1� ¼ 0: Such a scenario is the origin of the SU(3) symmetry
originally proposed by Gell-Mann and Ne’eman [25]. The eight axial-vector
currents Al

a are not conserved. The divergences of the octet axial-vector cur-
rents of Eq. 1.112 are proportional to pseudoscalar quadratic forms. This can be
interpreted as the microscopic origin of the PCAC relation (partially conserved
axial-vector current) [5, 23] which states that the divergences of the axial-
vector currents are proportional to renormalized field operators representing the
lowest-lying pseudoscalar octet (for a comprehensive discussion of the meaning
of PCAC see Refs. [5, 6, 23, 50]).

5. Taking mu ¼ md 6¼ ms reduces SU(3) flavor symmetry to SU(2) isospin
symmetry.

6. Taking mu 6¼ md leads to isospin-symmetry breaking.
7. Various symmetry-breaking patterns are discussed in great detail in Ref. [45].
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1.4 Green Functions and Ward Identities

For conserved currents, the spatial integrals of the charge densities are time
independent, i.e., in a quantized theory the corresponding charge operators com-
mute with the Hamilton operator. These operators are generators of infinitesimal
transformations on the Hilbert space of the theory. The mass eigenstates should
organize themselves in degenerate multiplets with dimensionalities corresponding
to irreducible representations of the Lie group in question.21 Which irreducible
representations ultimately appear, and what the actual energy eigenvalues are, is
determined by the dynamics of the Hamiltonian. For example, SU(2) isospin
symmetry of the strong interactions reflects itself in degenerate SU(2) multiplets
such as the nucleon doublet, the pion triplet, and so on. Ultimately, the actual
masses of the nucleon and the pion should follow from QCD.

It is also well-known that symmetries imply relations between S-matrix ele-
ments. For example, applying the Wigner-Eckart theorem to pion-nucleon scat-
tering, assuming the strong-interaction Hamiltonian to be an isoscalar, it is
sufficient to consider two isospin amplitudes describing transitions between states
of total isospin I ¼ 1=2 or I ¼ 3=2 (see, for example, Ref. [16]). All the dynamical
information is contained in these isospin amplitudes and the results for physical
processes can be expressed in terms of these amplitudes together with geometrical
coefficients, namely, the Clebsch-Gordan coefficients.

In quantum field theory, the objects of interest are the Green functions which
are vacuum expectation values of time-ordered products.22 Pictorially, these Green
functions can be understood as vertices and are related to physical scattering
amplitudes through the Lehmann-Symanzik-Zimmermann (LSZ) reduction for-
malism [36]. Symmetries provide strong constraints not only for scattering
amplitudes, i.e. their transformation behavior, but, more generally speaking, also
for Green functions and, in particular, among Green functions. The famous
example in this context is, of course, the Ward identity of QED associated with
U(1) gauge invariance [53],

Clðp; pÞ ¼ � o

o pl
RðpÞ; ð1:113Þ

which relates the electromagnetic vertex of an electron at zero momentum transfer,
cl þ Clðp; pÞ; to the electron self-energy, RðpÞ:

Such symmetry relations can be extended to nonvanishing momentum transfer
and also to more complicated groups and are referred to as Ward-Fradkin-
Takahashi identities [17, 48, 53] (or Ward identities for short). Furthermore, even

21 Here we assume that the dynamical system described by the Hamiltonian does not lead to a
spontaneous symmetry breakdown. We will come back to this point later.
22 Later on, we will also refer to matrix elements of time-ordered products between states other
than the vacuum as Green functions.
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if a symmetry is broken, i.e., the infinitesimal generators are time dependent,
conditions related to the symmetry-breaking terms can still be obtained using
equal-time commutation relations [22].

1.4.1 Ward Identities Resulting from U(1) Invariance:
An Example

In this section we will show how to derive Ward identities for Green functions in
the framework of canonical quantization on the one hand, and quantization via the
Feynman path integral on the other hand, by means of an explicit example. In
order to keep the discussion transparent, we will concentrate on a simple scalar
field theory with a global SO(2) or U(1) invariance. To that end, let us consider the
Lagrangian of Exercise 1.11,

L ¼ 1
2

olU1o
lU1 þ olU2o

lU2
� �

� m2

2
U2

1 þ U2
2

� �
� k

4
U2

1 þ U2
2

� �2

¼ olU
yolU� m2UyU� kðUyUÞ2; ð1:114Þ

where

UðxÞ ¼ 1ffiffiffi
2
p ½U1ðxÞ þ iU2ðxÞ�; UyðxÞ ¼ 1ffiffiffi

2
p ½U1ðxÞ � iU2ðxÞ�;

with real scalar fields U1 and U2: Furthermore, we assume m2 [ 0 and k[ 0; so
there is no spontaneous symmetry breaking (see Chap. 2) and the energy is
bounded from below. Equation 1.114 is invariant under the global (or rigid)
transformations

U01 ¼ U1 � eU2; U02 ¼ U2 þ eU1; ð1:115Þ

or, equivalently,

U0 ¼ ð1þ ieÞU; U0y ¼ ð1� ieÞUy; ð1:116Þ

where e is an infinitesimal real parameter. Applying the method of Gell-Mann and
Lévy, we obtain for a local parameter eðxÞ;

dL ¼ oleðxÞ iolUyU� iUyolU
� �

; ð1:117Þ

from which, via Eqs. 1.46 and 1.47, we derive for the current corresponding to the
global symmetry,

Jl ¼ odL
oole

¼ iolUyU� iUyolU; ð1:118Þ
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olJl ¼ odL
oe
¼ 0: ð1:119Þ

Recall that the identification of Eq. 1.47 as the divergence of the current is only
true for fields satisfying the Euler-Lagrange equations of motion.

We now extend the analysis to a quantum field theory. In the framework of
canonical quantization, we first define conjugate momenta,

Pi ¼
oL

oo0Ui
; P ¼ oL

oo0U
¼ _Uy; Py ¼ oL

oo0U
y ¼ _U; ð1:120Þ

and interpret the fields and their conjugate momenta as operators which, in the
Heisenberg picture, are subject to the equal-time commutation relations

½Uiðt; x~Þ;Pjðt; y~Þ� ¼ idijd
3ðx~� y~Þ; ð1:121Þ

and

½Uðt; x~Þ;Pðt; y~Þ� ¼ ½Uyðt; x~Þ;Pyðt; y~Þ� ¼ id3ðx~� y~Þ: ð1:122Þ

The remaining equal-time commutation relations vanish. For the quantized theory,
the current operator then reads

JlðxÞ ¼: iolUyU� iUyolU
� �

:; ð1:123Þ

where : : denotes normal or Wick ordering, i.e., annihilation operators appear to
the right of creation operators. For a conserved current, the charge operator, i.e.,
the space integral of the charge density, is time independent and serves as the
generator of infinitesimal transformations of the Hilbert space states,

Q ¼
Z

d3xJ0ðt; x~Þ: ð1:124Þ

Applying Eq. 1.122, it is straightforward to calculate the equal-time commutation
relations23

½J0ðt; x~Þ;Uðt; y~Þ� ¼ d3ðx~� y~ÞUðt; x~Þ;
½J0ðt; x~Þ;Pðt; y~Þ� ¼ �d3ðx~� y~ÞPðt; x~Þ;
½J0ðt; x~Þ;Uyðt; y~Þ� ¼ �d3ðx~� y~ÞUyðt; x~Þ;
½J0ðt; x~Þ;Pyðt; y~Þ� ¼ d3ðx~� y~ÞPyðt; x~Þ:

ð1:125Þ

In particular, performing the space integrals in Eqs. 1.125, one obtains

23 The transition to normal ordering involves an (infinite) constant which does not contribute to
the commutator.
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½Q;UðxÞ� ¼ UðxÞ;
½Q;PðxÞ� ¼ �PðxÞ;
½Q;UyðxÞ� ¼ �UyðxÞ;
½Q;PyðxÞ� ¼ PyðxÞ:

ð1:126Þ

In order to illustrate the implications of Eqs. 1.126, let us take an eigenstate jai of
Q with eigenvalue qa and consider, for example, the action of UðxÞ on that state,

Q UðxÞjaið Þ ¼ ½Q;UðxÞ� þ UðxÞQð Þjai ¼ ð1þ qaÞ UðxÞjaið Þ:

We conclude that the operators UðxÞ and PyðxÞ [UyðxÞ and PðxÞ] increase
(decrease) the Noether charge of a system by one unit.

We are now in the position to discuss the consequences of the U(1) symmetry
of Eq. 1.114 for the Green functions of the theory. To that end, let us consider as
our prototype the Green function

Glðx; y; zÞ ¼ h0jT ½UðxÞJlðyÞUyðzÞ�j0i; ð1:127Þ

which describes the transition amplitude for the creation of a quantum of Noether
charge þ1 at x; propagation to y; interaction at y via the current operator, prop-
agation to z with annihilation at z: In Eq. 1.127, j0i refers to the ground state of the
quantum field theory described by the Lagrangian of Eq. 1.114 and should not be
confused with the ground state of a free theory.

First of all we observe that under the global infinitesimal transformations of
Eq. 1.116, JlðxÞ 7! J0lðxÞ ¼ JlðxÞ; or in other words ½Q; JlðxÞ� ¼ 0: We thus
obtain

Glðx; y; zÞ 7!G0lðx; y; zÞ ¼ h0jT½ð1þ ieÞUðxÞJ0lðyÞð1� ieÞUyðzÞ�j0i
¼ h0jT½UðxÞJlðyÞUyðzÞ�j0i
¼ Glðx; y; zÞ; ð1:128Þ

the Green function remains invariant under the U(1) transformation. (In general,
the transformation behavior of a Green function depends on the irreducible rep-
resentations under which the fields transform. In particular, for more complicated
groups such as SU(N), standard tensor methods of group theory may be applied to
reduce the product representations into irreducible components. We also note that
for U(1), the symmetry current is charge neutral, i.e. invariant, which for more
complicated groups, in general, is not the case.)

Moreover, since JlðxÞ is the Noether current of the underlying U(1) symmetry
there are further restrictions on the Green function beyond its transformation
behavior under the group. In order to see this, we consider the divergence of
Eq. 1.127 and apply the equal-time commutation relations of Eqs. 1.125 to obtain

oy
lGlðx; y; zÞ ¼ ½d4ðy� xÞ � d4ðy� zÞ�h0jT ½UðxÞUyðzÞ�j0i; ð1:129Þ
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where we made use of olJl ¼ 0: Equation 1.129 is the analogue of the Ward
identity of QED [53]. In other words, the underlying symmetry not only deter-
mines the transformation behavior of Green functions under the group, but also
relates n-point Green functions containing a symmetry current to ðn� 1Þ-point
Green functions. In principle, calculations similar to those leading to Eqs. 1.128
and 1.129, can be performed for any Green function of the theory.

Exercise 1.18 Derive Eq. 1.129.
Hints: The time ordering is defined as

h0jT ½UðxÞJlðyÞUyðzÞ�j0i ¼ UðxÞJlðyÞUyðzÞHðx0 � y0ÞHðy0 � z0Þ
þ UðxÞUyðzÞJlðyÞHðx0 � z0ÞHðz0 � y0Þ þ � � � :

All in all there exist 3! ¼ 6 distinct orderings. Make use of

oy
lHðx0 � y0Þ ¼ �gl0dðx0 � y0Þ;

oy
lHðy0 � z0Þ ¼ gl0dðy0 � z0Þ:

We will now show that the symmetry constraints imposed by the Ward
identities can be compactly summarized in terms of an invariance property of a
generating functional. For a discussion of functionals and partial functional
derivatives, see App. B. In the present case, the generating functional depends on a
set of functions denoted by j; j�; and jl which are called external sources. They

couple to the fields Uy;U; and the U(1) current Jl; respectively. The generating
functional is defined as

W ½j; j�; jl� ¼ expðiZ½j; j�; jl�Þ

¼ h0jT exp i

Z
d4x jðxÞUyðxÞ þ j�ðxÞUðxÞ þ jlðxÞJlðxÞ
	 
� �� �

j0i;

ð1:130Þ

where j0i denotes the ground state of the theory described by the Lagrangian of
Eq. 1.114. Moreover, U;Uy, and JlðxÞ refer to the field operators and the Noether
current in the Heisenberg picture. Note that the field operators and the conjugate
momenta are subject to the equal-time commutation relations and, in addition,
must satisfy the Heisenberg equations of motion:

o0UðxÞ ¼ i½H;UðxÞ�;
o0P

yðxÞ ¼ i½H;PyðxÞ�;
o0U

yðxÞ ¼ i½H;UyðxÞ�;
o0PðxÞ ¼ i½H;PðxÞ�;

ð1:131Þ
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where

H ¼
Z

d3xH; ð1:132Þ

H ¼ PyPþr~Uy � r~Uþ m2UyUþ kðUyUÞ2: ð1:133Þ

Via the equations of motion and implicitly through the ground state, the generating
functional depends on the dynamics of the system which is determined by the
Lagrangian of Eq. 1.114 or the Hamiltonian of Eq. 1.132. The Green functions of
the theory involving U;Uy; and Jl are obtained through partial functional deriv-
atives of Eq. 1.130. For example, the Green function of Eq. 1.127 is given by24

Glðx; y; zÞ ¼ ð�iÞ3 d3W ½j; j�; jl�
dj�ðxÞdjlðyÞdjðzÞ

����
j¼0;j�¼0;jl¼0

: ð1:134Þ

Alternatively, the generating functional may be written as the vacuum-to-
vacuum transition amplitude in the presence of external fields,

W ½j; j�; jl� ¼ h0; outj0; inij;j�;jl : ð1:135Þ

In order to discuss the constraints imposed on the generating functional via the
underlying symmetry of the theory, let us consider its path integral representation
[14, 55],25

W ½j; j�; jl� ¼
Z
½dU1�½dU2�eiS½U;U�;j;j�;jl�; ð1:136Þ

where

S½U;U�; j; j�; jl� ¼ S½U;U�� þ
Z

d4x½UðxÞj�ðxÞ þ U�ðxÞjðxÞ þ JlðxÞjlðxÞ�

ð1:137Þ

denotes the action corresponding to the Lagrangian of Eq. 1.114 in combination
with a coupling to the external sources. In the path integral formulation we deal
with functional integrals instead of linear operators. In the following we will write

24 In order to obtain Green functions from the generating functional, the simple rule

df ðxÞ
df ðyÞ ¼ d4ðx� yÞ

is extremely useful. Furthermore, the partial functional derivative satisfies properties similar to
the ordinary differentiation, namely linearity, the product and chain rules. See App. B for more
details.
25 Up to an irrelevant constant the measure ½dU1�½dU2� is equivalent to ½dU�½dU��; with U and
U� considered as independent variables of integration.
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U� instead of Uy: Let us now consider a local infinitesimal transformation of the
fields (see Eqs. 1.116) together with a simultaneous transformation of the external
sources,

j0ðxÞ ¼ ½1þ ieðxÞ�jðxÞ; j0�ðxÞ ¼ ½1� ieðxÞ�j�ðxÞ; j0lðxÞ ¼ jlðxÞ � oleðxÞ:
ð1:138Þ

The action of Eq. 1.137 remains invariant under such a transformation,

S½U0;U0�; j0; j0�; j0l� ¼ S½U;U�; j; j�; jl�: ð1:139Þ

We stress that the transformation of the external current jl is necessary to cancel a
term resulting from the kinetic term in the Lagrangian. Also note that the global
symmetry of the Lagrangian determines the explicit form of the transformations of
Eq. 1.138. We can now verify the invariance of the generating functional as follows,

W ½j; j�; jl� ¼
Z
½dU1�½dU2�eiS½U;U� ;j;j�;jl�

¼
Z
½dU1�½dU2�eiS½U0;U0�;j0;j0�;j0l�

¼
Z
½dU01�½dU02�

oUi

oU0j

 !�����

�����e
iS½U0;U0�;j0;j0�;j0l�

¼
Z
½dU1�½dU2�eiS½U;U� ;j0;j0� ;j0l�

¼ W ½j0; j0�; j0l�: ð1:140Þ

We made use of the fact that the Jacobi determinant is one and renamed the
integration variables. In other words, given the global U(1) symmetry of the
Lagrangian, Eq. 1.114, the generating functional is invariant under the local
transformations of Eq. 1.138. It is this observation which, for the more general
case of the chiral group SU(N)�SU(N), was used by Gasser and Leutwyler as the
starting point of chiral perturbation theory [20, 21].

We still have to discuss how this invariance allows us to collect the Ward
identities in a compact formula. We start from Eq. 1.140 and perform a Taylor
series expansion, keeping only terms linear in infinitesimal quantities,

0 ¼
Z
½dU1�½dU2� eiS½U;U�;j0;j0�;j0l� � eiS½U;U�;j;j�;jl�


 �

¼
Z
½dU1�½dU2�

Z
d4x e½Uj� � U�j� � iJlole
� �

eiS½U;U�;j;j�;jl�:

Observe that

UðxÞeiS½U;U�;j;j�;jl� ¼ �i
d

dj�ðxÞ e
iS½U;U�;j;j� ;jl�;
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and similarly for the other terms, resulting in

0 ¼
Z
½dU1�½dU2�

Z
d4x eðxÞ �ij�ðxÞ d

dj�ðxÞ þ ijðxÞ d
djðxÞ

� ��

�oleðxÞ
d

djlðxÞ

�
eiS½U;U�;j;j�;jl�:

Finally, we interchange the order of integration, make use of integration by
parts, and apply the divergence theorem:

0 ¼
Z

d4xeðxÞ ijðxÞ d
djðxÞ � ij�ðxÞ d

dj�ðxÞ þ ox
l

d
djlðxÞ

� �
W ½ j; j�; jl�: ð1:141Þ

Since Eq. 1.141 must hold for any eðxÞ we obtain as the master equation for
deriving Ward identities,

jðxÞ d
djðxÞ � j�ðxÞ d

dj�ðxÞ � iox
l

d
djlðxÞ

� �
W ½j; j�; jl� ¼ 0: ð1:142Þ

We note that Eqs. 1.140 and 1.142 are equivalent.
As an illustration let us re-derive the Ward identity of Eq. 1.129 using

Eq. 1.142. For that purpose we start from Eq. 1.134,

oy
lGlðx; y; zÞ ¼ ð�iÞ3oy

l
d3W

dj�ðxÞdjlðyÞdjðzÞ;
����
j¼0;j�¼0;jl¼0

;

apply Eq. 1.142,

¼ ð�iÞ2 d2

dj�ðxÞdjðzÞ j�ðyÞ d
dj�ðyÞ � jðyÞ d

djðyÞ

� �
W

� �

j¼0;j�¼0;jl¼0

;

make use of dj�ðyÞ=dj�ðxÞ ¼ d4ðy� xÞ and djðyÞ=djðzÞ ¼ d4ðy� zÞ for the partial
functional derivatives,

¼ ð�iÞ2 d4ðy� xÞ d2W

dj�ðyÞdjðzÞ � d4ðy� zÞ d2W

dj�ðxÞdjðyÞ

� �

j¼0;j�¼0;jl¼0

;

and, finally, use the definition of Eq. 1.130,

oy
lGlðx; y; zÞ ¼ ½d4ðy� xÞ � d4ðy� zÞ�h0jT UðxÞUyðzÞ

	 

j0i

which is the same as Eq. 1.129. In principle, any Ward identity can be obtained by
taking appropriate higher partial functional derivatives of W and then using
Eq. 1.142.
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1.4.2 Chiral Green Functions

Let us now turn to time-ordered products of color-neutral, Hermitian quadratic
forms involving the light-quark fields evaluated between the vacuum of QCD.
Using the LSZ reduction formalism [32, 36] such Green functions can be related to
physical processes involving mesons as well as their interactions with the elec-
troweak gauge fields of the Standard Model. The interpretation depends on the
transformation properties and quantum numbers of the quadratic forms, deter-
mining for which mesons they may serve as an interpolating field. In addition to
the vector and axial-vector currents of Eqs. 1.92, 1.93, and 1.96 we want to
investigate scalar and pseudoscalar densities,26

SaðxÞ ¼ �qðxÞkaqðxÞ; PaðxÞ ¼ i�qðxÞc5kaqðxÞ; a ¼ 0; . . .; 8; ð1:143Þ

which enter, for example, in Eqs. 1.112 as the divergences of the vector and axial-
vector currents for nonzero quark masses. Whenever it is more convenient, we will
also use

SðxÞ ¼ �qðxÞqðxÞ; PðxÞ ¼ i�qðxÞc5qðxÞ; ð1:144Þ

instead of S0 and P0:
For example, the following Green functions of the ‘‘vacuum’’ sector,

h0jT½Al
aðxÞPbðyÞ�j0i;

h0jT½PaðxÞJlðyÞPbðzÞ�j0i;
h0jT½PaðwÞPbðxÞPcðyÞPdðzÞ�j0i;

are related to pion decay, the pion electromagnetic form factor (Jl is the elec-
tromagnetic current), and pion-pion scattering, respectively. One may also con-
sider similar time-ordered products evaluated between a single nucleon in the
initial and final states in addition to the vacuum Green functions. This allows one
to discuss properties of the nucleon as well as dynamical processes involving a
single nucleon, such as

hNjJlðxÞjNi $ nucleon electromagnetic form factors;

hNjAl
aðxÞjNi $ axial form factor þ induced pseudoscalar form factor;

hNjT½JlðxÞJmðyÞ�jNi $ Compton scattering;

hNjT½JlðxÞPaðyÞ�jNi $ pion photo- and electroproduction:

Generally speaking, a chiral Ward identity relates the divergence of a Green
function containing at least one factor of Vl

a or Al
a (see Eqs. 1.92 and 1.93) to some

26 The singlet axial-vector current involves an anomaly such that the Green functions involving
this current operator are related to Green functions containing the contraction of the gluon field-
strength tensor with its dual.
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linear combination of other Green functions. The terminology chiral refers to the
underlying SUð3ÞL � SUð3ÞR group. To make this statement more precise, let us
consider as a simple example the two-point Green function involving an axial-
vector current and a pseudoscalar density,27

Gl
APabðx; yÞ ¼ h0jT½Al

aðxÞPbðyÞ�j0i
¼ Hðx0 � y0Þh0jAl

aðxÞPbðyÞj0i þHðy0 � x0Þh0jPbðyÞAl
aðxÞj0i;
ð1:145Þ

and evaluate the divergence

ox
lGl

APabðx; yÞ ¼ ox
l½Hðx0 � y0Þh0jAl

aðxÞPbðyÞj0i þHðy0 � x0Þh0jPbðyÞAl
aðxÞj0i�

¼ dðx0 � y0Þh0jA0
aðxÞPbðyÞj0i � dðx0 � y0Þh0jPbðyÞA0

aðxÞj0i
þHðx0 � y0Þh0jox

lAl
aðxÞPbðyÞj0i þHðy0 � x0Þh0jPbðyÞox

lAl
aðxÞj0i

¼ dðx0 � y0Þh0j½A0
aðxÞ;PbðyÞ�j0i þ h0jT½ox

lAl
aðxÞPbðyÞ�j0i;

where we made use of ox
lHðx0 � y0Þ ¼ dðx0 � y0Þg0l ¼ �ox

lHðy0 � x0Þ: This
simple example already shows the main features of (chiral) Ward identities. From
the differentiation of the theta functions one obtains equal-time commutators
between a charge density and the remaining quadratic forms. The results of such
commutators are a reflection of the underlying symmetry, as will be shown below.
As a second term, one obtains the divergence of the current operator in question. If
the symmetry is perfect, such terms vanish identically. For example, this is always
true for the electromagnetic case with its U(1) symmetry. If the symmetry is only
approximate, an additional term involving the symmetry breaking appears. For a
soft breaking such a divergence can be treated as a perturbation.

Via induction, the generalization of the above simple example to an ðnþ 1Þ-
point Green function is symbolically of the form

ox
lh0jTfJlðxÞA1ðx1Þ. . .AnðxnÞgj0i
¼ h0jTf½ox

lJlðxÞ�A1ðx1Þ. . .AnðxnÞgj0i
þ dðx0 � x0

1Þh0jTf½J0ðxÞ;A1ðx1Þ�A2ðx2Þ. . .AnðxnÞgj0i
þ dðx0 � x0

2Þh0jTfA1ðx1Þ½J0ðxÞ;A2ðx2Þ�. . .AnðxnÞgj0i
þ � � � þ dðx0 � x0

nÞh0jTfA1ðx1Þ. . .½J0ðxÞ;AnðxnÞ�gj0i; ð1:146Þ

where Jl now generically stands for any of the Noether currents.

27 The time ordering of n points x1; . . .; xn gives rise to n! distinct orderings, each involving
products of n� 1 theta functions.
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1.4.3 The Algebra of Currents

In the above example, we have seen that chiral Ward identities depend on the
equal-time commutation relations of the charge densities of the symmetry currents
with the relevant quadratic quark forms. Unfortunately, a naive application of
Eq. 1.103 may lead to erroneous results. Let us illustrate this by means of a
simplified example, the equal-time commutator of the time and space components
of the ordinary electromagnetic current in QED. A naive use of the canonical
commutation relations leads to

½J0ðt; x~Þ; Jiðt; y~Þ� ¼ ½Wyðt; x~ÞWðt; x~Þ;Wyðt; y~Þc0ciWðt; y~Þ�
¼ d3ðx~� y~ÞWyðt; x~Þ½1; c0ci�Wðt; x~Þ ¼ 0; ð1:147Þ

where we made use of the delta function to evaluate the fields at x~¼ y~: It was
noticed a long time ago by Schwinger that this result cannot be true [47]. In order
to see this, consider the commutator

½J0ðt; x~Þ;r~y � J~ðt; y~Þ� ¼ �½J0ðt; x~Þ; otJ0ðt; y~Þ�;

where we made use of current conservation, olJl ¼ 0: If Eq. 1.147 were true, one
would necessarily also have

0 ¼ ½J0ðt; x~Þ; otJ0ðt; y~Þ�;
which we evaluate for x~¼ y~ between the ground state,

0 ¼ h0j½J0ðt; x~Þ; otJ0ðt; x~Þ�j0i

¼
X

n



h0jJ0ðt; x~ÞjnihnjotJ0ðt; x~Þj0i � h0jotJ0ðt; x~ÞjnihnjJ0ðt; x~Þj0i

�

¼ 2i
X

n

ðEn � E0Þjh0jJ0ðt; x~Þjnij2:

Here, we inserted a complete set of states and made use of

otJ0ðt; x~Þ ¼ i½H; J0ðt; x~Þ�:

Since every individual term in the sum is nonnegative, one would need

h0jJ0ðt; x~Þjni ¼ 0

for any intermediate state, which is unphysical because it would imply that, for
example, eþe� pairs cannot be created from the application of the charge density
operator to the ground state. The solution is that the starting point, Eq. 1.147, is
not true. The corrected version of Eq. 1.147 picks up an additional, so-called
Schwinger term containing a derivative of the delta function.

Quite generally, by evaluating commutation relations with the component H00

of the energy-momentum tensor one can show that the equal-time commutation
relation between a charge density and a current density can be determined up to
one derivative of the d function [33],
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½J0
að0; x~Þ; Ji

bð0; y~Þ� ¼ iCabcJi
cð0; x~Þd3ðx~� y~Þ þ Sij

abð0; y~Þojd
3ðx~� y~Þ; ð1:148Þ

where the Schwinger term possesses the symmetry

Sij
abð0; y~Þ ¼ Sji

bað0; y~Þ;

and Cabc denote the structure constants of the group in question.
However, in our above derivation of the chiral Ward identity, we also made use

of the naive time-ordered product (T) as opposed to the covariant one (T�)
which, typically, differ by another non-covariant term which is called a seagull.
Feynman’s conjecture [33] states that there is a cancelation between Schwinger
terms and seagull terms such that a Ward identity obtained by using the naive
T product and by simultaneously omitting Schwinger terms ultimately yields the
correct result to be satisfied by the Green function (involving the covariant
T� product). Although this will not be true in general, a sufficient condition for it to
happen is that the time component algebra of the full theory remains the same as
the one derived canonically and does not possess a Schwinger term.

Keeping the above discussion in mind, the complete list of equal-time com-
mutation relations, omitting Schwinger terms, reads

½V0
a ðt; x~Þ;V

l
b ðt; y~Þ� ¼ d3ðx~� y~ÞifabcVl

c ðt; x~Þ;
½V0

a ðt; x~Þ;Vlðt; y~Þ� ¼ 0;

½V0
a ðt; x~Þ;A

l
bðt; y~Þ� ¼ d3ðx~� y~ÞifabcAl

c ðt; x~Þ;
½V0

a ðt; x~Þ; Sbðt; y~Þ� ¼ d3ðx~� y~ÞifabcScðt; x~Þ; b ¼ 1; . . .; 8;

½V0
a ðt; x~Þ; S0ðt; y~Þ� ¼ 0;

½V0
a ðt; x~Þ;Pbðt; y~Þ� ¼ d3ðx~� y~ÞifabcPcðt; x~Þ; b ¼ 1; . . .; 8;

½V0
a ðt; x~Þ;P0ðt; y~Þ� ¼ 0;

½A0
aðt; x~Þ;V

l
b ðt; y~Þ� ¼ d3ðx~� y~ÞifabcAl

c ðt; x~Þ;
½A0

aðt; x~Þ;Vlðt; y~Þ� ¼ 0;

½A0
aðt; x~Þ;A

l
bðt; y~Þ� ¼ d3ðx~� y~ÞifabcVl

c ðt; x~Þ;

½A0
aðt; x~Þ; Sbðt; y~Þ� ¼ id3ðx~� y~Þ

ffiffiffi
2
3

r
dabP0ðt; x~Þ þ dabcPcðt; x~Þ

" #
;

b ¼ 1; . . .; 8;

½A0
aðt; x~Þ; S0ðt; y~Þ� ¼ id3ðx~� y~Þ

ffiffiffi
2
3

r
Paðt; x~Þ;

½A0
aðt; x~Þ;Pbðt; y~Þ� ¼ �id3ðx~� y~Þ

ffiffiffi
2
3

r
dabS0ðt; x~Þ þ dabcScðt; x~Þ

" #
;

b ¼ 1; . . .; 8;

½A0
aðt; x~Þ;P0ðt; y~Þ� ¼ �id3ðx~� y~Þ

ffiffiffi
2
3

r
Saðt; x~Þ:

ð1:149Þ
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For example,

½V0
a ðt; x~Þ;V

l
b ðt; y~Þ�

¼ qyðt; x~Þ1ka

2
qðt; x~Þ; qyðt; y~Þc0c

lkb

2
qðt; y~Þ

� �

¼ d3ðx~� y~Þ qyðt; x~Þc0c
lka

2
kb

2
qðt; y~Þ � qyðt; y~Þc0c

lkb

2
ka

2
qðt; x~Þ

� �

¼ d3ðx~� y~ÞifabcVl
c ðt; x~Þ:

The remaining expressions are obtained analogously.

1.4.4 QCD in the Presence of External Fields
and the Generating Functional

Here, we want to consider the consequences of Eqs. 1.149 for the Green functions
of QCD (in particular, at low energies). In principle, using the techniques of
Sect. 1.4.2, for each Green function one can explicitly work out the chiral Ward
identity which, however, becomes more and more tedious as the number n of quark
quadratic forms increases. As seen above, there exists an elegant way of formally
combining all Green functions in a generating functional. The (infinite) set of all
chiral Ward identities is encoded as an invariance property of that functional. The
rationale behind this approach is that, in the absence of anomalies, the Ward
identities obeyed by the Green functions are equivalent to an invariance of the
generating functional under a local transformation of the external fields [37]. The
use of local transformations allows one to also consider divergences of Green
functions. This statement has been illustrated in Sect. 1.4.1 using the U(1)
invariance of the Lagrangian of Eq. 1.114.

Following the procedure of Gasser and Leutwyler [20, 21], we introduce into
the Lagrangian of QCD the couplings of the nine vector currents and the eight
axial-vector currents as well as the scalar and pseudoscalar quark densities to
external c-number fields,

L ¼L0
QCD þLext; ð1:150Þ

where

Lext ¼
X8

a¼1

vl
a�qcl

ka

2
qþ vl

ðsÞ
1
3
�qclqþ

X8

a¼1

al
a�qclc5

ka

2
q

�
X8

a¼0

sa�qkaqþ
X8

a¼0

pai�qc5kaq

¼ �qcl vl þ 1
3

vl
ðsÞ þ c5al

� �
q� �qðs� ic5pÞq: ð1:151Þ
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The 35 real functions vl
aðxÞ; v

l
ðsÞðxÞ; al

aðxÞ; saðxÞ; and paðxÞ; will collectively be

denoted by ½v; a; s; p�:28 A precursor of this method can be found in Refs. [9, 10].
The ordinary three-flavor QCD Lagrangian is recovered by setting vl ¼ vl

ðsÞ ¼
al ¼ p ¼ 0 and s ¼ diagðmu;md;msÞ in Eq. 1.151. The Green functions of the
vacuum sector may be combined in the generating functional

expðiZ½v; a; s; p�Þ ¼ h0jT exp i

Z
d4xLextðxÞ

� �
j0i0: ð1:152Þ

Note that both the quark field operators q in Lext and the ground state j0i refer to
the chiral limit, indicated by the subscript 0 in Eq. 1.152. The quark fields are
operators in the Heisenberg picture and have to satisfy the equations of motion and
the canonical anticommutation relations. The generating functional is related to the
vacuum-to-vacuum transition amplitude in the presence of external fields,

expðiZ½v; a; s; p�Þ ¼ h0; outj0; iniv;a;s;p: ð1:153Þ

A particular Green function is then obtained through a partial functional derivative
with respect to the external fields. As an example, suppose we are interested in the
scalar u-quark condensate in the chiral limit, h0j�uuj0i0: We express �uu as

�uu ¼ 1
2

ffiffiffi
2
3

r
�qk0qþ 1

2
�qk3qþ 1

2
1ffiffiffi
3
p �qk8q

and obtain

h0j�uðxÞuðxÞj0i0 ¼
i

2

ffiffiffi
2
3

r
d

ds0ðxÞ
þ d

ds3ðxÞ
þ 1ffiffiffi

3
p d

ds8ðxÞ

" #
expðiZ½v; a; s; p�Þ

��
v¼a¼s¼p¼0

:

From the generating functional, we can even obtain Green functions of the ‘‘real
world,’’ where the quark fields and the ground state are those with finite quark
masses. For example, the two-point function of two axial-vector currents of the
‘‘real world,’’ i.e., for s ¼ diagðmu;md;msÞ; and the ‘‘true vacuum’’ j0i; is given by

h0jT½Al
aðxÞAm

bð0Þ�j0i¼ ð�iÞ2 d2

daalðxÞdabmð0Þ
expðiZ½v;a;s;p�Þ

����
v¼a¼p¼0;s¼diagðmu;md;msÞ

:

ð1:154Þ

Note that the left-hand side involves the quark fields and the ground state of the
‘‘real world,’’ whereas the right-hand side is the generating functional defined in
terms of the quark fields and the ground state of the chiral limit. The actual value

28 We omit the coupling to the singlet axial-vector current which has an anomaly, but include a
singlet vector current vl

ðsÞ which is of some physical relevance in the two-flavor sector.
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of the generating functional for a given configuration of external fields v; a; s; and
p reflects the dynamics generated by the QCD Lagrangian. The (infinite) set of
all chiral Ward identities resides in an invariance of the generating functional under
a local transformation of the external fields [20, 37] (see the discussion of
Sect. 1.4.1). The use of local transformations allows one to also consider diver-
gences of Green functions. We require L of Eq. 1.150 to be a Hermitian Lorentz
scalar, to be even under the discrete symmetries P;C; and T; and to be invariant
under local chiral transformations. In fact, it is sufficient to consider P and C; only,
because T is then automatically incorporated owing to the CPT theorem [38].

Under parity, the quark fields transform as

qf ðt; x~Þ 7!
P

c0qf ðt;�x~Þ; ð1:155Þ

and the requirement of parity conservation,

Lðt; x~Þ 7!P Lðt;�x~Þ; ð1:156Þ

leads, using the results of Table 1.5, to the following constraints for the external
fields,

vl 7!P vl; vl
ðsÞ 7!

P
vðsÞl ; al 7!P �al; s 7!P s; p 7!P �p: ð1:157Þ

In Eq. 1.157 it is understood that the arguments change from ðt; x~Þ to ðt;�x~Þ:
Similarly, under charge conjugation the quark fields transform as

qa;f 7!
C

Cab�qb;f ; �qa;f 7!
C �qb;f C

�1
ba ; ð1:158Þ

where the subscripts a and b are Dirac-spinor indices,

C ¼ ic2c0 ¼ �C�1 ¼ �Cy ¼ �CT ¼

0 0 0 �1
0 0 1 0
0 �1 0 0
1 0 0 0

0
BB@

1
CCA

is the usual charge-conjugation matrix, and f refers to flavor. Taking Fermi sta-
tistics into account, one obtains

�qCFq 7!C ��qCCT CFTq;

where F denotes a matrix in flavor space. In combination with Table 1.6 it is
straightforward to show that invariance of Lext under charge conjugation requires
the transformation properties

Table 1.5 Transformation properties of the matrices C under parity

C 1 cl rlm c5 clc5

c0Cc0 1 cl rlm �c5 �clc5
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vl 7!
C �vT

l ; vðsÞl 7!
C �vðsÞTl ; al 7!

C
aT

l ; s; p 7!C sT ; pT ; ð1:159Þ

where the transposition refers to flavor space.
Finally, we need to discuss the requirements to be met by the external fields

under local SUð3ÞL � SUð3ÞR � Uð1ÞV transformations. In a first step, we write
Eq. 1.151 in terms of the left- and right-handed quark fields.

Exercise 1.19 We first define

rl ¼ vl þ al; ll ¼ vl � al: ð1:160Þ

(a) Make use of the projection operators PL and PR and verify

�qcl vl þ
1
3

vðsÞl þ c5al

� �
q ¼ �qRcl rl þ

1
3

vðsÞl

� �
qR þ �qLc

l ll þ
1
3

vðsÞl

� �
qL:

(b) Also verify

�qðs� ic5pÞq ¼ �qLðs� ipÞqR þ �qRðsþ ipÞqL:

We obtain for the Lagrangian of Eq. 1.151

L ¼L0
QCD þ �qLc

l ll þ
1
3

vðsÞl

� �
qL þ �qRcl rl þ

1
3

vðsÞl

� �
qR

� �qRðsþ ipÞqL � �qLðs� ipÞqR: ð1:161Þ

Equation 1.161 remains invariant under local transformations29

qR 7! exp �i
HðxÞ

3

� �
VRðxÞqR;

qL 7! exp �i
HðxÞ

3

� �
VLðxÞqL;

ð1:162Þ

where VRðxÞ and VLðxÞ are independent space-time-dependent SU(3) matrices,
provided the external fields are subject to the transformations

Table 1.6 Transformation properties of the matrices C under charge conjugation

C 1 cl rlm c5 clc5

�CCT C 1 �cl �rlm c5 clc5

29 From now on VR and VL will denote local transformations, whereas R and L will be used for
global transformations.
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rl 7!VRrlVyR þ iVRolVyR;

ll 7!VLllVyL þ iVLolVyL;

vðsÞl 7! vðsÞl � olH;

sþ ip 7!VRðsþ ipÞVyL;

s� ip 7!VLðs� ipÞVyR:

ð1:163Þ

The derivative terms in Eq. 1.163 serve the same purpose as in the construction of
gauge theories, i.e., they cancel analogous terms originating from the kinetic part
of the quark Lagrangian.

There is another, yet, more practical aspect of the local invariance, namely:
such a procedure allows one to also discuss a coupling to external gauge fields in
the transition to the effective theory to be discussed later. For example, a coupling
of the electromagnetic field to point-like fundamental particles results from
gauging a U(1) symmetry. Here, the corresponding U(1) group is to be understood
as a subgroup of a local SUð3ÞL � SUð3ÞR: Another example deals with the
interaction of the light quarks with the charged and neutral gauge bosons of the
weak interactions.

Let us consider both examples explicitly. The coupling of quarks to an external
electromagnetic four-vector potential Al is given by

rl ¼ ll ¼ �eAlQ; ð1:164Þ

where Q ¼ diagð2=3;�1=3;�1=3Þ is the quark-charge matrix and e [ 0 the
elementary charge:

Lext ¼ �eAlð�qLQclqL þ �qRQclqRÞ ¼ �eAl�qQclq

¼ �eAl
2
3
�uclu� 1

3
�dcld � 1

3
�scls

� �
¼ �eAlJl:

On the other hand, if one considers only the two-flavor version of QCD one has to
insert for the external fields

rl ¼ ll ¼ �eAl
s3

2
; vðsÞl ¼ �

e

2
Al: ð1:165Þ

In the description of semi-leptonic interactions such as p� ! l��ml; p� !
p0e��me; or neutron decay n! pe��me one needs the interaction of quarks with the
massive charged weak bosons W�

l ¼ ðW1l � iW2lÞ=
ffiffiffi
2
p

;

rl ¼ 0; ll ¼ �
gffiffiffi
2
p ðWþ

l Tþ þ H:c:Þ; ð1:166Þ
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where H.c. refers to the Hermitian conjugate and

Tþ ¼
0 Vud Vus

0 0 0
0 0 0

0
@

1
A:

Here, Vij denote the elements of the Cabibbo-Kobayashi-Maskawa quark-mixing
matrix describing the transformation between the mass eigenstates of QCD and the
weak eigenstates [41],

jVudj ¼ 0:97425� 0:00022; jVusj ¼ 0:2252� 0:0009:

At lowest order in perturbation theory, the Fermi constant is related to the gauge
coupling g and the W mass by

GF ¼
ffiffiffi
2
p g2

8M2
W

¼ 1:16637ð1Þ � 10�5 GeV�2: ð1:167Þ

Making use of

�qLc
lWþ

l TþqL ¼Wþ
l ð�u �d �sÞPRcl

0 Vud Vus

0 0 0

0 0 0

0

B@

1

CAPL

u

d

s

0

B@

1

CA

¼Wþ
l ð�u �d �sÞcl1

2
ð1� c5Þ

Vudd þ Vuss

0

0

0
B@

1
CA

¼ 1
2
Wþ

l ½Vud�uclð1� c5Þd þ Vus�uclð1� c5Þs�;

we see that inserting Eq. 1.166 into Eq. 1.161 leads to the standard charged-
current weak interaction in the light-quark sector,

Lext ¼ �
g

2
ffiffiffi
2
p Wþ

l ½Vud�uclð1� c5Þd þ Vus�uclð1� c5Þs� þ H:c:
o
:

n

The situation is slightly different for the neutral weak interaction. Here, the
three-flavor version requires a coupling of the Z boson to the singlet axial-vector
current which, because of the anomaly of Eq. 1.112, we have dropped from our
discussion. On the other hand, in the two-flavor version the axial-vector current
part is traceless and we have

rl ¼ e tanðhWÞZl
s3

2
;

ll ¼ �
g

cosðhWÞ
Zl

s3

2
þ e tanðhWÞZl

s3

2
;

vðsÞl ¼
e tanðhWÞ

2
Zl;

ð1:168Þ
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where hW is the weak angle. With these external fields, we obtain the standard
weak neutral-current interaction

Lext ¼ �
g

2 cosðhW Þ
Zl �ucl 1

2
� 4

3
sin2ðhWÞ

� �
1� 1

2
c5

� �
u

�

þ�dcl �1
2
þ 2

3
sin2ðhWÞ

� �
1þ 1

2
c5

� �
d

�
;

where we made use of e ¼ g sinðhWÞ:

1.4.5 PCAC in the Presence of an External
Electromagnetic Field

Finally, the technique of coupling the QCD Lagrangian to external fields also
allows us to determine the current divergences for rigid external fields, i.e., fields
which are not simultaneously transformed. For example, in Eqs. 1.112 we have
determined the divergences of the vector and axial-vector currents due to the quark
masses. The presence of an external electromagnetic field provides another
example which has been used in the discussion of pion photo- and electropro-
duction on the nucleon. For the sake of simplicity we restrict ourselves to the two-
flavor sector. (The generalization to the three-flavor case is straightforward.)

Exercise 1.20 Consider a global chiral transformation only and assume that the
external fields are not simultaneously transformed. Show that the divergences of
the currents read (see Eq. 1.47) [19]

olVl
i ¼ i�qcl si

2
; vl

h i
qþ i�qclc5

si

2
; al

h i
q� i�q

si

2
; s

h i
q� �qc5

si

2
; p

h i
q; ð1:169Þ

olAl
i ¼ i�qclc5

si

2
; vl

h i
qþ i�qcl si

2
; al

h i
qþ i�qc5

si

2
; s

n o
qþ �q

si

2
; p

n o
q: ð1:170Þ

Exercise 1.21 As an example, let us consider the QCD Lagrangian for a finite
light quark mass m̂ ¼ mu ¼ md in combination with a coupling to an external
electromagnetic four-vector potential Al (see Eq. 1.165, al ¼ 0 ¼ p). Show that
the expressions for the divergence of the vector and axial-vector currents,
respectively, are given by

olVl
i ¼ �e3ijeAl�qclsj

2
q ¼ �e3ijeAlVl

j ; ð1:171Þ

olAl
i ¼ �eAle3ij�qclc5

sj

2
qþ 2m̂i�qc5

si

2
q ¼ �eAle3ijA

l
j þ m̂Pi; ð1:172Þ

where we have introduced the isovector pseudoscalar density Pi ¼ i�qc5siq: In fact,
Eq. 1.172 is incomplete, because the third component of the axial-vector current,
Al

3 ; has an anomaly which is related to the decay p0 ! cc: The full equation reads
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olAl
i ¼ m̂Pi � eAle3ijA

l
j þ di3

e2

32p2
elmqrF

lmFqr; e0123 ¼ 1; ð1:173Þ

where Flm ¼ olAm � omAl is the electromagnetic field-strength tensor.

We emphasize the formal similarity of Eq. 1.172 to the (pre-QCD) PCAC
(Partially Conserved Axial-Vector Current) relation obtained by Adler [2] through
the inclusion of the electromagnetic interactions with minimal electromagnetic
coupling. Since in QCD the quarks are taken as truly elementary, their interaction
with an (external) electromagnetic field is of such a minimal type. In Adler’s
version, the right-hand side of Eq. 1.173 contains a renormalized field operator
creating and destroying pions instead of m̂Pi: From a modern point of view, the
combination m̂Pi=ðM2

pFpÞ serves as an interpolating pion field. Furthermore, the
anomaly term is not yet present in Ref. [2].
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Chapter 2
Spontaneous Symmetry Breaking
and the Goldstone Theorem

2.1 Degenerate Ground States

Before discussing the case of a continuous symmetry, we will first have a look at a
field theory with a discrete internal symmetry. This will allow us to distinguish
between two possibilities: a dynamical system with a unique ground state or a
system with a finite number of distinct degenerate ground states. In particular, we
will see how, for the second case, an infinitesimal perturbation selects a particular
vacuum state.

To that end we consider the Lagrangian of a real scalar field UðxÞ [8]

LðU; olUÞ ¼
1
2
olUolU� m2

2
U2 � k

4
U4; ð2:1Þ

which is invariant under the discrete transformation R : U 7! �U: The corre-
sponding classical energy density reads

H ¼ P _U�L ¼ 1
2

_U2 þ 1
2
ðr~UÞ2 þ m2

2
U2 þ k

4
U4

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
�VðUÞ

; ð2:2Þ

where one chooses k [ 0 so that H is bounded from below. The field U0 which
minimizes the Hamilton density H must be constant and uniform since in that
case the first two terms take their minimum values of zero everywhere. It must also
minimize the ‘‘potential’’ V since VðUðxÞÞ�VðU0Þ; from which we obtain the
condition

V0ðUÞ ¼ Uðm2 þ kU2Þ ¼ 0:

We now distinguish two different cases:

S. Scherer and M. R. Schindler, A Primer for Chiral Perturbation Theory,
Lecture Notes in Physics 830, DOI: 10.1007/978-3-642-19254-8_2,
� Springer-Verlag Berlin Heidelberg 2012
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1. m2 [ 0 (see Fig. 2.1): In this case the potential V has its minimum for U ¼ 0:
In the quantized theory we associate a unique ground state j0i with this min-
imum. Later on, in the case of a continuous symmetry, this situation will be
referred to as the Wigner-Weyl realization of the symmetry.

2. m2\0 (see Fig. 2.2): Now the potential exhibits two distinct minima. (In the
continuous symmetry case this will be referred to as the Nambu-Goldstone
realization of the symmetry.)

We will concentrate on the second situation, because this is the one which we
would like to generalize to a continuous symmetry and which ultimately leads to
the appearance of Goldstone bosons. In the present case, VðUÞ has a local
maximum for U ¼ 0 and two minima for

U� ¼ �
ffiffiffiffiffiffiffiffiffiffi
�m2

k

r
� �U0: ð2:3Þ

As will be explained below, the quantized theory develops two degenerate vacua
j0;þi and j0;�i which are distinguished through their vacuum expectation values
of the field UðxÞ:1

h0;þjUðxÞj0;þi ¼ h0;þjeiP�xUð0Þe�iP�xj0;þi ¼ h0;þjUð0Þj0;þi � U0;

h0;�jUðxÞj0;�i ¼ �U0:
ð2:4Þ

We made use of translational invariance, UðxÞ ¼ eiP�xUð0Þe�iP�x; and the fact that
the ground state is an eigenstate of energy and momentum. We associate with the
transformation R : U 7!U0 ¼ �U a unitary operator R acting on the Hilbert space
of our model, with the properties

–1 1
x

1

3

5

V(x)Fig. 2.1
VðxÞ ¼ x2=2þ x4=4
(Wigner-Weyl mode)

1 The case of a quantum field theory with an infinite volume V has to be distinguished from, say,
a nonrelativistic particle in a one-dimensional potential of a shape similar to the function of
Fig. 2.2. For example, in the case of a symmetric double-well potential, the solutions with
positive parity always have lower energy eigenvalues than those with negative parity (see, e.g.,
Ref. [11]).
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R2 ¼ I; R ¼ R�1 ¼ Ry:

In accord with Eq. 2.4 the action of the operator R on the ground states is given by

Rj0;�i ¼ j0;�i: ð2:5Þ

For the moment we select one of the two expectation values and expand the
Lagrangian about �U0:2

U ¼ �U0 þ U0;

olU ¼ olU
0:

ð2:6Þ

Exercise 2.1 Show that

VðUÞ ¼ ~VðU0Þ ¼ �k
4
U4

0 þ
1
2
ð�2m2ÞU02 � kU0U

03 þ k
4

U04:

Thus, the Lagrangian in terms of the shifted dynamical variable reads

L0ðU0; olU
0Þ ¼ 1

2
olU

0olU0 � 1
2
ð�2m2ÞU02 � kU0U

03 � k
4

U04 þ k
4

U4
0: ð2:7Þ

In terms of the new dynamical variable U0; the symmetry R is no longer manifest,
i.e., it is hidden. Selecting one of the ground states has led to a spontaneous
symmetry breaking which is always related to the existence of several degenerate
vacua.

At this stage it is not clear why the ground state of the quantum system should
be one or the other of j0;�i and not a superposition of both. For example, the
linear combination

1ffiffiffi
2
p j0;þi þ j0;�ið Þ

–1 1 x

–0.5

0.5

1.5

V(x)Fig. 2.2
VðxÞ ¼ �x2=2þ x4=4
(Nambu-Goldstone mode)

2 The field U0 instead of U is assumed to vanish at infinity.
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is invariant under R as is the original Lagrangian of Eq. 2.1. However, this
superposition is not stable against any infinitesimal external perturbation which is
odd in U (see Fig. 2.3),

ReH0Ry ¼ �eH0:

Any such perturbation will drive the ground state into the vicinity of either
j0;þi or j0;�i rather than 1ffiffi

2
p ðj0;þi � j0;�iÞ: This can easily be seen in the

framework of perturbation theory for degenerate states. Consider

j1i ¼ 1ffiffiffi
2
p ðj0;þi þ j0;�iÞ; j2i ¼ 1ffiffiffi

2
p ðj0;þi � j0;�iÞ;

such that

Rj1i ¼ j1i Rj2i ¼ �j2i:

The condition for the energy eigenvalues of the ground state, E ¼ Eð0Þ þ eEð1Þ þ � � � ;
to first order in e results from

det h1jH
0j1i � Eð1Þ h1jH0j2i
h2jH0j1i h2jH 0j2i � Eð1Þ

� �
¼ 0:

Due to the symmetry properties of Eq. 2.5, we obtain

h1jH 0j1i ¼ h1jR�1RH0R�1Rj1i ¼ h1j � H0j1i ¼ 0

and similarly h2jH0j2i ¼ 0: Setting h1jH0j2i ¼ a [ 0; which can always be
achieved by multiplication of one of the two states by an appropriate phase, one
finds

h2jH0j1i ¼H0¼ H0yh1jH0j2i� ¼ a� ¼ a ¼ h1jH0j2i;

resulting in

det �Eð1Þ a
a �Eð1Þ

� �
¼ Eð1Þ

2 � a2 ¼ 0: ) Eð1Þ ¼ �a:

–1 1
x

–0.5

0.5

V(x)Fig. 2.3 Potential with a
small odd component:
VðxÞ ¼ x=10� x2=2þ x4=4
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In other words, the degeneracy has been lifted and we get for the energy
eigenvalues

E ¼ Eð0Þ � eaþ � � � : ð2:8Þ

The corresponding eigenstates of zeroth order in e are j0;þi and j0;�i; respec-
tively. We thus conclude that an arbitrarily small external perturbation which is
odd with respect to R will push the ground state to either j0;þi or j0;�i:

In the above discussion, we have tacitly assumed that the Hamiltonian and the
field UðxÞ can simultaneously be diagonalized in the vacuum sector, i.e.,
h0;þj0;�i ¼ 0: Following Ref. [18], we will justify this assumption which will
also be crucial for the continuous case to be discussed later.

For an infinite volume, a general vacuum state jvi is defined as a state with

momentum eigenvalue 0~;

P~jvi ¼ 0~;

where 0~ is a discrete eigenvalue as opposed to an eigenvalue of single- or many-

particle states for which p~¼ 0~ is an element of a continuous spectrum (see
Fig. 2.4). We deal with the situation of several degenerate ground states3 which
will be denoted by jui; jvi; etc., and start from the identity

0 ¼ huj½H;UðxÞ	jvi 8 x; ð2:9Þ

from which we obtain for t ¼ 0
Z

d3y hujHðy~; 0ÞUðx~; 0Þjvi ¼
Z

d3y hujUðx~; 0ÞHðy~; 0Þjvi: ð2:10Þ

Let us consider the left-hand side,

1 1
px

0.5

1.5

EFig. 2.4 Dispersion relation
E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

x

p
and asymptote

E ¼ j pxj

3 For continuous symmetry groups one may have a non-countably infinite number of ground
states.
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Z
d3y hujHðy~; 0ÞUðx~; 0Þjvi ¼

X

w

hujHjwihwjUð0Þjvi

þ
Z

d3y

Z
d3p

X

n

hujHðy~; 0Þjn; p~ihn; p~jUð0Þjvie�ip~�x~;

where we inserted a complete set of states which we split into the vacuum con-
tribution and the remainder, and made use of translational invariance. We now
define

fnðy~; p~Þ ¼ hujHðy~; 0Þjn; p~ihn; p~jUð0Þjvi

and assume fn to be reasonably behaved such that one can apply the lemma of
Riemann and Lebesgue,

lim
jx~j!1

Z
d3p f ðp~Þe�ip~�x~ ¼ 0:

At this point the assumption of an infinite volume, jx~j ! 1; is crucial. Repeating
the argument for the right-hand side and taking the limit jx~j ! 1; only the
vacuum contributions survive in Eq. 2.10 and we obtain

X

w

hujHjwihwjUð0Þjvi ¼
X

w

hujUð0ÞjwihwjHjvi

for arbitrary ground states jui and jvi: In other words, the matrices ðHuvÞ �
ðhujHjviÞ and ðUuvÞ � ðhujUð0ÞjviÞ commute and can be diagonalized simulta-
neously. Choosing an appropriate basis, one can write

hujUð0Þjvi ¼ duvv; v 2 R;

where v denotes the expectation value of U in the state jvi:
In the above example, the ground states j0;þi and j0;�i with vacuum

expectation values �U0 are thus indeed orthogonal and satisfy

h0;þjHj0;�i ¼ h0;�jHj0;þi ¼ 0:

2.2 Spontaneous Breakdown of a Global, Continuous,
Non-Abelian Symmetry

Using the example of the O(3) sigma model we recall a few aspects relevant to our
subsequent discussion of spontaneous symmetry breaking [16].4 To that end, we
consider the Lagrangian

4 The linear sigma model [6, 7, 17] is constructed in terms of the O(4) multiplet ðr; p1; p2; p3Þ:
Since the group O(4) is locally isomorphic to SU(2) 
 SU(2), the linear sigma model is a
popular framework for illustrating the spontaneous symmetry breaking in two-flavor QCD.
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LðU~; olU~Þ ¼LðU1;U2;U3; olU1; olU2; olU3Þ

¼ 1
2
olUio

lUi �
m2

2
UiUi �

k
4
ðUiUiÞ2; ð2:11Þ

where m2\0; k[ 0; with Hermitian fields Ui: By choosing m2\0; the symmetry
is realized in the Nambu-Goldstone mode [9, 13].5

The Lagrangian of Eq. 2.11 is invariant under a global ‘‘isospin’’ rotation,6

g 2 SO(3) : Ui 7!U0i ¼ DijðgÞUj ¼ e�iakTk
� �

ij
Uj: ð2:12Þ

For the U0i to also be Hermitian, the Hermitian Tk must be purely imaginary and
thus antisymmetric (see Eqs. 1.69). The iTk provide the basis of a representation of
the so(3) Lie algebra and satisfy the commutation relations ½Ti; Tj	 ¼ ieijkTk: We
use the representation of Eqs. 1.69, i.e., the matrix elements are given by ti;jk ¼
�ieijk: We now look for a minimum of the potential which does not depend on x:

Exercise 2.2 Determine the minimum of the potential

VðU1;U2;U3Þ ¼
m2

2
UiUi þ

k
4
ðUiUiÞ2:

We find

jU~minj ¼
ffiffiffiffiffiffiffiffiffiffi
�m2

k

r
� v; jU~j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

1 þ U2
2 þ U2

3

q
: ð2:13Þ

Since U~min can point in any direction in isospin space we have a non-countably
infinite number of degenerate vacua. Any infinitesimal external perturbation that is
not invariant under SO(3) will select a particular direction which, by an appro-
priate orientation of the internal coordinate frame, we denote as the 3 direction in
our convention,

U~min ¼ vê3: ð2:14Þ

Clearly, U~min of Eq. 2.14 is not invariant under the full group G ¼ SO(3) since

rotations about the 1 and 2 axes change U~min:
7 To be specific, if

5 In the beginning, the discussion of spontaneous symmetry breaking in field theories [9, 13–15]
was driven by an analogy with the theory of superconductivity [1, 2, 4, 5].
6 The Lagrangian is invariant under the full group O(3) which can be decomposed into its two
components: the proper rotations connected to the identity, SO(3), and the rotation-reflections.
For our purposes it is sufficient to discuss SO(3).
7 We say, somewhat loosely, that T1 and T2 do not annihilate the ground state or, equivalently,
finite group elements generated by T1 and T2 do not leave the ground state invariant. This
should become clearer later on.
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U~min ¼ v
0
0
1

0
@

1
A;

we obtain

T1U~min ¼ v
0
�i
0

0

@

1

A; T2U~min ¼ v
i
0
0

0

@

1

A; T3U~min ¼ 0: ð2:15Þ

Note that the set of transformations which do not leave U~min invariant does not

form a group, because it does not contain the identity. On the other hand, U~min is
invariant under a subgroup H of G; namely, the rotations about the 3 axis:

h 2 H : U~
0 ¼ DðhÞU~ ¼ e�ia3T3U~; DðhÞU~min ¼ U~min: ð2:16Þ

Exercise 2.3 Write U3 as

U3ðxÞ ¼ vþ gðxÞ; ð2:17Þ

where gðxÞ is a new field replacing U3ðxÞ; and express the Lagrangian in terms of

the fields U1;U2; and g; where v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2=k

p
:

The new expression for the potential is given by

~V ¼ 1
2
�2m2
� �

g2 þ kvg U2
1 þ U2

2 þ g2
� �

þ k
4

U2
1 þ U2

2 þ g2
� �2� k

4
v4: ð2:18Þ

Upon inspection of the terms quadratic in the fields, one finds after spontaneous
symmetry breaking two massless Goldstone bosons and one massive boson:

m2
U1
¼ m2

U2
¼ 0;

m2
g ¼ �2m2:

ð2:19Þ

The model-independent feature of the above example is given by the fact that for
each of the two generators T1 and T2 which do not annihilate the ground state one
obtains a massless Goldstone boson. By means of a two-dimensional simplification
(see the ‘‘Mexican hat’’ potential shown in Fig. 2.5) the mechanism at hand can
easily be visualized. Infinitesimal variations orthogonal to the circle of the mini-
mum of the potential generate quadratic terms, i.e., ‘‘restoring forces’’ linear in the
displacement, whereas tangential variations experience restoring forces only of
higher orders.
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Now let us generalize the model to the case of an arbitrary compact Lie group G
of order nG resulting in nG infinitesimal generators.8 Once again, we start from a
Lagrangian of the form [10]

L U~; olU~
� 	

¼ 1
2
olU~ � olU~�V U~

� 	
; ð2:20Þ

where U~ is a multiplet of scalar (or pseudoscalar) Hermitian fields. The Lagrangian
L and thus also V are supposed to be globally invariant under G; where the
infinitesimal transformations of the fields are given by

g 2 G : Ui 7!Ui þ dUi; dUi ¼ �ieata;ijUj: ð2:21Þ

The Hermitian representation matrices Ta ¼ ðta;ijÞ are again antisymmetric and
purely imaginary. We now assume that, by choosing an appropriate form of V; the
Lagrangian generates a spontaneous symmetry breaking resulting in a ground state

with a vacuum expectation value U~min ¼ hU~i which is invariant under a contin-

uous subgroup H of G: We expand V about U~min; jU~minj ¼ v; i.e., U~ ¼ U~min þ v~;

V U~
� 	

¼V U~min

� 	
þ

oV U~min

� 	

oUi|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
¼ 0

vi þ
1
2

o2V U~min

� 	

oUioUj|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
� m2

ij

vivj þ � � � : ð2:22Þ

-2

-1

0

1

2 -2

-1

0

1

2

0

2

4

2

-1

0

1

Fig. 2.5 Two-dimensional
rotationally invariant
potential:
Vðx; yÞ ¼ �ðx2 þ y2Þþ
ðx2þy2Þ2

4

8 The restriction to compact groups allows for a complete decomposition into finite-dimensional
irreducible unitary representations.
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The matrix M2 ¼ ðm2
ijÞ must be symmetric and, since one is expanding about a

minimum, positive semidefinite, i.e.,

X

i;j

m2
ijxixj� 0 8 x~: ð2:23Þ

In that case, all eigenvalues of M2 are nonnegative. Making use of the invariance
of V under the symmetry group G;

V U~min

� 	
¼V DðgÞU~min

� 	
¼V U~min þ dU~min

� 	

¼ð2:22Þ
V U~min

� 	
þ 1

2
m2

ijdUmin;idUmin;j þ � � � ; ð2:24Þ

one obtains, by comparing coefficients,

m2
ijdUmin;idUmin;j ¼ 0: ð2:25Þ

Differentiating Eq. 2.25 with respect to dUmin;k and using m2
ij ¼ m2

ji results in the
matrix equation

M2dU~min ¼ 0~: ð2:26Þ

Inserting the variations of Eq. 2.21 for arbitrary ea; dU~min ¼ �ieaTaU~min; we
conclude

M2TaU~min ¼ 0~: ð2:27Þ

Recall that the Ta represent generators of the symmetry transformations of the
Lagrangian of Eq. 2.20. The solutions of Eq. 2.27 can be classified into two
categories:

1. Ta; a ¼ 1; . . .; nH ; is a representation of an element of the Lie algebra
belonging to the subgroup H of G; leaving the selected ground state invariant.
Therefore, invariance under the subgroup H corresponds to

TaU~min ¼ 0~; a ¼ 1; . . .; nH ;

such that Eq. 2.27 is automatically satisfied without any knowledge of M2:
2. Ta; a ¼ nH þ 1; . . .; nG; is not a representation of an element of the Lie algebra

belonging to the subgroup H: In that case TaU~min 6¼ 0~; and TaU~min is an
eigenvector of M2 with eigenvalue 0. To each such eigenvector corresponds a

massless Goldstone boson. In particular, the different TaU~min 6¼ 0~ are linearly
independent, resulting in nG � nH independent Goldstone bosons. (If they were
not linearly independent, there would exist a nontrivial linear combination
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0~¼
XnG

a¼nHþ1

ca TaU~min

� 	
¼

XnG

a¼nHþ1

caTa

 !

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
� T

U~min;

such that T is an element of the Lie algebra of H in contradiction to our
assumption.)

Remark It may be necessary to perform a similarity transformation on the fields in
order to diagonalize the mass matrix.

Let us check these results by reconsidering the example of Eq. 2.11. In that case
nG ¼ 3 and nH ¼ 1; generating two Goldstone bosons (see Eq. 2.19).

We conclude this section with two remarks.

1. The number of Goldstone bosons is determined by the structure of the
symmetry groups. Let G denote the symmetry group of the Lagrangian with nG

generators, and H the subgroup with nH generators which leaves the ground
state invariant after spontaneous symmetry breaking. For each generator which
does not annihilate the vacuum one obtains a massless Goldstone boson, i.e.,
the total number of Goldstone bosons equals nG � nH:

2. The Lagrangians used in motivating the phenomenon of a spontaneous sym-
metry breakdown are typically constructed in such a fashion that the degen-
eracy of the ground states is built into the potential at the classical level (the
prototype being the ‘‘Mexican hat’’ potential of Fig. 2.5). As in the above case,
it is then argued that an elementary Hermitian field of a multiplet transforming
nontrivially under the symmetry group G acquires a vacuum expectation value
signaling a spontaneous symmetry breakdown. However, there also exist the-
ories such as QCD where one cannot infer from inspection of the Lagrangian
whether the theory exhibits spontaneous symmetry breaking. Rather, the cri-
terion for spontaneous symmetry breaking is a nonvanishing vacuum expec-
tation value of some Hermitian operator, not an elementary field, which is
generated through the dynamics of the underlying theory. In particular, we will
see that the quantities developing a vacuum expectation value may also be
local Hermitian operators composed of more fundamental degrees of freedom
of the theory. Such a possibility was already emphasized in the derivation of
Goldstone’s theorem in Ref. [10].

2.3 Goldstone Theorem

By means of the above example, we motivate another approach to Goldstone’s
theorem without delving into all the subtleties of a quantum field-theoretical
approach (for further reading, see Sect. 2 of Ref. [3]). Given a Hamilton operator
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with a global symmetry group G ¼ SO(3); let U~ðxÞ ¼ ðU1ðxÞ;U2ðxÞ;U3ðxÞÞ
denote a triplet of local Hermitian operators transforming as a vector under G;

g 2 G : U~ðxÞ 7!U~
0ðxÞ ¼ ei

P3

k¼1
akQkU~ðxÞe�i

P3

l¼1
alQl ¼ e�i

P3

k¼1
akTkU~ðxÞ; ð2:28Þ

where the Qi are the generators of the SO(3) transformations on the Hilbert space
satisfying ½Qi;Qj	 ¼ ieijkQk and the Ti ¼ ðti;jkÞ are the matrices of the three-
dimensional representation satisfying ti;jk ¼ �ieijk: We assume that one component
of the multiplet acquires a nonvanishing vacuum expectation value:

h0jU1ðxÞj0i ¼ h0jU2ðxÞj0i ¼ 0; h0jU3ðxÞj0i ¼ v 6¼ 0: ð2:29Þ

Then the two generators Q1 and Q2 do not annihilate the ground state, and to each
such generator corresponds a massless Goldstone boson.

In order to prove these two statements, let us expand Eq. 2.28 to first order in
the ak :

U~
0 ¼ U~þ i

X3

k¼1

ak½Qk;U~	 ¼ 1� i
X3

k¼1

akTk

 !
U~ ¼ U~þ a~
 U~:

Comparing the terms linear in the ak;

i½akQk;Ul	 ¼ elkmakUm;

and noting that all three ak can be chosen independently, we obtain

i½Qk;Ul	 ¼ �eklmUm;

which expresses the fact that the field operators Ui transform as a vector.9 Using
eklmekln ¼ 2dmn; we find

� i

2
ekln½Qk;Ul	 ¼ dmnUm ¼ Un:

In particular,

U3 ¼ �
i

2
ð½Q1;U2	 � ½Q2;U1	Þ; ð2:30Þ

with cyclic permutations for the other two cases.
In order to prove that Q1 and Q2 do not annihilate the ground state, let us

consider Eq. 2.28 for a~¼ ð0; p=2; 0Þ;

e�ip2T2U~ ¼
cos p

2

� �
0 sin p

2

� �

0 1 0
� sin p

2

� �
0 cos p

2

� �

0
@

1
A

U1

U2

U3

0
@

1
A ¼

U3

U2

�U1

0
@

1
A ¼ eip2Q2

U1

U2

U3

0
@

1
Ae�ip2Q2 :

9 Using the replacements Qk ! l̂k and Ul ! x̂l; note the analogy with i½̂lk; x̂l	 ¼ �eklmx̂m:
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From the first row we obtain

U3 ¼ eip2Q2U1e�ip2Q2 :

Taking the vacuum expectation value

v ¼ 0 eip2Q2U1e�ip2Q2


 

0

� �

and using Eq. 2.29, clearly Q2j0i 6¼ 0; since otherwise the exponential operator
could be replaced by unity and the right-hand side would vanish. A similar
argument shows Q1j0i 6¼ 0:

At this point let us make two remarks.

1. The ‘‘states’’ Q1ð2Þj0i cannot be normalized. In a more rigorous derivation one
makes use of integrals of the form

Z
d3x h0j½J0

k ðt; x~Þ;Ulð0Þ	j0i;

and first determines the commutator before evaluating the integral [3].
2. Some derivations of Goldstone’s theorem right away start by assuming

Q1ð2Þj0i 6¼ 0: However, for the discussion of spontaneous symmetry breaking in
the framework of QCD it is advantageous to establish the connection between
the existence of Goldstone bosons and a nonvanishing expectation value (see
Sect. 3.2).

Let us now turn to the existence of Goldstone bosons, taking the vacuum
expectation value of Eq. 2.30:

0 6¼ v ¼ h0jU3ð0Þj0i ¼ �
i

2
h0j ½Q1;U2ð0Þ	 � ½Q2;U1ð0Þ	ð Þj0i � � i

2
ðA� BÞ:

We will first show A ¼ �B: To that end we perform a rotation of the fields as well
as the generators by p=2 about the 3 axis [see Eq. 2.28 with a~¼ ð0; 0; p=2Þ]:

e�ip2T3U~ ¼
�U2

U1

U3

0
@

1
A ¼ eip2Q3

U1

U2

U3

0
@

1
Ae�ip2Q3 ;

and analogously for the charge operators

�Q2

Q1

Q3

0
@

1
A ¼ eip2Q3

Q1

Q2

Q3

0
@

1
Ae�ip2Q3 :

We thus obtain
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B ¼ h0j½Q2;U1ð0Þ	j0i ¼ h0j
�

eip2Q3ð�Q1Þ e�ip2Q3 eip2Q3

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
¼ 1

U2ð0Þe�ip2Q3

� eip2Q3U2ð0Þe�ip2Q3 eip2Q3ð�Q1Þe�ip2Q3

	
j0i

¼ �h0j½Q1;U2ð0Þ	j0i ¼ �A;

where we made use of Q3j0i ¼ 0; i.e., the vacuum is invariant under rotations
about the 3 axis. In other words, the nonvanishing vacuum expectation value v can
also be written as

0 6¼ v ¼ h0jU3ð0Þj0i ¼ �ih0j½Q1;U2ð0Þ	j0i ¼ �i

Z
d3x h0j½J0

1ðt; x~Þ;U2ð0Þ	j0i:

ð2:31Þ

We insert a complete set of states 1 ¼
XZ

n
jnihnj into the commutator10

v ¼ �i
XZ

n

Z
d3x h0jJ0

1ðt; x~ÞjnihnjU2ð0Þj0i � h0jU2ð0ÞjnihnjJ0
1ðt; x~Þj0i

� �
;

and make use of translational invariance

¼ �i
XZ

n

Z
d3x e�iPn�xh0jJ0

1ð0ÞjnihnjU2ð0Þj0i � � � �
� �

¼ �i
XZ

n
ð2pÞ3d3ðP~nÞ e�iEnth0jJ0

1ð0ÞjnihnjU2ð0Þj0i � eiEnth0jU2ð0ÞjnihnjJ0
1ð0Þj0i

� �
:

Integration with respect to the momentum of the inserted intermediate states yields
an expression of the form

¼ �ið2pÞ3
X

n

0
e�iEnt � � � � eiEnt � � �
� �

;

where the prime indicates that only states with p~¼ 0~need to be considered. Due to
the Hermiticity of the symmetry current operators Jl

k as well as the Ul; we have

cn � h0jJ0
1ð0ÞjnihnjU2ð0Þj0i ¼ hnjJ0

1ð0Þj0i
�h0jU2ð0Þjni�;

such that

v ¼ �ið2pÞ3
X

n

0
cne�iEnt � c�neiEnt
� �

: ð2:32Þ

10 The abbreviation
XZ

n
jnihnj includes an integral over the total momentum p~ as well as all

other quantum numbers necessary to fully specify the states.
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From Eq. 2.32 we draw the following conclusions.

1. Due to our assumption of a nonvanishing vacuum expectation value v; there must
exist states jni for which both h0jJ0

1ð2Þð0Þjni and hnjU1ð2Þð0Þj0i do not vanish. The

vacuum itself cannot contribute to Eq. 2.32 because h0jU1ð2Þð0Þj0i ¼ 0:
2. States with En [ 0 contribute (un is the phase of cn)

1
i

cne�iEnt � c�neiEnt
� �

¼ 1
i
jcnj eiun e�iEnt � e�iun eiEnt
� �

¼ 2jcnj sinðun � EntÞ

to the sum. However, v is time independent and therefore the sum over states

with ðE; p~Þ ¼ ðEn [ 0; 0~Þ must vanish.
3. The right-hand side of Eq. 2.32 must therefore contain the contribution from

states with zero energy as well as zero momentum thus zero mass. These zero-
mass states are the Goldstone bosons.

2.4 Explicit Symmetry Breaking: A First Look

Finally, let us illustrate the consequences of adding a small perturbation to our
Lagrangian of Eq. 2.11 which explicitly breaks the symmetry. To that end, we
modify the potential of Eq. 2.11 by adding a term aU3;

VðU1;U2;U3Þ ¼
m2

2
UiUi þ

k
4
ðUiUiÞ2 þ aU3; ð2:33Þ

where m2\0; k[ 0; and a [ 0; with Hermitian fields Ui: Clearly, the potential no
longer has the original O(3) symmetry but is only invariant under O(2). The

conditions for the new minimum, obtained from r~UV ¼ 0; read

U1 ¼ U2 ¼ 0; kU3
3 þ m2U3 þ a ¼ 0:

Exercise 2.4 Solve the cubic equation for U3 using the perturbative ansatz

hU3i ¼ Uð0Þ3 þ aUð1Þ3 þ Oða2Þ: ð2:34Þ

The solution reads

Uð0Þ3 ¼ �
ffiffiffiffiffiffiffiffiffiffi
�m2

k

r
; Uð1Þ3 ¼

1
2m2

:

As expected, Uð0Þ3 corresponds to our result without explicit perturbation. The

condition for a minimum (see Eq. 2.23) excludes Uð0Þ3 ¼ þ
ffiffiffiffiffiffiffiffiffi
� m2

k

q
: Expanding the

potential with U3 ¼ hU3i þ g we obtain, after a short calculation, for the masses
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m2
U1
¼ m2

U2
¼ a

ffiffiffiffiffiffiffiffiffiffi
k
�m2

r
;

m2
g ¼ �2m2 þ 3a

ffiffiffiffiffiffiffiffiffiffi
k
�m2

r
:

ð2:35Þ

The important feature here is that the original Goldstone bosons of Eq. 2.19 are
now massive. The squared masses are proportional to the symmetry breaking
parameter a: Calculating quantum corrections to observables in terms of
Goldstone-boson loop diagrams will generate corrections which are nonanalytic in
the symmetry breaking parameter such as a lnðaÞ [12]. Such so-called chiral
logarithms originate from the mass terms in the Goldstone-boson propagators
entering the calculation of loop integrals. We will come back to this point in the
next chapter when we discuss the masses of the pseudoscalar octet in terms of
the quark masses which, in QCD, represent the analogue to the parameter a in the
above example.
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Chapter 3
Chiral Perturbation Theory for Mesons

3.1 Effective Field Theory

Before discussing chiral perturbation theory (ChPT) in detail, we want to briefly
outline some of the main features of the effective-field-theory approach, as it finds
a wide range of applications in physics. Detailed introductions and reviews are
found, e.g., in Refs. [29, 45, 48, 58, 66, 74, 78, 82]. An effective field theory (EFT)
is a low-energy approximation to some underlying, more fundamental theory. By
that we mean that the EFT is a valid approximation for energies that are small
compared to some scale K of the underlying theory. The specific value of K
depends on the theory under investigation, which may in fact contain several such
scales K1\K2\ � � � : The basic idea of an EFT is that one does not need to know
details of the underlying theory at energies larger than K in order to find a useful
description of the physics in the energy domain one is interested in.

An EFT uses the degrees of freedom suitable for the particular low-energy
domain of interest. For example, one can neglect those degrees of freedom that are
too heavy to be produced at low energies, which can simplify calculations sig-
nificantly. In fact, the degrees of freedom can be entirely different from those
appearing in the underlying theory: we will use the pseudoscalar octet ðp;K; gÞ
and the octet of 1

2
þ

baryons ðp; n;R;N;KÞ instead of the more fundamental quarks
and gluons as the degrees of freedom in low-energy processes in hadronic physics.

Using different degrees of freedom, we have to assure that observables calcu-
lated in the EFT are related to those of the underlying theory. This is achieved by
using the most general Lagrangian that is consistent with the symmetries of the
underlying theory, as this yields the ‘‘most general possible S-matrix consistent
with analyticity, perturbative unitarity, cluster decomposition and the assumed
symmetry principles’’ [100]. Since we are using the most general Lagrangian, it
actually consists of an infinite number of terms, each with its own coefficient, the
so-called low-energy constants (LECs). Obviously, this is not a very useful pre-
scription without some kind of approximation to avoid having to calculate an

S. Scherer and M. R. Schindler, A Primer for Chiral Perturbation Theory,
Lecture Notes in Physics 830, DOI: 10.1007/978-3-642-19254-8_3,
� Springer-Verlag Berlin Heidelberg 2012
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infinite number of contributions to each physical observable. The solution lies in
two restrictions: first, we only demand a finite accuracy to our results, i.e., our
results are allowed to differ from those of the underlying theory by a specified
(small) amount; and second, we restrict ourselves to a certain energy domain,
which means that the EFT has a limited range of applicability. The EFT is then
used to calculate physical observables in terms of an expansion in p=K; where p
generically stands for energy, momenta or masses that are smaller than the scale K
related to the underlying theory. As long as p� K; only a finite number of terms
in the expansion contribute for a specified accuracy, which correspond to a finite
number of terms in the most general Lagrangian. We will see an example of a
method to determine which terms to include when considering Weinberg’s power
counting in Sect. 3.4.9.

As explained above, the terms in the Lagrangian are constrained by the sym-
metries of the underlying theory. This explains our focus on the symmetries of
QCD in the previous two chapters. In the following, we will study the implications
of these symmetries for the interactions of the Goldstone bosons of spontaneously
broken chiral symmetry. While the symmetries impose conditions on the structure
of the Lagrangian, they do not restrict the LECs. These should in principle be
calculable from the underlying theory. In the cases where this is not possible, e.g.
if the underlying theory is not known or one does not (yet) know how to solve it,
they can be fitted to data. Once the LECs are determined, the effective theory
possesses predictive power.

On a technical note, EFTs are non-renormalizable in the traditional sense, as
with increasing accuracy one needs to include more and more terms. However,
as long as one considers all terms that are allowed by the symmetries, divergences
that occur in calculations up to any given order of p=K can be renormalized by
redefining fields and parameters of the EFT Lagrangian [101].

One of the best-known examples of an effective theory is Fermi’s theory of beta
decay. It can in fact be regarded as the leading-order piece of an EFT in which the
massive gauge bosons are ‘‘integrated out.’’ In the Standard Model, neutron beta
decay n! pe��me is described via an intermediate W boson with mass MW �
80 GeV: For momentum transfers q� MW ; the W boson propagator can be
replaced by the lowest-order expansion in the small quantity q=MW ; symbolically

1

q2 �M2
W

! � 1

M2
W

;

resulting in the four-fermion contact interaction of Fermi’s theory. This low-
energy theory includes all the ingredients of an EFT discussed above: The degrees
of freedom differ from those of the underlying theory as the W boson is excluded,
the underlying scale K is identified with the mass MW ; and the domain of appli-
cability is restricted to momentum transfers q� MW : It is also non-renormalizable
in the traditional sense, as the Fermi constant GF describing the four-fermion
coupling has dimensions energy�2:
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Let us consider an analogous, but simplified, example in more detail. We choose
a toy model with two massive scalar degrees of freedom,1

L ¼L0 þLint;

L0 ¼
1
2

ol/ol/�M2/2� �
þ 1

2
oluolu� m2u2
� �

;

Lint ¼ �
k
2
/u2;

ð3:1Þ

with m� M: The equations of motion are then derived from the Euler-Lagrange
equations to be

h/þM2/þ k
2
u2 ¼ 0; ð3:2Þ

huþ m2uþ ku/ ¼ 0: ð3:3Þ

Formally solving Eq. 3.2 for /;

/ ¼ � k
2M2

1

1þ h
M2

u2;

and inserting the solution into Eq. 3.3, we obtain

huþ m2u� k2

2M2
u

1

1þ h
M2

u2 ¼ 0: ð3:4Þ

We see that the heavy degree of freedom / has disappeared from the equation of
motion of the light particle. If the momentum of u is much less than M we can
formally expand the last term in Eq. 3.4 in 1=M2: The leading-order expression is
given by

huþ m2u� k2

2M2
u3 ¼ 0: ð3:5Þ

The same equation of motion is generated by the effective Lagrangian

Leff ¼
1
2

oluolu� m2u2
� �

þ ~ku4; ð3:6Þ

as long as

~k ¼ k2

8M2
:

1 The toy model serves pedagogical purposes only. As a (quantum) field theory it is not
consistent because the energy is not bounded from below [14].
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The effective Lagrangian only depends on the light field u and contains a u4

interaction, which is the analogue of the Fermi interaction. Note that, instead of
using the equations of motion, one can also directly ‘‘integrate out’’ the heavy
degrees of freedom from the Lagrangian in a path-integral formalism.

Exercise 3.1 We now show that the effective Lagrangian of Eq. 3.6 produces the
same low-energy scattering amplitude for uðp1Þ þ uðp2Þ ! uðp3Þ þ uðp4Þ as the
original Lagrangian of Eq. 3.1.

(a) Show that the Feynman rule for the coupling of a heavy field / to two light
fields u in the original theory is given by �ik:

(b) Calculate the amplitudes for the diagrams shown in Fig. 3.1, where the dashed
and solid lines represent the fields u and /; respectively. The heavy-particle
Feynman propagator is given by

DF/ðpÞ ¼
1

p2 �M2 þ i0þ
:

Show that the result can be expressed in the Mandelstam variables s ¼
ðp1 þ p2Þ2; t ¼ ðp1 � p3Þ2; and u ¼ ðp1 � p4Þ2 as

Mfund ¼ �k2 i

s�M2 þ i0þ
þ i

t �M2 þ i0þ
þ i

u�M2 þ i0þ

� �
: ð3:7Þ

(c) We now restrict ourselves to very low energies, such that fs; jtj; jujg � M2:
Show that the leading-order contribution in the low-energy expansion is given
by

Mfund ¼
3ik2

M2
þ O

fs; jtj; jujg
M2

� �
:

(d) In the effective theory, we only need to consider the diagram of Fig. 3.2. Show
that the corresponding amplitude is given by

Meff ¼ ið4!Þ~k ¼ 3ik2

M2
;

which exactly reproduces the leading-order contribution in the fundamental
theory. This calculation shows that even if we know how to calculate
observables in the underlying theory, use of an EFT can simplify the necessary
calculations.

Fig. 3.1 Diagrams
contributing to uðp1Þ þ
uðp2Þ ! uðp3Þ þ uðp4Þ in
the fundamental theory
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In the example above we eliminated some of the heavy degrees of freedom by
explicit calculation. In the case of chiral perturbation theory, the hadronic degrees of
freedom are very different from even the light degrees of freedom of the underlying
theory of QCD, and we therefore have to rely on the symmetries of QCD to construct
the effective Lagrangian. This will be the focus of the following sections.

3.2 Spontaneous Symmetry Breaking in QCD

While the toy model of Sect. 2.2 is constructed to illustrate the concept of spon-
taneous symmetry breaking, it is not fully understood theoretically why QCD
should exhibit this phenomenon. We will first motivate why experimental input,
the hadron spectrum of the ‘‘real’’ world, indicates that spontaneous symmetry
breaking occurs in QCD. Secondly, we will show that a nonvanishing scalar
singlet quark condensate is a sufficient condition for spontaneous symmetry
breaking in QCD.

3.2.1 The Hadron Spectrum

We saw in Sect. 1.3 that the QCD Lagrangian possesses an SUð3ÞL � SUð3ÞR �
Uð1ÞV symmetry in the chiral limit in which the light-quark masses vanish. From
symmetry considerations involving the Hamiltonian H0

QCD only, one would naively
expect that hadrons are organized in approximately degenerate multiplets fitting
the dimensionalities of irreducible representations of the group SUð3ÞL �
SUð3ÞR � Uð1ÞV : The Uð1ÞV symmetry results in baryon number conservation and
leads to a classification of hadrons into mesons ðB ¼ 0Þ and baryons ðB ¼ 1Þ: The
linear combinations

QVa � QRa þ QLa ð3:8Þ

and

QAa � QRa � QLa ð3:9Þ

Fig. 3.2 Diagram
contributing to uðp1Þ þ
uðp2Þ ! uðp3Þ þ uðp4Þ in
the effective theory
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of the left- and right-handed charge operators commute with H0
QCD; have opposite

parity, and thus for states of positive parity one would expect the existence of
degenerate states of negative parity which can be seen as follows.2

Let ja;þi denote an eigenstate of H0
QCD and parity with eigenvalues Ea and þ1;

respectively,

H0
QCDja;þi ¼ Eaja;þi;

Pja;þi ¼ ja;þi;

such as, e.g., a member of the lowest-lying baryon octet (in the chiral limit).
Defining jwaai ¼ QAaja;þi; because of ½H0

QCD;QAa� ¼ 0; we have

H0
QCDjwaai ¼ H0

QCDQAaja;þi ¼ QAaH0
QCDja;þi ¼ EaQAaja;þi ¼ Eajwaai;

Pjwaai ¼ PQAaP�1Pja;þi ¼ �QAaðþja;þiÞ ¼ �jwaai:

The state jwaai can be expanded in terms of the members of a multiplet with
negative parity,

jwaai ¼ QAaja;þi ¼ jb;�ihb;�jQAaja;þi ¼ ta;bajb;�i:

However, the low-energy spectrum of baryons does not contain a degenerate
baryon octet of negative parity. Naturally the question arises whether the above
chain of arguments is incomplete. Indeed, we have tacitly assumed that the ground

state of QCD is annihilated by the generators QAa: Let byaþ denote an operator
creating quanta with the quantum numbers of the state ja;þi: Similarly, let bya�
create degenerate quanta of opposite parity. Expanding

QAa; b
y
aþ

h i
¼ byb�ta;ba;

the usual chain of arguments then works as

QAaja;þi ¼ QAabyaþj0i ¼ ð½QAa; b
y
aþ� þ byaþ QAa|{z}

,!0

Þj0i ¼ ta;babyb�j0i: ð3:10Þ

However, if the ground state is not annihilated by QAa; the reasoning of Eq. 3.10
does no longer apply. In that case the ground state is not invariant under the full
symmetry group of the Lagrangian, resulting in a spontaneous symmetry breaking.
In other words, the non-existence of degenerate multiplets of opposite parity points
to the fact that SUð3ÞV instead of SUð3ÞL � SUð3ÞR is approximately realized as a
symmetry of the hadrons. Furthermore, the octet of the pseudoscalar mesons is
special in the sense that the masses of its members are small in comparison with

2 The existence of mass-degenerate states of opposite parity is referred to as parity doubling.
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the corresponding vector mesons ðJP ¼ 1�Þ: They are the candidates for the
Goldstone bosons of spontaneous symmetry breaking in QCD.

In order to understand the origin of the SUð3ÞV symmetry, let us consider the
vector charges QVa ¼ QRa þ QLa:

3

Exercise 3.2 Using Eqs. 1.104–1.106, show that the vector charges satisfy the
commutation relations of an su(3) Lie algebra,

QVa;QVb½ � ¼ ifabcQVc: ð3:11Þ

It was shown by Vafa and Witten [94] that, in the chiral limit, the ground state is
necessarily invariant under SUð3ÞV � Uð1ÞV ; i.e., the eight vector charges QVa as
well as the baryon number operator4 QV=3 annihilate the ground state,

QVaj0i ¼ QV j0i ¼ 0: ð3:12Þ

According to the Coleman theorem [41], the symmetry of the ground state
determines the symmetry of the spectrum, i.e., Eq. 3.12 implies SUð3ÞV multiplets
which can be classified according to their baryon number. In the reverse conclu-
sion, the symmetry of the ground state can be inferred from the symmetry pattern
of the spectrum. Figures 3.3 and 3.4 show the octets of the lowest-lying pseudo-

scalar-meson states and the lowest-lying baryon states of spin-parity 1
2
þ
;

respectively.

Let us now turn to the linear combinations QAa ¼ QRa � QLa:

Exercise 3.3 Using Eqs. 1.104–1.106, verify the commutation relations

QAa;QAb½ � ¼ ifabcQVc; ð3:13Þ

I3

S

K−(494) 0K̄ (498)

π−(140) π0(135)

η(548)

π+(140)

K0(498) K+(494)

–1

0

1

-1 -1/2 0 1/2 1

Fig. 3.3 Pseudoscalar meson
octet in an ðI3; SÞ diagram.
Baryon number B ¼ 0:
Masses in MeV

3 The subscript V (for vector) indicates that the generators result from integrals of the zeroth
component of vector-current operators and thus transform with a positive sign under parity.
4 Recall that each quark is assigned a baryon number 1/3.
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QVa;QAb½ � ¼ ifabcQAc: ð3:14Þ

Note that these charge operators do not form a closed algebra, i.e., the commutator
of two axial-charge operators is not again an axial-charge operator. Since the
parity doubling is not observed for the low-lying states, one assumes that the QAa

do not annihilate the ground state,

QAaj0i 6¼ 0; ð3:15Þ

i.e., the ground state of QCD is not invariant under ‘‘axial’’ transformations. In the
present case, G ¼ SUð3ÞL � SUð3ÞR with nG ¼ 16 and H ¼ SUð3ÞV with nH ¼ 8
and we expect eight Goldstone bosons. According to the Goldstone theorem [60],
each axial generator QAa; which does not annihilate the ground state, corresponds
to a massless Goldstone-boson field /a with spin 0, whose symmetry properties are
tightly connected to the generator in question. The Goldstone bosons have the
same transformation behavior under parity as the axial generators,

/aðt; x~Þ 7!
P �/aðt;�x~Þ; ð3:16Þ

i.e., they are pseudoscalars, and transform under the subgroup H ¼ SUð3ÞV ; which
leaves the vacuum invariant, as an octet (see Eq. 3.14):

QVa;/bðxÞ½ � ¼ ifabc/cðxÞ: ð3:17Þ

3.2.2 The Scalar Singlet Quark Condensate

In this section all quantities such as the ground state, the quark operators, etc. are
considered in the chiral limit. We will show that a nonvanishing vacuum expec-
tation value of the operator �qq in the chiral limit is a sufficient (but not a necessary)
condition for spontaneous symmetry breaking in zero-temperature QCD. An
increase in temperature will ultimately lead to a phase transition into the regime

I3

S

n 940 p 938

1197 0 1193

1116

1189

1322 Ξ 0 1315

0

–1

–2

–1 –1/2 0 1/2 1

Fig. 3.4 Baryon octet

JP ¼ 1
2
þ

� �
in an ðI3; SÞ

diagram. Baryon number
B ¼ 1: Masses in MeV
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where chiral symmetry is restored, i.e., no longer spontaneously broken (see Ref.
[59] for a discussion of the low-temperature behavior of the quark condensate).
The terminology scalar singlet quark condensate originates from the fact that �qq
transforms as a scalar under the full Lorentz group and as singlet under SUð3ÞV ;
respectively. The ‘‘condensation’’ is a non-perturbative phenomenon of the QCD
ground state that is driven by the formation of quark-antiquark pairs. The sub-
sequent discussion will parallel that of the toy model in Sect. 2.3 after replacement
of the elementary fields Ui by appropriate composite Hermitian operators of QCD.

Let us first recall the definition of the nine scalar and pseudoscalar quark
densities:

SaðyÞ ¼ �qðyÞkaqðyÞ; a ¼ 0; . . .; 8; ð3:18Þ

PaðyÞ ¼ i�qðyÞc5kaqðyÞ; a ¼ 0; . . .; 8: ð3:19Þ

Exercise 3.4 Show that Sa and Pa transform under SUð3ÞL � SUð3ÞR; i.e.,
qL 7! q0L ¼ ULqL and qR 7! q0R ¼ URqR; as

Sa 7! S0a ¼ �qLUyLkaURqR þ �qRUyRkaULqL;

Pa 7!P0a ¼ i �qLUyLkaURqR � i�qRUyRkaULqL:

Hint: Express Sa and Pa in terms of left- and right-handed quark fields.

In technical terms: The components Sa and Pa transform as members of
ð3	; 3Þ 
 ð3; 3	Þ representations.

The equal-time commutation relation of two quark operators of the form AiðxÞ ¼
qyðxÞÂiqðxÞ; where Âi symbolically denotes C and flavor matrices and a summation
over color indices is implied, can be compactly written as (see Eq. 1.103)

A1ðt; x~Þ;A2ðt; y~Þ½ � ¼ d3ðx~� y~ÞqyðxÞ Â1; Â2
� 	

qðxÞ: ð3:20Þ

In the following, let y denote ðt; y~Þ: With the definition

QVaðtÞ ¼
Z

d3x qyðt; x~Þka

2
qðt; x~Þ;

and using5

1
ka

2
; c0k0


 �
¼ 0;

1
ka

2
; c0kb


 �
¼ c0

X8

c¼1

ifabckc;

5 In this section, we explicitly write out sums over flavor indices, because a summation over
repeated indices is not implied in the final results of Eqs. 3.27 and 3.28.
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we see, after integration of Eq. 3.20 over x~; that the scalar quark densities of
Eq. 3.18 transform under SUð3ÞV as a singlet and as an octet, respectively,

QVaðtÞ; S0ðyÞ½ � ¼ 0; a ¼ 1; . . .; 8; ð3:21Þ

QVaðtÞ; SbðyÞ½ � ¼ i
X8

c¼1

fabcScðyÞ; a; b ¼ 1; . . .; 8; ð3:22Þ

with analogous results for the pseudoscalar quark densities. In the SUð3ÞV limit
and, of course, also in the even more restrictive chiral limit, the charge operators in
Eqs. (3.21) and (3.22) are actually time independent.6 Using the relation

X8

a;b¼1

fabcfabd ¼ 3dcd ð3:23Þ

for the structure constants of su(3), we re-express the octet components of the
scalar quark densities as

SaðyÞ ¼ �
i

3

X8

b;c¼1

fabc QVbðtÞ; ScðyÞ½ �; ð3:24Þ

which represents the analogue of Eq. 2.30 in the discussion of the Goldstone
theorem.

In the chiral limit the ground state is necessarily invariant under SUð3ÞV [94],
i.e., QVaj0i ¼ 0; and we obtain from Eq. 3.24

h0jSaðyÞj0i ¼ h0jSað0Þj0i � hSai ¼ 0; a ¼ 1; . . .; 8; ð3:25Þ

where we made use of translational invariance of the ground state. In other words,
the octet components of the scalar quark condensate must vanish in the chiral limit.
From Eq. 3.25, we obtain for a ¼ 3

h�uui � h�ddi ¼ 0;

i.e., h�uui ¼ h�ddi and for a ¼ 8

h�uui þ h�ddi � 2h�ssi ¼ 0;

i.e., h�uui ¼ h�ddi ¼ h�ssi:
Because of Eq. 3.21 a similar argument cannot be used for the singlet con-

densate, and if we assume a nonvanishing scalar singlet quark condensate in the
chiral limit, we find using h�uui ¼ h�ddi ¼ h�ssi:

6 The commutation relations also remain valid for equal times if the symmetry is explicitly
broken.
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0 6¼ h�qqi ¼ h�uuþ �dd þ �ssi ¼ 3h�uui ¼ 3h�ddi ¼ 3h�ssi: ð3:26Þ

Finally, we make use of (no summation implied!)

i2 c5
ka

2
; c0c5ka


 �
¼ c0k

2
a

in combination with

k2
1 ¼ k2

2 ¼ k2
3 ¼

1 0 0

0 1 0

0 0 0

0
B@

1
CA;

k2
4 ¼ k2

5 ¼
1 0 0

0 0 0

0 0 1

0
B@

1
CA;

k2
6 ¼ k2

7 ¼
0 0 0

0 1 0

0 0 1

0
B@

1
CA;

k2
8 ¼

1
3

1 0 0

0 1 0

0 0 4

0
B@

1
CA;

to obtain

i QAaðtÞ;PaðyÞ½ � ¼

�uuþ �dd; a ¼ 1; 2; 3
�uuþ �ss; a ¼ 4; 5
�dd þ �ss; a ¼ 6; 7

1
3ð�uuþ �dd þ 4�ssÞ; a ¼ 8

8
>><

>>:
ð3:27Þ

where we have suppressed the y dependence on the right-hand side. We evaluate
Eq. 3.27 for a ground state which is invariant under SUð3ÞV ; assuming a non-
vanishing singlet scalar quark condensate,

h0ji½QAaðtÞ;PaðyÞ�j0i ¼
2
3
h�qqi; a ¼ 1; . . .; 8; ð3:28Þ

where, because of translational invariance, the right-hand side is independent of y:
Inserting a complete set of states into the commutator of Eq. 3.28 yields, in
complete analogy to Sect. 2.3 (see the discussion following Eq. 2.31) that both the
pseudoscalar densities PaðyÞ as well as the axial charge operators QAa must have a
nonvanishing matrix element between the vacuum and massless one-particle states
j/bi: In particular, because of Lorentz covariance, the matrix element of the
axial-vector current operator between the vacuum and these massless states,
appropriately normalized, can be written as
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h0jAl
að0Þj/bðpÞi ¼ iplF0dab; ð3:29Þ

where F0 denotes the ‘‘decay’’ constant of the Goldstone bosons in the three-flavor
chiral limit ðmu ¼ md ¼ ms ¼ 0Þ: From Eq. 3.29 we see that a nonzero value of F0

is a necessary and sufficient criterion for spontaneous chiral symmetry breaking.
On the other hand, because of Eq. 3.28 a nonvanishing scalar singlet quark con-
densate h�qqi is a sufficient (but not a necessary) condition for a spontaneous
symmetry breakdown in QCD. Table 3.1 contains a summary of the patterns of
spontaneous symmetry breaking as discussed in Sect. 2.3, the generalization of
Sect. 2.2 to the so-called O(N) linear sigma model, and QCD.

3.3 Transformation Properties of the Goldstone Bosons

The purpose of this section is to discuss the transformation properties of the field
variables describing the Goldstone bosons [10, 33, 42, 70, 99]. We will need the
concept of a nonlinear realization of a group in addition to a representation of a
group which one usually encounters in physics. We will first discuss a few general
group-theoretical properties before specializing to QCD.

3.3.1 General Considerations

Let us consider a physical system described by a Lagrangian which is invariant
under a compact Lie group G: We assume the ground state of the system to be
invariant under only a subgroup H of G; giving rise to n ¼ nG � nH Goldstone
bosons. Each of these Goldstone bosons will be described by an independent field
/i which is a smooth real function on Minkowski space M4: These fields are
collected in an n-component vector U ¼ ð/1; . . .;/nÞ; defining the real vector
space

M1 � fU : M4 ! R
nj/i : M4 ! R smoothg: ð3:30Þ

Table 3.1 Comparison of spontaneous symmetry breaking patterns

Section 2.3 OðNÞ sigma model QCD

Symmetry group G of Lagrangian O(3) OðNÞ SUð3ÞL � SUð3ÞR
Number of generators nG 3 NðN � 1Þ=2 16
Symmetry group H of ground state O(2) OðN � 1Þ SUð3ÞV
Number of generators nH 1 ðN � 1ÞðN � 2Þ=2 8
Number of Goldstone bosons nG � nH 2 N � 1 8
Multiplet of Goldstone-boson fields ðU1ðxÞ;U2ðxÞÞ ðU1ðxÞ; . . .;UN�1ðxÞÞ i�qðxÞc5kaqðxÞ
Vacuum expectation value v ¼ hU3i v ¼ hUNi v ¼ h�qqi
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Our aim is to find a mapping u which uniquely associates with each pair ðg;UÞ 2
G�M1 an element uðg;UÞ 2 M1 with the following properties:

uðe;UÞ ¼ U 8 U 2 M1; e identity of G; ð3:31Þ

uðg1;uðg2;UÞÞ ¼ uðg1g2;UÞ 8 g1; g2 2 G; 8 U 2 M1: ð3:32Þ

Such a mapping defines an operation of the group G on M1: The second condition
is the so-called group-homomorphism property [9, 64, 77]. The mapping will, in
general, not define a representation of the group G; because we do not require the
mapping to be linear, i.e., uðg; kUÞ 6¼ kuðg;UÞ: The construction proceeds as
follows [70]. Let U ¼ 0 denote the ‘‘origin’’ of M1 which, in a theory containing
Goldstone bosons only, loosely speaking corresponds to the ground state config-
uration. Since the ground state is supposed to be invariant under the subgroup H
we require the mapping u to be such that all elements h 2 H map the origin onto
itself. In this context the subgroup H is also known as the little group of U ¼ 0:

We will establish a connection between the Goldstone-boson fields and the set
of all left cosets fgHjg 2 Gg which is also referred to as the quotient G=H: For a
subgroup H of G the set gH ¼ fghjh 2 Hg defines the left coset of g which is one
element of G=H:7 For our purposes we need the property that cosets either
completely overlap or are completely disjoint, i.e., the quotient is a set whose
elements themselves are sets of group elements, and these sets are completely
disjoint.

As an illustration of these properties, consider the symmetry group C4 of a
square with directed sides:

The corresponding abstract group G consists of four elements, G ¼ C4 ¼
fe; a; a2; a3g with the defining relation a4 ¼ e: Geometrically, a may be repre-
sented by a rotation through 90� about an axis through the center and normal to the
plane of the square. Using a4 ¼ e; the left cosets of the (nontrivial) subgroup
H ¼ fe; a2g are given by

eH ¼ fe; a2g ¼ a2H; aH ¼ fa; a3g ¼ a3H:

7 Accordingly, the right coset of g is defined as Hg ¼ fhgjh 2 Hg: An invariant subgroup has
the additional property that the left and right cosets coincide for each g which allows for a
definition of the factor group G=H in terms of the complex product. However, here we do not
need this property.
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The quotient G=H ¼ fgHjg 2 Gg therefore consists of the two elements fe; a2g
and fa; a3g: Since the elements of the quotient are completely disjoint, any
element of a given coset uniquely represents the coset in question.

Returning to the discussion of the mapping u; Eqs. 3.31 and 3.32 result in two
important properties when considering the quotient G=H: Let us first show that the
origin is mapped onto the same vector in R

n under all elements of a given coset
gH:

uðgh; 0Þ ¼ uðg;uðh; 0ÞÞ ¼ uðg; 0Þ 8 g 2 G and h 2 H:

Secondly, the mapping is injective with respect to the elements of G=H: Consider
two elements g and g0 of G where g0 62 gH: Let us assume uðg; 0Þ ¼ uðg0; 0Þ:

0 ¼ uðe; 0Þ ¼ uðg�1g; 0Þ ¼ uðg�1;uðg; 0ÞÞ ¼ uðg�1;uðg0; 0ÞÞ ¼ uðg�1g0; 0Þ:

However, this implies g�1g0 2 H or g0 2 gH in contradiction to the assumption
g0 62 gH and therefore uðg; 0Þ ¼ uðg0; 0Þ cannot be true. In other words, the
mapping can be inverted on the image of uðg; 0Þ: The conclusion is that there
exists an isomorphic mapping between the quotient G=H and the Goldstone-boson
fields. Of course, the Goldstone-boson fields are not constant vectors in R

n but
functions on Minkowski space. This is accomplished by allowing the cosets gH to
also depend on x:

Now let us discuss the transformation behavior of the Goldstone-boson fields
under an arbitrary g 2 G in terms of the isomorphism established above. To each
U corresponds a coset ~gH with appropriate ~g: Let f ¼ ~gh 2 ~gH denote a repre-
sentative of this coset such that

U ¼ uðf ; 0Þ ¼ uð~gh; 0Þ:

Now apply the mapping uðgÞ to U:

uðg;UÞ ¼ uðg;uð~gh; 0ÞÞ ¼ uðg~gh; 0Þ ¼ uðf 0; 0Þ ¼ U0; f 0 2 gð~gHÞ:

In order to obtain the transformed U0 from a given U; we simply need to multiply
the left coset ~gH representing U by g in order to obtain the new left coset rep-
resenting U0:

ð3:33Þ

This procedure uniquely determines the transformation behavior of the Goldstone
bosons up to an appropriate choice of variables parameterizing the elements of the
quotient G=H:
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3.3.2 Application to QCD

The symmetry groups relevant to the application in QCD are

G ¼ SUðNÞ � SUðNÞ ¼ fðL;RÞjL 2 SUðNÞ;R 2 SUðNÞg

and

H ¼ fðV ;VÞjV 2 SUðNÞg ffi SUðNÞ;

with N ¼ 2 for massless u and d quarks and N ¼ 3 for massless u; d; and s quarks.
Let ~g ¼ ð~L; ~RÞ 2 G: We characterize the left coset ~gH through the SUðNÞ matrix
U ¼ ~R~Ly [10] such that ~gH ¼ ð1; ~R~LyÞH: This corresponds to the convention of
choosing as the representative of the coset the element which has the unit matrix in
its first argument. The transformation behavior of U under g ¼ ðL;RÞ 2 G is
obtained by multiplying the left coset ~gH from the left with g (see Eq. 3.33):

g~gH ¼ ðL;R~R~LyÞH ¼ ð1;R~R~LyLyÞðL; LÞH ¼ ð1;Rð~R~LyÞLyÞH;

where we made use of the fact that a multiplication of H with any element
ðL; LÞ 2 H simply reproduces H: According to our convention, the representative
of the transformed left coset is ð1;R~R~LyLyÞ: The transformation behavior of U is
therefore given by

U ¼ ~R~Ly 7!U0 ¼ Rð~R~LyÞLy ¼ RULy: ð3:34Þ

As mentioned above, we need to introduce an x dependence to account for the fact
that we are dealing with fields:

UðxÞ 7!RUðxÞLy: ð3:35Þ

Let us now restrict ourselves to the physically relevant cases of N ¼ 2 and
N ¼ 3 and define

M1 � fU : M4 ! R
3j/i : M4 ! R smoothg for N ¼ 2;

fU : M4 ! R
8j/i : M4 ! R smoothg for N ¼ 3:

�

Furthermore let ~HðNÞ denote the set of all Hermitian and traceless N � N
matrices,

~HðNÞ � fA 2 glðN;CÞjAy ¼ A ^ TrðAÞ ¼ 0g;

which under addition of matrices defines a real vector space. We define a second
set M2 � f/ : M4 ! ~HðNÞj/ smoothg; where the entries are smooth functions.
For N ¼ 2; the elements of M1 and M2 are related to each other according to
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/ ¼
X3

i¼1

/isi ¼
/3 /1 � i/2

/1 þ i/2 �/3

� �
� p0

ffiffiffi
2
p

pþffiffiffi
2
p

p� �p0

� �
; ð3:36Þ

where the si are the usual Pauli matrices and /i ¼ 1
2Tr½si/�: Analogously for

N ¼ 3;

/ ¼
X8

a¼1

/aka �
p0 þ 1ffiffi

3
p g

ffiffiffi
2
p

pþ
ffiffiffi
2
p

Kþ
ffiffiffi
2
p

p� �p0 þ 1ffiffi
3
p g

ffiffiffi
2
p

K0

ffiffiffi
2
p

K�
ffiffiffi
2
p

�K0 � 2ffiffi
3
p g

0

BB@

1

CCA; ð3:37Þ

with the Gell-Mann matrices ka and /a ¼ 1
2Tr½ka/�: Again, M2 forms a real vector

space.

Exercise 3.5 Make use of the Gell-Mann matrices of Eq. 1.6 and express the
physical fields in terms of the Cartesian components, e.g.,

pþ ¼ 1ffiffiffi
2
p ð/1 � i/2Þ:

Let us finally define

M3 � U : M4 ! SUðNÞjU ¼ exp i
/
F0

� �
;/ 2 M2

� �
:

At this stage, the constant F0 is introduced to make the argument of the expo-
nential function dimensionless. Since a bosonic field has the dimension of energy,
F0 also has the dimension of energy. Later on, F0 will be identified with the
‘‘decay’’ constant of the Goldstone bosons in the chiral limit.8 At this point it is
important to note that M3 does not define a vector space because the sum of two
SUðNÞ matrices is not an SUðNÞ matrix.

We are now in the position to discuss a realization of SUðNÞ � SUðNÞ on M3:
The homomorphism

u : G�M3 ! M3 with u½ðL;RÞ;U� � RULy;

defines an operation of G on M3; because

8 There is a subtlety here, because F0 is traditionally reserved for the three-flavor chiral limit,
whereas the two-flavor chiral limit (at fixed ms) is denoted by F: In this section, we will use F0
for both cases.
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1. RULy 2 M3; since U 2 M3 and R; Ly 2 SUðNÞ; i.e., RULy is a smooth SUðNÞ-
valued function.

2. u½ð1; 1Þ;U� ¼ 1 U1 ¼ U:
3. Let gi ¼ ðLi;RiÞ 2 G and thus g1g2 ¼ ðL1L2;R1R2Þ 2 G:

u½g1;u½g2;U�� ¼ u½g1; ðR2ULy2Þ� ¼ R1R2ULy2Ly1;

u½g1g2;U� ¼ R1R2UðL1L2Þy ¼ R1R2ULy2Ly1:

The mapping u is homogeneous of degree one but it is not a representation,
because M3 is not a vector space.

The origin / ¼ 0 (for all x), i.e., U0 ¼ 1; denotes the ground state of the system.
Under transformations of the subgroup H ¼ fðV ;VÞjV 2 SUðNÞg corresponding
to rotating both left- and right-handed quark fields in QCD by the same V ; the
ground state remains invariant,

u½g ¼ ðV ;VÞ;U0� ¼ VU0Vy ¼ VVy ¼ 1 ¼ U0:

On the other hand, under ‘‘axial transformations,’’ i.e., rotating the left-handed
quarks by a nontrivial A and the right-handed quarks by Ay; the ground state does
not remain invariant,

u½g ¼ ðA;AyÞ;U0� ¼ AyU0Ay ¼ AyAy 6¼ U0;

which is consistent with the assumed spontaneous symmetry breakdown.
The traceless and Hermitian matrices of Eqs. 3.36 and 3.37 contain the

Goldstone-boson fields. We want to discuss their transformation behavior under
the subgroup H ¼ fðV ;VÞjV 2 SUðNÞg: Expanding

U ¼ 1þ i
/
F0
� /2

2F2
0

þ � � � ;

we immediately see that the realization u restricted to the subgroup H;

1þ i
/
F0
� /2

2F2
0

þ � � � 7!V 1þ i
/
F0
� /2

2F2
0

þ � � �
� �

Vy

¼ 1þ i
V/Vy

F0
� V/VyV/Vy

2F2
0

þ � � � ;
ð3:38Þ

defines a representation on M2 3 / 7!V/Vy 2 M2; because

ðV/VyÞy ¼ V/Vy; TrðV/VyÞ ¼ Trð/Þ ¼ 0;

V1ðV2/Vy2ÞV
y
1 ¼ ðV1V2Þ/ðV1V2Þy:
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Let us consider the SU(3) case and parameterize

V ¼ exp �iHVb
kb

2

� �
;

from which we obtain, by comparing both sides of Eq. 3.38,

/ ¼ /aka 7!
h2SUð3ÞV

V/Vy ¼ /� iHVb/a
kb

2
; ka


 �

|fflfflfflffl{zfflfflfflffl}
¼ ifbackc

þ � � � ¼ /þ fabcHVa/bkc þ � � � :

ð3:39Þ

However, this corresponds exactly to the adjoint representation, i.e., in SU(3) the
fields /a transform as an octet which is also consistent with the transformation
behavior we discussed in Eq. 3.17:

eiHVaQVa/bkbe�iHVcQVc ¼ /bkb þ iHVa ½QVa;/b�|fflfflfflfflffl{zfflfflfflfflffl}
¼ ifabc/c

kb þ � � �

¼ /þ fabcHVa/bkc þ � � � : ð3:40Þ

For group elements of G of the form ðA;AyÞ one may proceed in a completely
analogous fashion. However, one finds that the fields /a do not have a simple
transformation behavior under these group elements. In other words, the com-
mutation relations of the fields with the axial charges are complicated nonlinear
functions of the fields. This is the origin for the terminology nonlinear realization
of chiral symmetry [33, 42, 99].

3.4 Effective Lagrangian and Power-Counting Scheme

Having discussed the transformation behavior of the Goldstone-boson fields, we
now turn to describing their interactions with each other and with external fields at
energies far below 1 GeV.

3.4.1 The Lowest-Order Effective Lagrangian

Our goal is the construction of the most general theory describing the dynamics of
the Goldstone bosons associated with the spontaneous symmetry breakdown in
QCD. In the chiral limit, we want the effective Lagrangian to be invariant under
SUð3ÞL � SUð3ÞR � Uð1ÞV : It should contain exactly eight pseudoscalar degrees
of freedom transforming as an octet under the subgroup H ¼ SUð3ÞV : Moreover,
taking account of spontaneous symmetry breaking, the ground state should only be
invariant under SUð3ÞV � Uð1ÞV :
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In terms of the SU(3) matrix

UðxÞ ¼ exp i
/ðxÞ
F0

� �
; ð3:41Þ

where / is given in Eq. 3.37, the most general, chirally invariant, effective
Lagrangian with the minimal number of derivatives reads

Leff ¼
F2

0

4
Tr olUolUy
� �

: ð3:42Þ

The parameter F0 will be related to the pion decay pþ ! lþml later on (see
Sect. 3.4.4).

First of all, the Lagrangian is invariant under the global SUð3ÞL � SUð3ÞR
transformations of Eq. 3.35:

U 7!RULy;

olU 7! olðRULyÞ ¼ olR|{z}
¼ 0

ULy þ RolULy þ RU olLy|ffl{zffl}
¼ 0

¼ RolULy;

Uy 7! LUyRy;

olUy 7! LolUyRy;

because

Leff 7!
F2

0

4
Tr
�

RolU LyL|{z}
¼ 1

olUyRy
�
¼ F2

0

4
Tr
�

RyR|{z}
¼ 1

olUolUy
�
¼Leff ;

where we made use of the trace property TrðABÞ ¼ TrðBAÞ: The global Uð1ÞV
invariance is trivially satisfied, because the Goldstone bosons have baryon number
zero, thus transforming as / 7!/ under Uð1ÞV which also implies U 7!U:

The substitution /aðt; x~Þ 7! � /aðt; x~Þ or, equivalently, Uðt; x~Þ 7!Uyðt; x~Þ pro-
vides a simple method of testing whether an expression is of so-called even or odd
intrinsic parity,9 i.e., even or odd in the number of Goldstone-boson fields. For
example, it is easy to show, using the trace property, that the Lagrangian of
Eq. 3.42 is even.

The purpose of the multiplicative constant F2
0=4 in Eq. 3.42 is to generate the

standard form of the kinetic term 1
2ol/ao

l/a; which can be seen by expanding the
exponential U ¼ 1þ i/=F0 þ � � � ; olU ¼ iol/=F0 þ � � � ; resulting in

9 Since the Goldstone bosons are pseudoscalars, a true parity transformation is given by
/aðt; x~Þ 7! �/aðt;�x~Þ or, equivalently, Uðt; x~Þ 7!Uyðt;�x~Þ:
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Leff ¼
F2

0

4
Tr

iol/
F0

�iol/
F0

� �
 �
þ � � � ¼ 1

4
Trðol/akao

l/bkbÞ þ � � �

¼ 1
4
ol/ao

l/b TrðkakbÞ|fflfflfflfflffl{zfflfflfflfflffl}
¼ 2dab

þ � � � � 1
2
ol/ao

l/a þLint:

In particular, since there are no other terms containing only two fields (Lint starts
with interaction terms containing at least four Goldstone bosons) the eight fields
/a describe eight independent massless particles. At this stage this is only a tree-
level argument. We will see in Sect. 3.5.2 that the Goldstone bosons remain
massless in the chiral limit even when loop corrections have been included.

A term proportional to TrðUUyÞ ¼ 3 produces a constant which is irrelevant for
the dynamics of the Goldstone bosons and will therefore be omitted. A term of the
type Tr½ðolo

lUÞUy� may be re-expressed as

Tr½ðolo
lUÞUy� ¼ ol½TrðolUUyÞ� � TrðolUolUyÞ;

i.e., up to a total derivative it is proportional to the Lagrangian of Eq. 3.42.
However, in the present context, total derivatives do not have a dynamical sig-
nificance, i.e., they leave the equations of motion unchanged and can thus be
dropped. The product of two invariant traces is excluded at lowest order, because
TrðolUUyÞ ¼ 0:

Exercise 3.6 Prove

TrðolUUyÞ ¼ 0 ð3:43Þ

for the general SUðNÞ case by considering an SUðNÞ-valued field

UðxÞ ¼ exp i
/aðxÞKa

F0

� �
;

with N2 � 1 Hermitian, traceless matrices Ka and real fields /a: Defining / ¼
/aKa; expand the exponential

U ¼ 1þ i
/
F0
þ 1

2F2
0

ði/Þ2 þ 1

3!F3
0

ði/Þ3 þ � � �

and consider the derivative

olU ¼ i
ol/
F0
þ iol/i/þ i/iol/

2F2
0

þ iol/ði/Þ2 þ i/iol/i/þ ði/Þ2iol/

3!F3
0

þ � � � :

Remark / and ol/ are matrices which, in general, do not commute!
Hint: ½/;Uy� ¼ 0:
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Let us turn to the vector and axial-vector currents associated with the global
SUð3ÞL � SUð3ÞR symmetry of the effective Lagrangian of Eq. 3.42. To that end,
we consider the infinitesimal transformations

L ¼ 1� ieLa
ka

2
; ð3:44Þ

R ¼ 1� ieRa
ka

2
: ð3:45Þ

In order to construct Jl
La; set eRa ¼ 0 and choose eLa ¼ eLaðxÞ (see Sect. 1.3.3):

U 7!U0 ¼ RULy ¼ U 1þ ieLa
ka

2

� �
;

Uy 7!U0y ¼ 1� ieLa
ka

2

� �
Uy;

olU 7! olU0 ¼ olU 1þ ieLa
ka

2

� �
þ UioleLa

ka

2
;

olUy 7! olU0y ¼ 1� ieLa
ka

2

� �
olUy � ioleLa

ka

2
Uy;

ð3:46Þ

from which we obtain for dLeff:

dLeff ¼
F2

0

4
Tr UioleLa

ka

2
olUy þ olU �ioleLa

ka

2
Uy

� �
 �

¼ F2
0

4
ioleLaTr

ka

2
ðolUyU � UyolUÞ


 �

¼ F2
0

4
ioleLaTr kao

lUyU
� �

: ð3:47Þ

In the last step we made use of

olUyU ¼ �UyolU;

which follows from differentiating UyU ¼ 1: We thus obtain for the left currents

Jl
La ¼

odLeff

ooleLa
¼ i

F2
0

4
Tr kao

lUyU
� �

; ð3:48Þ

and, completely analogously, choosing eLa ¼ 0 and eRa ¼ eRaðxÞ;

Jl
Ra ¼

odLeff

ooleRa
¼ �i

F2
0

4
Tr kaUolUy
� �

ð3:49Þ
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for the right currents. Combining Eqs. 3.48 and 3.49, the vector and axial-vector
currents read

Jl
Va ¼ Jl

Ra þ Jl
La ¼ �i

F2
0

4
Tr ka½U; olUy�
� �

; ð3:50Þ

Jl
Aa ¼ Jl

Ra � Jl
La ¼ �i

F2
0

4
Tr kafU; olUyg
� �

: ð3:51Þ

Furthermore, because of the symmetry of Leff under SUð3ÞL � SUð3ÞR; both
vector and axial-vector currents are conserved. The vector currents Jl

Va of Eq. 3.50
contain only terms with an even number of Goldstone bosons,

Jl
Va 7!

/ 7!�/�i
F2

0

4
Tr½kaðUyolU � olUUyÞ�

¼ �i
F2

0

4
Tr½kað�olUyU þ UolUyÞ� ¼ Jl

Va:

On the other hand, the expression for the axial-vector currents is odd in the number
of Goldstone bosons,

Jl
Aa 7!

/ 7!�/�i
F2

0

4
Tr½kaðUyolU þ olUUyÞ�

¼ i
F2

0

4
Tr½kaðolUyU þ UolUyÞ� ¼ �Jl

Aa:

To find the leading term, let us expand Eq. 3.51 in the fields,

Jl
Aa ¼ �i

F2
0

4
Tr ka 1þ � � � ;�i

ol/bkb

F0
þ � � �

� �� �
¼ �F0o

l/a þ � � � ;

from which we conclude that the axial-vector current has a nonvanishing matrix
element when evaluated between the vacuum and a one-Goldstone-boson state:

h0jJl
AaðxÞj/bðpÞi ¼ h0j � F0o

l/aðxÞj/bðpÞi ¼ �F0o
l expð�ip � xÞdab

¼ iplF0 expð�ip � xÞdab: ð3:52Þ

Equation 3.52 is the manifestation of Eq. 3.29 at lowest order in the effective field
theory.

3.4.2 Symmetry Breaking by the Quark Masses

So far we have assumed a perfect SUð3ÞL � SUð3ÞR symmetry. However, in
Sect. 2.4 we saw, by means of a simple example, how an explicit symmetry
breaking may lead to finite masses of the Goldstone bosons. As has been discussed
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in Sect. 1.3.6, the quark-mass term of QCD results in such an explicit symmetry
breaking,10

LM ¼ ��qRMqL � �qLM
yqR; M ¼

mu 0 0
0 md 0
0 0 ms

0

@

1

A: ð3:53Þ

In order to incorporate the consequences of Eq. 3.53 into the effective-Lagrangian
framework, one makes use of the following argument [57]: Although M is in
reality just a constant matrix and does not transform along with the quark fields,
LM of Eq. 3.53 would be invariant ifM transformed as

M 7!RMLy: ð3:54Þ

One then constructs the most general Lagrangian LðU;MÞ which is invariant
under Eqs. 3.35 and 3.54 and expands this function in powers of M: At lowest
order in M one obtains

Ls:b: ¼
F2

0B0

2
TrðMUy þ UMyÞ; ð3:55Þ

where the subscript s.b. refers to symmetry breaking. In order to interpret the new
parameter B0; let us consider the Hamiltonian density corresponding to the sum of
the Lagrangians of Eq. 3.42 and 3.55:

Heff ¼
F2

0

4
Trð _U _UyÞ þ F2

0

4
Trðr~U � r~UyÞ �Ls:b::

Since the first two terms are always larger than or equal to zero, Heff is minimized
by constant and uniform fields. Using the ansatz

/ ¼ /0 þ
1

F2
0

/2 þ
1

F4
0

/4 þ � � �

for the minimizing field values and organizing the individual terms in powers of
1=F2

0 ; one finds / ¼ 0 as the classical solution even in the presence of quark-mass
terms.

Exercise 3.7 We prove the statement above to order 1=F2
0 in the ansatz for /:

Since we are considering constant and uniform fields, we only have to take into
account the symmetry-breaking Lagrangian Ls:b: of Eq. 3.55.

(a) Calculate the derivative of Ls:b: with respect to /a; where / ¼ /aka: Using
M ¼My; show that

10 In view of the coupling to the external fields sþ ip and s� ip (see Eq. 1.161) to be discussed
in Sect. 3.4.3, we distinguish between M and My even though for a real, diagonal matrix they
are the same.

3.4 Effective Lagrangian and Power-Counting Scheme 87



oLs:b:

o/a
¼ F2

0B0Tr M �ka/þ /ka

2F2
0

þ ka/
3 þ /ka/

2 þ /2ka/þ /3ka

24F4
0

� �
 �

þ O
1

F4
0

� �
:

(b) Insert the ansatz / ¼ /0 þ 1
F2

0
/2 þ � � � and show that the trace is given by

� 1
2F2

0

Tr Mðka/0 þ /0kaÞ½ �

� 1

2F4
0

Tr M ka/2 þ /2ka �
ka/

3
0 þ /0ka/

2
0 þ /2

0ka/0 þ /3
0ka

12

� �
 �
:

(c) The quark-mass matrix can be parameterized as M ¼ m0k0 þ m3k3 þ m8k8

(see Exercise 1.17), with

m0 ¼
mu þ md þ msffiffiffi

6
p ; m3 ¼

mu � md

2
; m8 ¼

mu þ md � 2ms

2
ffiffiffi
3
p ;

while /0 ¼ /0bkb: Considering a ¼ 1; show that /01 ¼ 0 for / to minimize
Heff : Analogous calculations hold for a ¼ 2; . . .; 8:
Hint: fka; kbg ¼ 4

3 dab1þ 2dabckc: The values for dabc are given in Table 1.2.
(d) Using the result for /0; show that also /2 ¼ 0: Analogous calculations apply

for higher orders in 1=F2
0 :

Now consider the energy density of the ground state ðUmin ¼ U0 ¼ 1Þ;

hHeffimin ¼ �F2
0B0ðmu þ md þ msÞ; ð3:56Þ

and compare its derivative with respect to (any of) the light-quark masses mq with
the corresponding quantity in QCD,

oh0jHQCDj0i
omq

����
mu¼md¼ms¼0

¼ 1
3
h0j�qqj0i0 ¼

1
3
h�qqi0;

where h�qqi0 is the scalar singlet quark condensate of Eq. 3.26. Within the
framework of the lowest-order effective Lagrangian, the constant B0 is thus related
to the scalar singlet quark condensate by

3F2
0B0 ¼ �h�qqi0: ð3:57Þ

Let us add a few remarks.

1. A term TrðMÞ by itself is not invariant.
2. The combination TrðMUy � UMyÞ has the wrong behavior under parity

/ðt; x~Þ 7! � /ðt;�x~Þ; because
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Tr½MUyðt; x~Þ � Uðt; x~ÞMy� 7!P Tr½MUðt;�x~Þ � Uyðt;�x~ÞMy�

¼M¼M
y
�Tr½MUyðt;�x~Þ � Uðt;�x~ÞMy�:

3. Because M ¼My; Ls:b: contains only terms even in /:

In order to determine the masses of the Goldstone bosons, we identify the terms
of second order in the fields in Ls:b:;

Ls:b ¼ �
B0

2
Trð/2MÞ þ � � � : ð3:58Þ

Exercise 3.8 Expand the mass term to second order in the physical fields and
determine the squared masses of the Goldstone bosons.

Using Eq. 3.37 we find

Trð/2MÞ ¼ 2ðmu þ mdÞpþp� þ 2ðmu þ msÞKþK� þ 2ðmd þ msÞK0 �K0

þ ðmu þ mdÞp0p0 þ 2ffiffiffi
3
p ðmu � mdÞp0gþ mu þ md þ 4ms

3
g2:

For the sake of simplicity we consider the isospin-symmetric limit mu ¼ md ¼ m̂
so that the p0g term vanishes and there is no p0-g mixing. We then obtain for the
masses of the Goldstone bosons, to lowest order in the quark masses,

M2
p ¼ 2B0m̂; ð3:59Þ

M2
K ¼ B0ðm̂þ msÞ; ð3:60Þ

M2
g ¼

2
3

B0 m̂þ 2msð Þ: ð3:61Þ

These results, in combination with Eq. 3.57, B0 ¼ �h�qqi=ð3F2
0Þ; correspond to

relations obtained in Ref. [56] and are referred to as the Gell-Mann, Oakes, and
Renner relations. Furthermore, the squared masses of Eqs. 3.59–3.61 satisfy the
Gell-Mann-Okubo relation

4M2
K ¼ 4B0ðm̂þ msÞ ¼ 2B0ðm̂þ 2msÞ þ 2B0m̂ ¼ 3M2

g þM2
p; ð3:62Þ

independent of the value of B0: Without additional input regarding the numerical
value of B0; Eqs. 3.59–3.61 do not allow for an extraction of the absolute values of
the quark masses m̂ and ms; because rescaling B0 ! kB0 in combination with
mq ! mq=k leaves the relations invariant. For the ratio of the quark masses one
obtains, using the empirical values Mp ¼ 135 MeV; MK ¼ 496 MeV; and
Mg ¼ 548 MeV;
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M2
K

M2
p

¼ m̂þ ms

2m̂
) ms

m̂
¼ 25:9;

M2
g

M2
p
¼ 2ms þ m̂

3m̂
) ms

m̂
¼ 24:3:

ð3:63Þ

Let us conclude this section with a remark on h�qqi0: A nonvanishing quark
condensate in the chiral limit is a sufficient but not a necessary condition for
spontaneous chiral symmetry breaking. The effective-Lagrangian term of Eq. 3.55
not only results in a shift of the vacuum energy but also in finite Goldstone-boson
masses, and both effects are proportional to the parameter B0: We recall that it was
a symmetry argument which excluded a term TrðMÞ which, at leading order in M;
would decouple the vacuum energy shift from the Goldstone-boson masses. The
scenario underlying Ls:b: of Eq. 3.55 is similar to that of a Heisenberg ferro-

magnet which exhibits a spontaneous magnetization hM~i; breaking the O(3)
symmetry of the Heisenberg Hamiltonian down to O(2). In the present case, the

analogue of the order parameter hM~i is the quark condensate h�qqi0: In the case of

the ferromagnet, the interaction with an external magnetic field H~ is given by

�hM~i � H~; which corresponds to Eq. 3.56, with the quark masses playing the role

of the external field H~ (see Table 3.2). However, in principle, it is also possible
that B0 vanishes or is rather small. In such a case the quadratic masses of the
Goldstone bosons might be dominated by terms which are nonlinear in the quark
masses, i.e., by higher-order terms in the expansion of LðU;MÞ: Such a scenario
is the origin of the so-called generalized chiral perturbation theory [68]. The
analogue would be an antiferromagnet which shows a spontaneous symmetry

breaking but with hM~i ¼ 0: The analysis of the s-wave pp-scattering lengths [35,
36] supports the conjecture that the quark condensate is indeed the leading order
parameter of the spontaneously broken chiral symmetry (see also Sect. 3.5.4).

3.4.3 Construction of the Effective Lagrangian

In Sect. 3.4.1 we have derived the lowest-order effective Lagrangian for a global
SUð3ÞL � SUð3ÞR symmetry. On the other hand, the Ward identities originating in
the global SUð3ÞL � SUð3ÞR symmetry of QCD are obtained from a locally invariant

Table 3.2 Comparison between the symmetry-breaking patterns of a Heisenberg ferromagnet
and QCD

Heisenberg ferromagnet QCD

Symmetry of Hamiltonian O(3) SUð3ÞL � SUð3ÞR
Symmetry of j0i O(2) SUð3ÞV
Vacuum expectation value hM~i h�qqi0
Explicit symmetry breaking External magnetic field Quark masses
Interaction �hM~i � H~ hHeffi of Eq. 3.56
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generating functional involving a coupling to external fields (see Sects. 1.4.1 and
1.4.4). Our goal is to approximate the ‘‘true’’ generating functional ZQCD½v; a; s; p� of

Eq. 1.153 by a sequence Zð2Þeff ½v; a; s; p� þ Zð4Þeff ½v; a; s; p� þ � � � ; where the effective
generating functionals are obtained using the effective field theory.11 Therefore, we
need to promote the global symmetry of the effective Lagrangian to a local one and
introduce a coupling to the same external fields v; a; s; and p as in QCD [52, 53, 71].

In the following we will outline the principles entering the construction of the
effective Lagrangian for a local G ¼ SUð3ÞL � SUð3ÞR symmetry.12 The matrix U
transforms as

UðxÞ 7!U 0ðxÞ ¼ VRðxÞUðxÞVyLðxÞ; ð3:64Þ

where VLðxÞ and VRðxÞ are independent space-time-dependent SU(3) matrices. As
in the case of gauge theories, we need external fields llaðxÞ and rl

a ðxÞ (see Eqs.
1.151, 1.160, and 1.163 and Table 3.3) corresponding to the parameters HLaðxÞ
and HRaðxÞ of VLðxÞ and VRðxÞ; respectively. For any object A transforming as

VRAVyL such as, e.g., U we define the covariant derivative DlA as

DlA � olA� irlAþ iAll: ð3:65Þ

Table 3.3 Transformation properties under the group ðGÞ; charge conjugation ðCÞ; and parity
ðPÞ: The expressions for adjoint matrices are trivially obtained by taking the Hermitian conjugate
of each entry. In the parity-transformed expression it is understood that the argument is ðt;�x~Þ
and that partial derivatives ol act with respect to x and not with respect to the argument of the
corresponding function

Element G C P

U VRUVyL UT Uy

Dk1 . . .Dkn U VRDk1 . . .Dkn UVyL ðDk1 . . .Dkn UÞT ðDk1 . . .Dkn UÞy

v VRvVyL vT vy

Dk1 . . .Dknv VRDk1 . . .Dkn vVyL ðDk1 . . .Dkn vÞ
T ðDk1 . . .Dkn vÞy

rl VRrlVyR þ iVRolVyR �lTl ll

ll VLllVyL þ iVLolVyL �rT
l rl

fRlm VRfRlmV
y
R �ðfLlmÞT f lm

L

fLlm VLfLlmV
y
L �ðfRlmÞT f lm

R

11 Including all of the infinite number of effective functionals Zð2nÞ
eff ½v; a; s; p� will generate a

result which is equivalent to that obtained from ZQCD½v; a; s; p�:
12 In principle, we could also ‘‘gauge’’ the U(1)V symmetry. However, this is primarily of
relevance to the two-flavor sector in order to fully incorporate the coupling to the
electromagnetic four-vector potential (see Eq. 1.165). Since in the three-flavor sector the
quark-charge matrix is traceless, this important case is included in our considerations.
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Exercise 3.9 Verify the transformation behavior

DlA 7!VRðDlAÞVyL:

Hint: Make use of VRolVyR ¼ �olVRVyR:

Again, the defining property of the covariant derivative is that it should
transform in the same way as the object it acts on.13 Since the effective Lagrangian
will ultimately contain arbitrarily high powers of derivatives we also need the
field-strength tensors fLlm and fRlm corresponding to the external fields rl and ll;

fRlm � olrm � omrl � i½rl; rm�; ð3:66Þ

fLlm � ollm � omll � i½ll; lm�: ð3:67Þ

The field-strength tensors are traceless,

TrðfLlmÞ ¼ TrðfRlmÞ ¼ 0; ð3:68Þ

because TrðllÞ ¼ TrðrlÞ ¼ 0 and the trace of any commutator vanishes. Finally,
following the convention of Gasser and Leutwyler [53] we introduce the linear
combination v � 2B0ðsþ ipÞ with the scalar and pseudoscalar external fields of
Eq. 1.151, where B0 is defined in Eq. 3.57. Table 3.3 contains the transformation
properties of all building blocks under the group ðGÞ and the discrete symmetries
C and P.

In the counting scheme of chiral perturbation theory the elements count as14

U ¼ Oðq0Þ; DlU ¼ OðqÞ; rl; ll ¼ OðqÞ; fL=Rlm ¼ Oðq2Þ; v ¼ Oðq2Þ: ð3:69Þ

The external fields rl and ll count as OðqÞ to match olA; and v is of Oðq2Þ because
of Eqs. 3.59–3.61. Any additional covariant derivative counts as OðqÞ:

The construction of the effective Lagrangian in terms of the building blocks of
Eq. 3.69 proceeds as follows.15 Given objects A;B; . . .; all of which transform as

A0 ¼ VRAVyL; B0 ¼ VRBVyL; . . .; one can form invariants by taking the trace of
products of the type ABy:

13 Under certain circumstances it is advantageous to introduce for each object with a well-
defined transformation behavior a separate covariant derivative. One may then use a product rule
similar to the one of ordinary differentiation.
14 Throughout this monograph we will reserve the notation OðqnÞ for power counting in chiral
perturbation theory, whereas OðxnÞ denotes terms of order xn in the usual mathematical sense.
15 There is a certain freedom in the choice of the elementary building blocks. For example, by a

suitable multiplication with U or Uy any building block can be made to transform as VR. . .VyR
without changing its chiral order. The present approach most naturally leads to the Lagrangian
of Gasser and Leutwyler [53].
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TrðAByÞ 7!Tr½VRAVyLðVRBVyLÞ
y� ¼ TrðVRA VyLVL|ffl{zffl}

¼ 1

ByVyRÞ ¼ TrðABy VyRVR|ffl{zffl}
¼ 1

Þ

¼ TrðAByÞ:

The generalization to more terms is obvious and, of course, the product of
invariant traces is invariant:

TrðAByCDyÞ; TrðAByÞTrðCDyÞ; . . .: ð3:70Þ

The complete list of relevant elements up to and including Oðq2Þ transforming as

VR. . .VyL reads

U;DlU;DlDmU; v;UfLlm; fRlmU: ð3:71Þ

For the invariants up to Oðq2Þ we then obtain

Oðq0Þ : TrðUUyÞ ¼ 3;

OðqÞ : TrðDlUUyÞ ¼	 �Tr½UðDlUÞy� ¼	 0;

Oðq2Þ : TrðDlDmUUyÞ¼		 �Tr½DmUðDlUÞy� ¼		 Tr½UðDmDlUÞy�;
TrðvUyÞ;
TrðUvyÞ;
TrðUfLlmU

yÞ ¼ TrðfLlmÞ ¼ 0;

TrðfRlmÞ ¼ 0:

ð3:72Þ

In 	 we made use of two important properties of the covariant derivative DlU:

DlUUy ¼ �UðDlUÞy; ð3:73Þ

TrðDlUUyÞ ¼ 0: ð3:74Þ

The first relation results from the unitarity of U in combination with the definition
of the covariant derivative, Eq. 3.65:

DlUUy ¼ olUUy|fflfflffl{zfflfflffl}
¼ �UolUy

�irl UUy|ffl{zffl}
¼ 1

þiUllUy;

�UðDlUÞy ¼ �UolUy � UUy|ffl{zffl}
¼ 1

irl � Uð�illUyÞ:

Equation 3.74 is shown using TrðrlÞ ¼ TrðllÞ ¼ 0 together with Eq. 3.43,
TrðolUUyÞ ¼ 0:

TrðDlUUyÞ ¼ TrðolUUy � irlUUy þ iUllUyÞ ¼ 0:
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Exercise 3.10 Verify 		;

TrðDlDmUUyÞ ¼ �Tr½DmUðDlUÞy� ¼ Tr½UðDmDlUÞy�;

by explicit calculation.

Finally, we impose Lorentz invariance, i.e., Lorentz indices have to be con-
tracted, resulting in three candidate terms:

Tr½DlUðDlUÞy�; ð3:75Þ

TrðvUy 
 UvyÞ: ð3:76Þ

The term in Eq. 3.76 with the minus sign is excluded because it has the wrong sign
under parity (see Table 3.3), and we end up with the most general, locally
invariant, effective Lagrangian at lowest chiral order [53],16

L2 ¼
F2

0

4
Tr½DlUðDlUÞy� þ F2

0

4
TrðvUy þ UvyÞ: ð3:77Þ

At Oðq2Þ it contains two low-energy constants: the SU(3) chiral limit of the
Goldstone-boson decay constant F0; and B0 ¼ �h0j�qqj0i0=ð3F2

0Þ (hidden in the
definition of v).

Exercise 3.11 Under charge conjugation fields describing particles are mapped
onto fields describing antiparticles, i.e., p0 7! p0; g 7! g; pþ $ p�; Kþ $ K�;
K0 $ �K0:

(a) What does that mean for the matrix

/ ¼
p0 þ 1ffiffi

3
p g

ffiffiffi
2
p

pþ
ffiffiffi
2
p

Kþ
ffiffiffi
2
p

p� �p0 þ 1ffiffi
3
p g

ffiffiffi
2
p

K0

ffiffiffi
2
p

K�
ffiffiffi
2
p

�K0 � 2ffiffi
3
p g

0

BB@

1

CCA?

(b) Using ATBT ¼ ðBAÞT ; show by induction ðATÞn ¼ ðAnÞT : In combination with

(a) show that U ¼ expði/=F0Þ 7!
C

UT :
(c) Under charge conjugation the external fields transform as

vl 7! � vT
l ; al 7! aT

l ; s 7! sT ; p 7! pT :

Derive the transformation behavior of rl ¼ vl þ al; ll ¼ vl � al; v ¼
2B0ðsþ ipÞ; and vy:

(d) Using (b) and (c), show that the covariant derivative of U under charge
conjugation transforms as

16 At Oðq2Þ invariance under C does not provide any additional constraints.
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DlU 7! ðDlUÞT :

(e) Show that

L2 ¼
F2

0

4
Tr½DlUðDlUÞy� þ F2

0

4
TrðvUy þ UvyÞ

is invariant under charge conjugation. Note that ðATÞy ¼ ðAyÞT and TrðATÞ ¼
TrðAÞ:

(f) As an example, show the invariance of the L3 term of L4 (see Sect. 3.5.1)
under charge conjugation:

L3Tr DlUðDlUÞyDmUðDmUÞy
h i

:

Hint: At the end you will need ðDlUÞy ¼ �UyDlUUy and UyDlUUy ¼
�ðDlUÞy:

The lowest-order equation of motion corresponding to Eq. 3.77 is obtained by
considering small variations of the SU(3) matrix,

U0ðxÞ ¼ UðxÞ þ dUðxÞ ¼ 1þ i
X8

a¼1

DaðxÞka

 !
UðxÞ; ð3:78Þ

where the DaðxÞ are real functions. The matrix U0 satisfies both conditions
U0U0y ¼ 1 and detðU0Þ ¼ 1 up to and including terms linear in Da: Applying the
principle of stationary action, the variation of the action reads

dS ¼ i
F2

0

4

Zt2

t1

dt

Z
d3x
X8

a¼1

DaðxÞTr ka½DlDlUUy � UðDlDlUÞy � vUy þ Uvy�
n o

;

where we made use of integration by parts, the standard boundary conditions
Daðt1; x~Þ ¼ Daðt2; x~Þ ¼ 0; the divergence theorem, and the definition of the
covariant derivative of Eq. 3.65. Since the test functions DaðxÞ may be chosen
arbitrarily, we obtain eight Euler-Lagrange equations

Tr ka½D2UUy � UðD2UÞy � vUy þ Uvy�
n o

¼ 0; a ¼ 1; . . .; 8; ð3:79Þ

which may be combined into a compact matrix form

O
ð2Þ
EOMðUÞ � D2UUy � UðD2UÞy � vUy þ Uvy þ 1

3
TrðvUy � UvyÞ ¼ 0: ð3:80Þ

The trace term in Eq. 3.80 appears, because Eq. 3.79 contains eight and not nine
independent equations.
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3.4.4 Application at Lowest Order: Pion Decay

The Lagrangian L2 of Eq. 3.77 has predictive power once the low-energy con-
stant F0 is identified. This LEC may be obtained from the weak decay of the pion,
pþ ! lþml:

At the level of the Standard Model degrees of freedom, pion decay is described
by the annihilation of a u quark and a �d antiquark, forming the pþ; into a Wþ

boson, propagation of the intermediate Wþ; and creation of the lepton ml and the
antilepton lþ in the final state (see Fig. 3.5). The coupling of the W bosons to the
leptons is given by

L ¼ � g

2
ffiffiffi
2
p Wþ

q �mlc
qð1� c5ÞlþW�

q �lcqð1� c5Þml

h i
; ð3:81Þ

whereas their interaction with the quarks forming the Goldstone bosons is effec-
tively taken into account by inserting Eq. 1.166 into the Lagrangian of Eq. 3.77.
Let us consider the first term of Eq. 3.77 and set rl ¼ 0 with, at this point, still
arbitrary ll:

Exercise 3.12 Using DlU ¼ olU þ iUll; derive

F2
0

4
Tr½DlUðDlUÞy� ¼ i

F2
0

2
TrðllolUyUÞ þ � � � ;

where only the term linear in ll is shown.
If we parameterize

ll ¼
X8

a¼1

lla
ka

2
;

the interaction term linear in ll reads

Lint ¼
X8

a¼1

lla i
F2

0

4
Trðkao

lUyUÞ

 �

¼
X8

a¼1

llaJl
La; ð3:82Þ

where we made use of Eq. 3.48 defining Jl
La: Again, by using Eq. 3.41, we expand

Jl
La to first order in /;

Jl
La ¼

F0

2
ol/a þ O /2� �

; ð3:83Þ

from which we obtain the matrix element

Fig. 3.5 Pion decay
pþ ! lþml
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h0jJl
Lað0Þj/bðpÞi ¼

F0

2
h0jol/að0Þj/bðpÞi ¼ �ipl F0

2
dab: ð3:84Þ

Inserting ll of Eq. 1.166, we find for the interaction term of a single Goldstone
boson with a W

LW/ ¼
F0

2
Trðllol/Þ ¼ � gffiffiffi

2
p F0

2
Tr½ðWþ

l Tþ þW�
l T�Þol/�:

Thus, we need to calculate17

TrðTþol/Þ ¼ Tr

0 Vud Vus

0 0 0

0 0 0

0

@

1

Aol

p0 þ 1ffiffi
3
p g

ffiffiffi
2
p

pþ
ffiffiffi
2
p

Kþ
ffiffiffi
2
p

p� �p0 þ 1ffiffi
3
p g

ffiffiffi
2
p

K0

ffiffiffi
2
p

K�
ffiffiffi
2
p

�K0 � 2ffiffi
3
p g

0
BB@

1
CCA

2
664

3
775

¼ Vud

ffiffiffi
2
p

olp� þ Vus

ffiffiffi
2
p

olK�;

TrðT�ol/Þ ¼ Tr

0 0 0

Vud 0 0

Vus 0 0

0

@

1

Aol

p0 þ 1ffiffi
3
p g

ffiffiffi
2
p

pþ
ffiffiffi
2
p

Kþ
ffiffiffi
2
p

p� �p0 þ 1ffiffi
3
p g

ffiffiffi
2
p

K0

ffiffiffi
2
p

K�
ffiffiffi
2
p

�K0 � 2ffiffi
3
p g

0
BB@

1
CCA

2
664

3
775

¼ Vud

ffiffiffi
2
p

olpþ þ Vus

ffiffiffi
2
p

olKþ:

We then obtain for the interaction term

LW/ ¼ �g
F0

2
½Wþ

l ðVudo
lp� þ Vuso

lK�Þ þW�
l ðVudo

lpþ þ Vuso
lKþÞ�: ð3:85Þ

Expanding the Feynman propagator for W bosons in Landau gauge,

�glm þ klkm

M2
W

k2 �M2
W

¼ glm

M2
W

þ O
kqkr

M4
W

� �
; ð3:86Þ

and neglecting terms which are of higher order in ðmomentum=MWÞ2; the
Feynman rule for the invariant amplitude for weak pion decay has the form
‘‘leptonic vertex�W propagator� hadronic vertex;’’

M ¼ i � g

2
ffiffiffi
2
p �umlc

qð1� c5Þvlþ


 �
igqr

M2
W

i �g
F0

2
Vudð�iprÞ


 �

¼ �GFVudF0�uml 6pð1� c5Þvlþ ;

ð3:87Þ

where p denotes the four-momentum of the pion and GF is the Fermi constant of
Eq. 1.167. The corresponding decay rate is

C ¼ 1
s
¼ G2

FV2
ud

4p
F2

0Mpm2
l 1�

m2
l

M2
p

 !2

: ð3:88Þ

17 Recall that the entries Vud and Vus of the Cabibbo-Kobayashi-Maskawa matrix are real.
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The constant F0 is referred to as the pion-decay constant in the (three-flavor)
chiral limit.18 It measures the strength of the matrix element of the axial-vector-
current operator between a one-Goldstone-boson state and the vacuum (see
Eq. 3.29). Since the interaction of the W boson with the quarks is of V � A type
and the vector-current operator does not contribute to the matrix element
between a single pion and the vacuum, pion decay is completely determined by
the axial-vector current. The degeneracy of a single coupling constant F0 is
removed at next-to-leading order, Oðq4Þ [53], once SU(3) symmetry breaking is
taken into account. The empirical numbers for Fp and FK are 92:4 MeV and
113 MeV; respectively [75].

Exercise 3.13 The differential decay rate for pþðppÞ ! mlðpmÞ þ lþðplÞ in the
pion rest frame is given by

dC ¼ 1
2Mp
jMj2 d3pm

2Emð2pÞ3
d3pl

2Elð2pÞ3
ð2pÞ4d4ðpp � pm � plÞ:

Here, we assume the neutrino to be massless and make use of the normalization
uyu ¼ 2E ¼ vyv: The invariant amplitude is given by Eq. 3.87. Neutrinos in the
Standard Model are left-handed and their spinors therefore satisfy

1� c5

2
umlðpmÞ ¼ umlðpmÞ;

1þ c5

2
umlðpmÞ ¼ 0:

(a) Make use of the Dirac equation

�umlðpmÞ 6pm ¼ 0;

6plvlþðpl; slÞ ¼ �mlvlþðpl; slÞ;

and show

�umlðpmÞðpm þ plÞqcqð1� c5Þvlþðpl; slÞ ¼ �ml�umlðpmÞð1þ c5Þvlþðpl; slÞ:

Hint: fcq; c5g ¼ 0:

18 Of course, in the chiral limit, the pion is massless and, in such a world, the massive leptons
would decay into Goldstone bosons, e.g., e� ! p�me: However, at Oðq2Þ; the symmetry-
breaking term of Eq. 3.55 gives rise to Goldstone-boson masses, whereas the decay constant is
not modified at Oðq2Þ:
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(b) Verify, using trace techniques,

�umlðpmÞðpm þ plÞqcqð1� c5Þvlþðpl; slÞ
h i

�
h
�umlðpmÞðpm þ plÞrcrð1� c5Þvlþðpl; slÞ

i	

¼ m2
l�umlðpmÞð1þ c5Þvlþðpl; slÞ�vlþðpl; slÞð1� c5ÞumlðpmÞ

¼ m2
lTr½umlðpmÞ�umlðpmÞð1þ c5Þvlþðpl; slÞ�vlþðpl; slÞð1� c5Þ�

¼ . . .

¼ 4m2
lM2

p
1
2

1�
m2

l

M2
p

 !
� mlpm � sl

M2
p

" #
:

Hints:

ð1� c5ÞumlðpmÞ�umlðpmÞð1þ c5Þ ¼ ð1� c5Þ 6pmð1þ c5Þ;

vlþðpl; slÞ�vlþðpl; slÞ ¼ ð6pl � mlÞ
1þ c5 6sl

2
;

Tr(odd # of gamma matrices) ¼ 0;

c5 ¼ product of 4 gamma matrices;

c2
5 ¼ 1;

Trð6a 6bÞ ¼ 4a � b;

Trðc5 6a 6bÞ ¼ 0:

(c) Sum over the spin projections of the muon and integrate with respect to the
(unobserved) neutrino

dC ¼ 1
8p2

G2
FV2

udF2
0m2

lMp 1�
m2

l

M2
p

 !Z
d3pl

ElEm
dðMp � El � EmÞ:

Make use of

d3pl ¼ p2
ldpldXl

and note that the argument of the delta function implicitly depends on pl ¼
jp~lj: Moreover,

Em þ El ¼ Mp;

Em ¼ jp~mj ¼ jp~lj:
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The final result reads

C ¼ 1
s
¼ G2

FV2
udF2

04m2
lM2

p 1�
m2

l

M2
p

 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ jMj2

1
16pMp

1�
m2

l

M2
p

 !

¼ 1
4p

G2
FV2

udF2
0m2

lMp 1�
m2

l

M2
p

 !2

: ð3:89Þ

3.4.5 Application at Lowest Order: Pion-Pion Scattering

Now that the LEC F0 has been identified with the pion-decay constant in the chiral
limit, we will show how the lowest-order Lagrangian predicts the prototype of a
Goldstone-boson reaction, namely, pp scattering.

Exercise 3.14 Consider the Lagrangian L2 in the SUð2ÞL � SUð2ÞR sector with
rl ¼ ll ¼ 0;

L2 ¼
F2

4
Tr olUolUy
� �

þ F2

4
Tr vUy þ Uvy
� �

;

where

v ¼ 2BM ¼ 2B
m̂ 0

0 m̂

� �
;

U ¼ exp i
/
F

� �
; / ¼

X3

i¼1

/isi �
p0

ffiffiffi
2
p

pþffiffiffi
2
p

p� �p0

 !
:

In the SUð2ÞL � SUð2ÞR sector it is common to express quantities in the chiral
limit without subscript 0, e.g., F and B: By this one means the SUð2ÞL � SUð2ÞR
chiral limit, i.e., mu ¼ md ¼ 0 but ms at its physical value. In the SUð3ÞL � SUð3ÞR
sector the quantities F0 and B0 denote the chiral limit for all three light quarks:
mu ¼ md ¼ ms ¼ 0:

(a) Using the substitution U $ Uy; show that L2 contains only even powers of /;

L2 ¼L2/
2 þL4/

2 þ � � � :

(b) Since L2 does not produce a three-Goldstone-boson vertex, the scattering of
two Goldstone bosons is described by a four-Goldstone-boson contact inter-
action. Verify

L4/
2 ¼

1
48F2

Tr ½/; ol/�½/; ol/�
� �

þ 2BTr M/4� �� 	
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by using the expansion

U ¼ 1þ i
/
F
� 1

2
/2

F2
� i

6
/3

F3
þ 1

24
/4

F4
þ � � � :

Remark Substituting F ! F0; B! B0; and the relevant expressions for / and
the quark-mass matrix M; the corresponding formula for SUð3ÞL � SUð3ÞR
looks identical.

(c) Inserting / ¼ /isi and working out the traces, show that the interaction
Lagrangian can be written as

L4/
2 ¼

1
6F2
ð/io

l/iol/j/j � /i/iol/jo
l/jÞ þ

M2

24F2
/i/i/j/j;

where M2 ¼ 2Bm̂:

(d) From L4/
2 ; derive the Feynman rule for incoming pions with Cartesian isospin

indices a and b; and outgoing pions with isospin indices c; d (see Fig. 3.6):

M ¼ i dabdcd
s�M2

F2
þ dacdbd

t �M2

F2
þ daddbc

u�M2

F2


 �

� i

3F2
dabdcd þ dacdbd þ daddbcð Þ Ka þ Kb þ Kc þ Kdð Þ; ð3:90Þ

where Kk ¼ p2
k �M2 and s; t; and u are the usual Mandelstam variables,

s ¼ ðpa þ pbÞ2; t ¼ ðpa � pcÞ2; u ¼ ðpa � pdÞ2:

(e) Using four-momentum conservation, show that the Mandelstam variables
satisfy the relation

sþ t þ u ¼ p2
a þ p2

b þ p2
c þ p2

d :

The T-matrix element ðM ¼ iTÞ of the scattering process paðpaÞ þ pbðpbÞ !
pcðpcÞ þ pdðpdÞ can be parameterized as

Fig. 3.6 Lowest-order
Feynman diagram for pp
scattering. The vertex is
derived from L2; denoted by
2 in the interaction blob
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Tab;cdðpa; pb; pc; pdÞ ¼ dabdcdAðs; t; uÞ þ dacdbdAðt; s; uÞ þ daddbcAðu; t; sÞ; ð3:91Þ

where the function A satisfies Aðs; t; uÞ ¼ Aðs; u; tÞ [97]. Since the last line of the
Feynman rule of Eq. 3.90 vanishes for external lines satisfying on-mass-shell
conditions, at Oðq2Þ the prediction for the function A is given by

Aðs; t; uÞ ¼ s�M2
p

F2
p

: ð3:92Þ

In Eq. 3.92 we substituted Fp for F and Mp for M; because the difference is of
Oðq4Þ in T : Equation 3.92 illustrates an important general property of Goldstone-
boson interactions. If we consider the (theoretical) limit M2

p; s; t; u! 0; the T
matrix vanishes, T ! 0: In other words, the strength of Goldstone-boson inter-
actions vanishes in the zero-energy and zero-mass limit.

Usually, pp scattering is discussed in terms of its isospin decomposition. Since
the pions form an isospin triplet, the two isovectors of both the initial and final
states may be coupled to I ¼ 0; 1; 2: For mu ¼ md ¼ m̂ the strong interactions are
invariant under isospin transformations, implying that scattering-matrix elements
can be decomposed as

hI0; I03jTjI; I3i ¼ TIdII0dI3I3
0 : ð3:93Þ

For the case of pp scattering the three isospin amplitudes are given in terms of the
invariant amplitude A of Eq. 3.91 by [52]

TI¼0 ¼ 3Aðs; t; uÞ þ Aðt; u; sÞ þ Aðu; s; tÞ;
TI¼1 ¼ Aðt; u; sÞ � Aðu; s; tÞ;
TI¼2 ¼ Aðt; u; sÞ þ Aðu; s; tÞ:

ð3:94Þ

For example, the physical pþpþ scattering process is described by TI¼2: Other
physical processes are obtained using the appropriate Clebsch-Gordan coefficients.

Evaluating the T matrices at threshold, one obtains the s-wave pp-scattering
lengths

TI¼0jthr ¼ 32pa0
0; TI¼2jthr ¼ 32pa2

0; ð3:95Þ

where the subscript 0 refers to s-wave scattering and the superscript to the isospin.
(TI¼1jthr vanishes because of Bose symmetry.) The convention in ChPT differs
from the usual definition of a scattering length in the effective-range expansion by
a factor ð�MpÞ [83]. The current-algebra prediction of Ref. [97] is identical with
the lowest-order result obtained from Eq. 3.92,

a0
0 ¼

7M2
p

32pF2
p

¼ 0:159; a2
0 ¼ �

M2
p

16pF2
p

¼ �0:0454; ð3:96Þ
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where we made use of the numerical values Fp ¼ 92:4 MeV and Mp ¼ Mpþ ¼
139:57 MeV:

Exercise 3.15 Verify Eq. 3.96.
Hint: Make use of sthr ¼ 4M2

p and sþ t þ u ¼ 4M2
p:

Equations 3.96 represent an absolute prediction of chiral symmetry. Once Fp is
known (from pion decay), the scattering lengths are predicted. We will come back
to pp scattering in Sect. 3.5.4 when we also discuss corrections of higher order
[20, 21, 52].

Exercise 3.16 Sometimes it is more convenient to use a different parameterization
of U which is very popular in two-flavor calculations:19

UðxÞ ¼ 1
F

rðxÞ1þ ip~ðxÞ � s~½ �; rðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 � p~2ðxÞ

p
:

The fields of the two parameterizations are nonlinearly related by a field
transformation,

p~
F
¼ /̂ sin

j/~j
F

 !
¼ /~

F
1� 1

6
/~ 2

F2
þ � � �

 !
: ð3:97Þ

Repeat the above steps with the new parameterization. Because of the equivalence
theorem of field theory [34, 42, 65], the results for observables (such as, e.g.,
S-matrix elements) do not depend on the parameterization. On the other hand,
intermediate building blocks such as Feynman rules with off-mass-shell momenta
depend on the parameterization chosen.

Exercise 3.17 The three-flavor calculation proceeds analogously to Exercise 3.14.
Using the properties of the Gell-Mann matrices and the results of Exercise 1.4,
show that in the isospin-symmetric case

L
4/
2 ¼ �

1

6F2
0

/aol/b/co
l/dfabefcde þ

ð2m̂þ msÞB0

36F2
0

/a/a/b/b

þ ðm̂� msÞB0

12
ffiffiffi
3
p

F2
0

2
3
/8/a/b/cdabc þ /a/a/b/cdbc8

� �
:

Hint:

dabe fecd þ dbce fead þ dcae febd ¼ 0;

dabedcde ¼
1
3
ðdacdbd þ daddbc � dabdcd þ face fbde þ fade fbceÞ:

19 We will refer to this parameterization as the square-root parameterization because of the
square root multiplying the unit matrix.
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3.4.6 Application at Lowest Order: Compton Scattering

Exercise 3.18 We will investigate the reaction cðqÞ þ pþðpÞ ! cðq0Þ þ pþðp0Þ at
lowest order in the momentum expansion ½Oðq2Þ�:

(a) Consider the first term of L2 of Eq. 3.77 and substitute

rl ¼ ll ¼ �eAlQ; Q ¼

2
3 0 0

0 � 1
3 0

0 0 � 1
3

0

B@

1

CA; e [ 0;
e2

4p
� 1

137
;

where Al is a Hermitian (external) electromagnetic four-vector potential (see
Eq. 1.164). Show that

DlU ¼ olU þ ieAl½Q;U�;

ðDlUÞy ¼ olUy þ ieAl½Q;Uy�:

Using the substitution U $ Uy; show that the resulting Lagrangian consists of
terms involving only even numbers of Goldstone-boson fields.

(b) Insert the result of (a) into L2 and verify

F2
0

4
Tr½DlUðDlUÞy� ¼ F2

0

4
Tr½olUolUy� � ieAl

F2
0

2
TrðQ½olU;Uy�Þ

� e2AlA
lF2

0

4
Trð½Q;U�½Q;Uy�Þ:

Hint: UolUy ¼ �olUUy and olUyU ¼ �UyolU:
The second term describes interactions with a single photon and the third term
with two photons.

(c) Using U ¼ expði/=F0Þ ¼ 1þ i/=F0 � /2=ð2F2
0Þ þ � � � ; identify those inter-

action terms which contain exactly two Goldstone bosons:

LA�2/
2 ¼ �eAl

i

2
TrðQ½ol/;/�Þ;

L2A�2/
2 ¼ � 1

4
e2AlA

lTrð½Q;/�½Q;/�Þ:

(d) Insert / expressed in terms of physical fields (see Eq. 3.37). Verify the
intermediate steps
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ð½ol/;/�Þ11 ¼ 2ðolpþp� � pþolp� þ olKþK� � KþolK�Þ;
ð½ol/;/�Þ22 ¼ 2ðolp�pþ � p�olpþ þ olK0 �K0 � K0ol �K0Þ;
ð½ol/;/�Þ33 ¼ 2ðolK�Kþ � K�olKþ þ ol �K0K0 � �K0olK0Þ;

½Q;/� ¼
ffiffiffi
2
p 0 pþ Kþ

�p� 0 0

�K� 0 0

0
@

1
A;

½Q;/�½Q;/� ¼ �2

pþp� þ KþK� 0 0

0 p�pþ p�Kþ

0 K�pþ K�Kþ

0
@

1
A:

Now show

LA�2/
2 ¼ �Alieðolpþp� � pþolp� þ olKþK� � KþolK�Þ;

L
2A�2/
2 ¼ e2AlA

lðpþp� þ KþK�Þ:

(e) The corresponding Feynman rules read

L
A�2/
2 ) vertex for cðq; eÞ þ p
ðpÞ ! p
ðp0Þ : �iee � ðpþ p0Þ;

L
2A�2/
2 ) vertex for cðq; eÞ þ p
ðpÞ ! cðq0; e0Þ þ p
ðp0Þ : 2ie2e0	 � e;

and analogously for charged kaons. An internal line of momentum p is
described by the propagator i=ðp2 �M2 þ i0þÞ: Determine the Compton
scattering amplitude for cðq; eÞ þ pþðpÞ ! cðq0; e0Þ þ pþðp0Þ :

What is the scattering amplitude for cðq; eÞ þ p�ðpÞ ! cðq0; e0Þ þ p�ðp0Þ?
(f) Verify gauge invariance in terms of the substitution e! q:
(g) Verify the invariance of the matrix element under the substitution ðq; eÞ $
ð�q0; e0	Þ (photon crossing).

A discussion of the scattering amplitude beyond leading order may be found in
Refs. [16, 93].

3.4.7 Dimensional Regularization

In the 1960s, when phenomenological Lagrangians were developed as an alter-
native to current-algebra techniques, it was the common understanding that such
Lagrangians should only be used at tree level [33, 42, 88, 98, 99]. For example, in
Ref. [88] Schwinger made the point that ‘‘it is not meaningful to question the use

p p + q p ′

q,ε q ′, ε ′

2 2
p p−q ′ p ′

q,ε q ′, ε ′

2 2
p p ′

q,ε q ′, ε ′

2
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of the coupling terms ‘‘in lowest order’’. That is the nature of a numerical effective
Lagrange function, which gives a direct description of the phenomena.’’ However,
with the pioneering work of Weinberg [100] it became clear that one can even
calculate quantum corrections to phenomenological Lagrangians. To quote from
Ref. [101]: ‘‘. . . the cancellation of ultraviolet divergences does not really depend
on renormalizability; as long as we include every one of the infinite number of
interactions allowed by symmetries, the so-called non-renormalizable theories are
actually just as renormalizable as renormalizable theories.’’ If we use the
Lagrangian of Eq. 3.77 beyond tree level, we will encounter ultraviolet diver-
gences from loop integrals. For the regularization of the loop diagrams we will
make use of dimensional regularization [69, 91, 92, 95], because it preserves
algebraic relations among the Green functions (Ward identities). As discussed in
Sect. 3.5.1, the infinities will be absorbed in a renormalization of the coupling
constants of the most general Lagrangian.

For the sake of completeness we provide a simple illustration of the method of
dimensional regularization. Let us consider the integral

I ¼
Z

d4k

ð2pÞ4
i

k2 �M2 þ i0þ
; ð3:98Þ

which appears in the generic diagram of Fig. 3.7. We introduce

a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k~

2 þM2

q
[ 0

so that

k2 �M2 þ i0þ ¼ k2
0 � k~

2 �M2 þ i0þ ¼ k2
0 � a2 þ i0þ ¼ k2

0 � ða� i0þÞ2

¼ ½k0 þ ða� i0þÞ�½k0 � ða� i0þÞ�;

and define

f ðk0Þ ¼
1

½k0 þ ða� i0þÞ�½k0 � ða� i0þÞ� :

In order to determine
R1
�1 dk0 f ðk0Þ as part of the calculation of I; we consider f in

the complex k0 plane and make use of Cauchy’s theoremI

C

dz f ðzÞ ¼ 0 ð3:99Þ

for functions which are differentiable in every point inside the closed contour C:
We choose the path as shown in Fig. 3.8,

0 ¼
X4

i¼1

Z

ci

dz f ðzÞ;

and make use of
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Z

c

dz f ðzÞ ¼
Zb

a

dt f ½cðtÞ�c0ðtÞ

to obtain for the individual integrals:

1. c1ðtÞ ¼ t; c01ðtÞ ¼ 1; a ¼ �1; b ¼ 1:

Z

c1

dz f ðzÞ ¼
Z1

�1

dt f ðtÞ;

2. c2ðtÞ ¼ Reit; c02ðtÞ ¼ iReit; a ¼ 0; b ¼ p
2:

Z

c2

dz f ðzÞ ¼ lim
R!1

Zp
2

0

dt f ðReitÞiReit ¼ 0; because lim
R!1

R f ðReitÞ|fflfflfflfflffl{zfflfflfflfflffl}

� 1
R

¼ 0;

3. c3ðtÞ ¼ it; c03ðtÞ ¼ i; a ¼ 1; b ¼ �1:

Z

c3

dz f ðzÞ ¼ i

Z�1

1

dt f ðitÞ;

4. c4ðtÞ ¼ Reit; c04ðtÞ ¼ iReit; a ¼ 3
2 p; b ¼ p:

Z

c4

dz f ðzÞ ¼ 0 analogous to c2:

The quarter circles at infinity do not contribute, because the function f ðzÞ
vanishes sufficiently fast as jz j ! 1: In combination with Eq. 3.99 we obtain the
so-called Wick rotation

Z1

�1

dt f ðtÞ ¼ �i

Z�1

1

dt f ðitÞ ¼ i

Z1

�1

dt f ðitÞ: ð3:100Þ

As an intermediate result the integral of Eq. 3.98 reads

I ¼ 1

ð2pÞ4
i

Z1

�1

dk0

Z
d3k

i

ðik0Þ2 � k~
2 �M2 þ i0þ

¼
Z

d4l

ð2pÞ4
1

l2 þM2 � i0þ
;

kFig. 3.7 Generic one-loop
diagram: The black box
denotes some unspecified
vertex structure which is
irrelevant for the discussion
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where l2 ¼ l21 þ l2
2 þ l23 þ l24 denotes a Euclidian scalar product. In this special

case, the integrand does not have a pole and we can thus omit the �i0þ which gave
the positions of the poles in the original integral consistent with the boundary
conditions. Performing the angular integration in four dimensions (see Exercise
3.20) and introducing a cutoff K for the radial integration, the integral I diverges
quadratically for large values of l (ultraviolet divergence):

IðKÞ ¼ 1
8p2

ZK

0

dl
l3

l2 þM2
¼ K2

ð4pÞ2
þ M2

ð4pÞ2
ln

M2

K2 þM2

� �

¼ M2

ð4pÞ2
1
x2
þ ln x2

� �
� ln 1þ x2

� �
 �
; ð3:101Þ

where x2 ¼ M2=K2 ! 0 as K!1: The degree of divergence can be estimated by
simply counting powers of momenta. If the integral behaves asymptotically asR

d4l=l2;
R

d4l=l3;
R

d4l=l4; the integral is said to diverge quadratically, linearly,
and logarithmically, respectively.

Various methods have been devised to regularize divergent integrals. Unlike in
Eq. 3.101 where we used a cutoff K; we will make use of dimensional regulari-
zation. Note that the degree of divergence of the integral depends on the number of
dimensions. The method of dimensional regularization relies on the fact that the
ultraviolet degree of divergence decreases with a decreasing number of dimen-
sions. Here we will make use of dimensional regularization because it also pre-
serves algebraic relations among Green functions (Ward identities) if the
underlying symmetries do not depend on the number of space-time dimensions.

In dimensional regularization, we generalize the integral from four to n
dimensions and introduce polar coordinates

a-i0+

-(a-i0+)

Re(k   )0

Im(k   )0

γ1

γ 2

γ4

3γ

Fig. 3.8 Path of integration
in the complex k0 plane
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l1 ¼ l cosðh1Þ;
l2 ¼ l sinðh1Þ cosðh2Þ;
l3 ¼ l sinðh1Þ sinðh2Þ cosðh3Þ;

..

.

ln�1 ¼ l sinðh1Þ sinðh2Þ. . . cosðhn�1Þ;
ln ¼ l sinðh1Þ sinðh2Þ. . . sinðhn�1Þ;

ð3:102Þ

where 0� l; hi 2 ½0; p� ði ¼ 1; . . .; n� 2Þ; and hn�1 2 ½0; 2p�: A general integral is
then symbolically of the form

Z
dnl. . . ¼

Z1

0

dl ln�1
Z2p

0

dhn�1

Zp

0

dhn�2 sinðhn�2Þ. . .

Zp

0

dh1 sinn�2ðh1Þ. . .:

ð3:103Þ
If the integrand does not depend on the angles, the angular integration can be
carried out explicitly. To that end one makes use of

Zp

0

dh sinmðhÞ ¼
ffiffiffi
p
p

C mþ1
2

� �

C mþ2
2

� � ;

which can be shown by induction (see Exercise 3.21). We then obtain for the
angular integration

Z2p

0

dhn�1. . .

Zp

0

dh1 sinn�2ðh1Þ ¼ 2p

ffiffiffi
p
p

Cð1Þ
C 3

2

� �
ffiffiffi
p
p

C 3
2

� �

Cð2Þ . . .

ffiffiffi
p
p

C n�1
2

� �

C n
2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðn� 2Þ factors

¼ 2p
p

n�2
2

C n
2

� � ¼ 2
p

n
2

C n
2

� � :

ð3:104Þ

We define the integral for n dimensions (n integer) as

InðM2; l2Þ ¼ l4�n
Z

dnk

ð2pÞn
i

k2 �M2 þ i0þ
; ð3:105Þ

where the scale l (’t Hooft parameter, renormalization scale) has been introduced
so that the integral has the same dimension for arbitrary n: (The integral of
Eq. 3.105 is convergent only for n ¼ 1:) After the Wick rotation of Eq. 3.100 and
the angular integration of Eq. 3.104 the integral formally reads

InðM2; l2Þ ¼ l4�n2
p

n
2

C n
2

� � 1
ð2pÞn

Z1

0

dl
ln�1

l2 þM2
:
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For later use, we investigate the (more general) integral

Z1

0

dl
ln�1

ðl2 þM2Þa ¼
1
ðM2Þa

Z1

0

dl
ln�1

l2

M2 þ 1
� �a ¼

1
2
ðM2Þ

n
2�a
Z1

0

dt
t

n
2�1

ðt þ 1Þa ; ð3:106Þ

where we substituted t ¼ l2=M2: We then make use of the Beta function

Bðx; yÞ ¼
Z1

0

dt
tx�1

ð1þ tÞxþy ¼
CðxÞCðyÞ
Cðxþ yÞ ; ð3:107Þ

where the integral converges for x [ 0; y [ 0 and diverges if x� 0 or y� 0: For
nonpositive values of x or y we analytically continue in terms of the Gamma
function to define the Beta function and thus the integral of Eq. 3.106.20 Setting
x ¼ n=2; xþ y ¼ a; and y ¼ a� n=2 our (intermediate) integral reads

Z1

0

dl
ln�1

ðl2 þM2Þa ¼
1
2
ðM2Þ

n
2�a C n

2

� �
C a� n

2

� �

CðaÞ ; ð3:108Þ

which, for a ¼ 1; yields for our original integral

InðM2; l2Þ ¼ l4�n 2
p

n
2

C n
2

� �
|fflffl{zfflffl}

angular integration

1
ð2pÞn

1
2
ðM2Þ

n
2�1 C n

2

� �
C 1� n

2

� �

Cð1Þ|ffl{zffl}
¼ 1

¼ l4�n

ð4pÞ
n
2
ðM2Þ

n
2�1C 1� n

2

� �
:

ð3:109Þ

Since CðzÞ is an analytic function in the complex plane except for poles of first
order in 0;�1;�2; . . .; and az ¼ exp½lnðaÞz�; a 2 R

þ; is an analytic function in C;
the right-hand side of Eq. 3.109 can be thought of as a function of a complex
variable n which is analytic in C except for poles of first order for n ¼ 2; 4; 6; . . .:
Making use of

l4�n ¼ ðl2Þ2�
n
2; ðM2Þ

n
2�1 ¼ M2ðM2Þ

n
2�2; ð4pÞ

n
2 ¼ ð4pÞ2ð4pÞ

n
2�2;

we define (for complex n)

IðM2; l2; nÞ ¼ M2

ð4pÞ2
4pl2

M2

� �2�n
2

C 1� n

2

� �
:

For n! 4 the Gamma function has a pole and we want to investigate how this
pole is approached. The property Cðzþ 1Þ ¼ zCðzÞ allows one to rewrite

20 Recall that CðzÞ is single-valued and analytic over the entire complex plane, save for the
points z ¼ �n; n ¼ 0; 1; 2; . . .; where it possesses simple poles with residue ð�1Þn=n!:
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C 1� n

2

� �
¼

C 1� n
2þ 1

� �

1� n
2

¼
C 2� n

2þ 1
� �

1� n
2

� �
2� n

2

� � ¼
C 1þ e

2

� �

ð�1Þ 1� e
2

� �
e
2

;

where we defined e � 4� n:21 Making use of ax ¼ exp½lnðaÞx� ¼ 1þ lnðaÞxþ
Oðx2Þ; we expand the integral for small e;

IðM2; l2; nÞ ¼ M2

16p2
1þ e

2
ln

4pl2

M2

� �
þ Oðe2Þ


 �

� � 2
e

� �
1þ e

2
þ Oðe2Þ

h ih
Cð1Þ|ffl{zffl}
¼ 1

þ e
2
C0ð1Þ þ Oðe2Þ

i

¼ M2

16p2
� 2

e
� C0ð1Þ � 1� lnð4pÞ þ ln

M2

l2

� �
þ OðeÞ


 �
;

where �C0ð1Þ ¼ cE ¼ 0:5772. . . is Euler’s constant. We finally obtain

IðM2; l2; nÞ ¼ M2

16p2
Rþ ln

M2

l2

� �
 �
þ Oðn� 4Þ; ð3:110Þ

where

R ¼ 2
n� 4

� ½lnð4pÞ þ C0ð1Þ þ 1�: ð3:111Þ

The comparison between Eqs. 3.110 and 3.101 illustrates the following general
observations: in dimensional regularization power-law divergences are analyti-
cally continued to zero and logarithmic ultraviolet divergences of one-loop inte-
grals show up as single poles in e ¼ 4� n:

Using the same techniques, one can easily derive a very useful expression for
the more general integral (see Exercise 3.22)

Z
dnk

ð2pÞn
ðk2Þp

ðk2 �M2 þ i0þÞq ¼ ið�Þp�q 1

ð4pÞ
n
2
ðM2Þpþ

n
2�q C pþ n

2

� �
C q� p� n

2

� �

C n
2

� �
CðqÞ

:

ð3:112Þ

In the case of integrals containing more than one propagator, one can combine
these to obtain integrals of the type of Eq. 3.112 with M2 replaced by A� i0þ;
where A is a real number. In this context it is important to consistently deal with
the boundary condition �i0þ [95]. To that end, one expresses a complex number z
in its polar form z ¼ jzj expðiuÞ; where the argument u of z is uniquely determined
if, in addition, we demand �p�u\p: For example, let us consider a term of the
type lnðA� i0þÞ: For A [ 0 one simply has lnðA� i0þÞ ¼ lnðAÞ: For A\0 the
infinitesimal imaginary part indicates that �jAj is reached in the third quadrant

21 Note that the convention e ¼ 2� n
2 is also commonly used in the literature.
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from below the real axis so that we have to use u ¼ �p: We then make use of
lnðabÞ ¼ lnðaÞ þ lnðbÞ and obtain

lnðA� i0þÞ ¼ lnðjAjÞ þ lnðe�ipÞ ¼ lnðjAjÞ � ip; A\0:

Both cases can be summarized in a single expression

lnðA� i0þÞ ¼ lnðjAjÞ � ipHð�AÞ for A 2 R: ð3:113Þ

The preceding discussion is of importance for consistently determining imaginary
parts of loop integrals.

Let us conclude with the general observation that (ultraviolet) divergences of
one-loop integrals in dimensional regularization always show up as single poles in
e ¼ 4� n:

The following five exercises are related to dimensional regularization.

Exercise 3.19 We consider the integral

I ¼
Z

d4k

ð2pÞ4
i

k2 �M2 þ i0þ
:

Introduce a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k~

2 þM2

q
and define

f ðk0Þ ¼
1

½k0 þ ða� i0þÞ�½k0 � ða� i0þÞ� :

In order to determine
R1
�1 dk0 f ðk0Þ as part of the calculation of I; we consider f in

the complex k0 plane and choose the paths

c1ðtÞ ¼ t; t1 ¼ �1; t2 ¼ 1 and c2ðtÞ ¼ Reit; t1 ¼ 0; t2 ¼ p:

(a) Using the residue theorem, determine
I

C

dz f ðzÞ ¼
Z

c1

dz f ðzÞ þ lim
R!1

Z

c2

dz f ðzÞ ¼ 2piRes½f ðzÞ;�ða� i0þÞ�:

Verify

Z1

�1

dk0 f ðk0Þ ¼
�ipffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k~
2 þM2

q
� i0þ

:

(b) Using (a), show
Z

d4k

ð2pÞ4
i

k2 �M2 þ i0þ
¼ 1

2

Z
d3k

ð2pÞ3
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k~
2 þM2

q
� i0þ

:
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(c) Now consider the generalization from 4! n dimensions:
Z

dn�1k

ð2pÞn�1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k~

2 þM2

q ; k~
2 ¼ k2

1 þ k2
2 þ � � � þ k2

n�1:

We can omit the �i0þ; because the integrand no longer has a pole. Introduce
polar coordinates in n� 1 dimensions and perform the angular integration to
obtain

Z
dn�1k

ð2pÞn�1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k~

2 þM2

q ¼ 1
2n�2

p�
n�1

2
1

C n�1
2

� �
Z1

0

dr
rn�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þM2
p :

(d) Using the substitutions t ¼ r=M and y ¼ t2; show

Z1

0

dr
rn�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þM2
p ¼ 1

2
Mn�2 C n�1

2

� �
C 1� n

2

� �

C 1
2ð Þ|{z}

¼
ffiffiffi
p
p

:

Hint: Make use of the Beta function

Bðx; yÞ ¼
Z1

0

dt
tx�1

ð1þ tÞxþy ¼
CðxÞCðyÞ
Cðxþ yÞ :

(e) Now put the results together to obtain
Z

dnk

ð2pÞn
i

k2 �M2 þ i0þ
¼ 1

ð4pÞ
n
2
Mn�2C 1� n

2

� �
;

which agrees with the result of Eq. 3.109 once the factor l4�n is taken into
account.

Exercise 3.20 Consider polar coordinates in four dimensions:

l1 ¼ l cosðh1Þ;
l2 ¼ l sinðh1Þ cosðh2Þ;
l3 ¼ l sinðh1Þ sinðh2Þ cosðh3Þ;
l4 ¼ l sinðh1Þ sinðh2Þ sinðh3Þ;

where l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
1 þ l22 þ l23 þ l2

4

p
; h1 2 ½0; p�; h2 2 ½0; p�; and h3 2 ½0; 2p�: The tran-

sition from four-dimensional Cartesian coordinates to polar coordinates introduces
the determinant of the Jacobi or functional matrix

3.4 Effective Lagrangian and Power-Counting Scheme 113



J ¼

ol1
ol . . . ol1

oh3

..

. ..
.

ol4
ol . . . ol4

oh3

0
BBB@

1
CCCA:

Show that

detðJÞ ¼ l3 sin2ðh1Þ sinðh2Þ;

and thus

dl1dl2dl3dl4 ¼ l3dl sin2ðh1Þ sinðh2Þdh1dh2dh3;|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ dX

with
Z

dX ¼ 2p2:

Exercise 3.21 Show by induction

Zp

0

dh sinmðhÞ ¼
ffiffiffi
p
p

C mþ1
2

� �

C mþ2
2

� �

for m� 1:
Hints: Make use of integration by parts. Cð1Þ ¼ 1; Cð1=2Þ ¼

ffiffiffi
p
p

; xCðxÞ ¼
Cðxþ 1Þ:

Exercise 3.22 Show that in dimensional regularization

Z
dnk

ð2pÞn
ðk2Þp

ðk2 �M2 þ i0þÞq ¼ ið�Þp�q 1

ð4pÞ
n
2
ðM2Þpþ

n
2�q C pþ n

2

� �
C q� p� n

2

� �

C n
2

� �
CðqÞ

:

We first assume M2 [ 0; p ¼ 0; 1; . . .; q ¼ 1; 2; . . .; and p\q: The last condition
is used in the Wick rotation to guarantee that the quarter circles at infinity do not
contribute to the integral.

(a) Show that the transition to the Euclidian metric produces the factor ið�Þp�q:
(b) Perform the angular integration in n dimensions. Perform the remaining radial

integration using

Z1

0

dl
ln�1

ðl2 þM2Þa ¼
1
2
ðM2Þ

n
2�a C n

2

� �
C a� n

2

� �

CðaÞ :

What do you have to substitute for n� 1 and a; respectively?
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Now put the results together. The analytic continuation of the right-hand side is
used to also define expressions with (integer) q� p in dimensional regularization.

Exercise 3.23 Consider the complex function

f ðzÞ ¼ az ¼ expðlnðaÞzÞ � uðx; yÞ þ ivðx; yÞ; a 2 R; z ¼ xþ iy:

(a) Determine uðx; yÞ and vðx; yÞ: Note that u; v 2 C1ðR2Þ:
(b) Determine ou=ox; ou=oy; ov=ox; and ov=oy: Show that the Cauchy-Riemann

differential equations ou=ox ¼ ov=oy and ou=oy ¼ �ov=ox are satisfied. The
complex function f is thus holomorphic in C: We made use of this fact when
discussing IðM2; l2; nÞ as a function of the complex variable n in the context
of dimensional regularization.

3.4.8 The Generation of Counter Terms

Regularization, such as dimensional regularization discussed in the previous sec-
tion, is a method to systematically separate divergences that appear in loop dia-
grams from finite contributions. We now briefly discuss renormalization, i.e., how
to absorb the divergences in the parameters of the Lagrangian (see Ref. [43] for
details).22 For simplicity, we consider a toy-model Lagrangian for two massive
scalar degrees of freedom,

L ¼ 1
2

ol/Bol/B �M2
B/2

B

� �
þ 1

2
oluBoluB � m2

Bu2
B

� �
� kB

4
/2

Bu2
B; ð3:114Þ

where the subscripts B indicate bare quantities. By expressing the bare fields and
parameters in terms of renormalized quantities, one generates counter terms which
are responsible for the absorption of all divergences occurring in the calculation of
loop diagrams. We first introduce renormalized fields / and u;

/B ¼
ffiffiffiffiffiffi
Z/

p
/; uB ¼

ffiffiffiffiffiffi
Zu

p
u;

and then rewrite the field renormalization constants
ffiffiffiffiffiffi
Z/

p
and

ffiffiffiffiffiffi
Zu

p
as well as the

remaining bare quantities in terms of renormalized parameters:

22 More generally, renormalization is simply the process of expressing the parameters of the
Lagrangian in terms of physical observables, independent of the presence of divergences [51].
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Z/ ¼ 1þ dZ/ðM;m; k; mÞ;

Zu ¼ 1þ dZuðM;m; k; mÞ;

M2
B ¼ M2ðmÞ þ dM2ðM;m; k; mÞ;

m2
B ¼ m2ðmÞ þ dm2ðM;m; k; mÞ;

kB ¼ kðmÞ þ dkðM;m; k; mÞ:

The parameter m indicates the dependence on the choice of a renormalization
prescription. For example, we could require the masses M and m to be the physical
masses of / and u; respectively. The freedom of choosing the renormalization
condition will play a crucial role in baryonic ChPT. With these substitutions the
Lagrangian takes the form

L ¼Lbasic þLct; ð3:115Þ

with the so-called basic and counter-term Lagrangians, respectively,

Lbasic ¼
1
2

ol/ol/�M2/2� �
þ 1

2
oluolu� m2u2
� �

� k
4

/2u2; ð3:116Þ

Lct ¼
1
2
dZ/ol/ol/� 1

2
d M2
� �

/2 þ 1
2
dZuoluolu� 1

2
d m2
� �

u2

� dfkg
4

/2u2; ð3:117Þ

where we have introduced the abbreviations23

d M2
� �

¼ dZ/M2 þ Z/dM2;

d m2
� �

¼ dZum2 þ Zudm2;

dfkg ¼ dkZ/Zu þ k dZ/ þ dZu þ dZ/dZu
� �

:

Expanding the counter-term Lagrangian of Eq. 3.117 in powers of the renormal-
ized couplings generates an infinite series. By suitably adjusting the expansion
coefficients, the individual terms are responsible for the subtraction of divergences
appearing in loop diagrams. In the following, whenever we speak of renormalized
diagrams, we refer to diagrams which have been calculated with a basic
Lagrangian and to which the contributions of the counter-term Lagrangian have
been added.

23 Note that Ref. [43] uses a slightly different convention which corresponds to the replacement
ðdZ/M2 þ Z/dM2Þ ! dM2; analogously for dm2:
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3.4.9 Power-Counting Scheme

An essential prerequisite for the construction of effective field theories is a
‘‘theorem’’ of Weinberg stating that a perturbative description in terms of the most
general effective Lagrangian containing all possible terms compatible with
assumed symmetry principles yields the most general S-matrix consistent with the
fundamental principles of quantum field theory and the assumed symmetry prin-
ciples [100]. The corresponding effective Lagrangian contains an infinite number
of terms with an infinite number of free parameters. Turning Weinberg’s theorem
into a practical tool requires two steps: one needs some scheme to organize the
effective Lagrangian and a systematic method of assessing the importance of
diagrams generated by the interaction terms of this Lagrangian when calculating a
physical matrix element.

In the framework of mesonic chiral perturbation theory, the most general chiral
Lagrangian describing the dynamics of the Goldstone bosons is organized as a
string of terms with an increasing number of derivatives and quark-mass terms,

Leff ¼L2 þL4 þL6 þ � � � ; ð3:118Þ

where the subscripts refer to the order in the momentum and quark-mass expan-
sion. The subscript 2, for example, denotes either two derivatives or one quark-
mass term (see Eq. 3.77). In terms of Feynman rules, derivatives generate four-
momenta. A quark-mass term counts as two derivatives because of Eqs. 3.59–3.61
ðM2�mqÞ in combination with the on-shell condition p2 ¼ M2: We will generi-
cally count a small four-momentum—or the corresponding derivative—and a
Goldstone-boson mass as of OðqÞ: The chiral orders in Eq. 3.118 are all even
½Oðq2kÞ; k� 1�; because Lorentz indices of derivatives always have to be con-
tracted and quark-mass terms count as Oðq2Þ:

Besides the knowledge of the most general Lagrangian, we need a method to
assess the importance of different renormalized diagrams contributing to a given
process. For that purpose we analyze a given diagram under a simultaneous re-
scaling of all external momenta, pi 7! tpi; and the light-quark masses, mq 7! t2mq

(corresponding to M2 7! t2M2). As we will show below, this results in an overall
rescaling of the amplitude M of a given diagram,

Mðtpi; t
2mqÞ ¼ tDMðpi;mqÞ: ð3:119Þ

Equation 3.119 defines the chiral dimension D of the diagram. The chiral
dimension is given by

D ¼ nNL � 2NI þ
X1

k¼1

2kN2k ð3:120Þ
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D ¼ 2þ ðn� 2ÞNL þ
X1

k¼1

2ðk � 1ÞN2k ð3:121Þ

� 2 in four dimensions,

where n is the number of space-time dimensions, NL the number of independent
loops, NI the number of internal Goldstone-boson lines, and N2k the number of
vertices from L2k:

24 Going to smaller momenta and masses corresponds to a
rescaling with 0\t\1: Clearly, for small enough momenta and masses con-
tributions with increasing D become less important and diagrams with small D;
such as D ¼ 2 or D ¼ 4; should dominate. Of course, the rescaling of Eq. 3.119
must be viewed as a mathematical tool. While external three-momenta can, to a
certain extent, be made arbitrarily small, the rescaling of the quark masses is a
theoretical instrument only. Note that loop diagrams are always suppressed due to
the term ðn� 2ÞNL in Eq. 3.121. It may happen, though, that the leading-order tree
diagrams vanish and therefore the lowest-order contribution to a certain process is
a one-loop diagram. An example is the reaction cc! p0p0 [16].

Equation 3.121 establishes a relation between the momentum and loop
expansions, because at each chiral order the maximum number of loops is bounded
from above. In other words, we have a perturbative scheme in terms of external
momenta and masses which are small compared to some scale K: With the aid of
Eq. 3.110, we can estimate the so-called chiral-symmetry-breaking scale Kv to be
Kv ¼ 4pF0 ¼ Oð1 GeVÞ [73]. In a loop correction every endpoint of an internal
Goldstone-boson line is multiplied by a factor 1=F0; since the SUðNÞ matrix of
Eq. 3.41 contains the Goldstone-boson fields in the combination /=F0: On the
other hand, external momenta q or Goldstone-boson masses produce factors of q2

or M2 as, e.g., in Eq. 3.110. Together with the factor 1=ð16p2Þ of Eq. 3.110
remaining after integration in four dimensions they combine to corrections of the

order of ½q=ð4pF0Þ�2 for each independent loop. Examples of the application of the
power-counting formula are shown in Fig. 3.9.

Fig. 3.9 Application of the power-counting formula of Eq. 3.120 in n ¼ 4 dimensions

24 Note that the number of independent momenta is not the number of faces or closed circuits
that may be drawn on the internal lines of a diagram. This may, for example, be seen using a
diagram with the topology of a tetrahedron which has four faces but NL ¼ 6� ð4� 1Þ ¼ 3
(see, e.g., Chap. 6-2 of Ref. [63]).
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In order to prove the power-counting formula, we start from the Feynman rules
for evaluating an S-matrix element and investigate the behavior of the individual
building blocks. Internal lines are described by a propagator in n dimensions which
under rescaling behaves as

Z
dnk

ð2pÞn
i

k2 �M2 þ i0þ
7!
Z

dnk

ð2pÞn
i

t2ðk2=t2 �M2 þ i0þÞ

¼k¼tk0
tn�2

Z
dnk0

ð2pÞn
i

k02 �M2 þ i0þ
: ð3:122Þ

Vertices with 2k derivatives or k quark-mass terms rescale as

dnðqÞq2k 7! t2k�ndnðqÞq2k;

since p 7! tp if q is an external momentum, and k ¼ tk0 if q is an internal
momentum (see above). These are the rules to calculate S� dnðPÞM: We need to
add n to compensate for the overall momentum-conserving delta function.
Applying these rules, the scaling behavior of the contribution to M of a given
diagram reads

D ¼ nþ ðn� 2ÞNI þ
X1

k¼1

N2kð2k � nÞ:

The relation between the number of independent loops, the number of internal
lines, and the total number of vertices NV ¼

P1
k¼1 N2k is given by NL ¼

NI � ðNV � 1Þ: The product of NV momentum-conserving delta functions contains
overall momentum conservation. Therefore, one has NV � 1 rather than NV

restrictions on the internal momenta. Applying

�n
X1

k¼1

N2k ¼ �nNV ¼ nðNL � NI � 1Þ

results in Eq. 3.120:

D ¼ nNL � 2NI þ
X1

k¼1

2kN2k:

Fig. 3.10 The loop diagram is only suppressed if kmin [ 0
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On the other hand, applying

�n
X1

k¼1

N2k ¼ �2
X1

k¼1

N2k þ ðn� 2ÞðNL � NI � 1Þ;

results in Eq. 3.121:

D ¼ 2þ
X1

k¼1

2ðk � 1ÞN2k þ ðn� 2ÞNL:

In the discussion of loop integrals we need to address the question of convergence,
since applying the substitution tk0 ¼ k in Eq. 3.122 is well-defined only for con-
vergent integrals. As discussed above, we regularize loop integrals by use of
dimensional regularization. We therefore need to introduce a renormalization scale
l which also has to be rescaled linearly. However, at a given chiral order, the sum
of all diagrams does not, by construction, depend on the renormalization scale.

Finally, note that a minimal k [ 0 is important. Otherwise, an infinite number
of diagrams containing vertices from L0 would have to be summed (see
Fig. 3.10). This is for example the case when dealing with the nucleon-nucleon
interaction.

3.5 Beyond Leading Order

Already in 1967 it was shown by Weinberg [98] that an effective Lagrangian is a
convenient tool for reproducing the results of current algebra in terms of tree-level
calculations. In the purely mesonic sector, L2 of Eq. 3.77 represents the corre-
sponding Lagrangian. It was noted by Li and Pagels [72] that a perturbation theory
around a symmetry which is realized in the Nambu-Goldstone mode, in general,
leads to observables which are nonanalytic functions of the symmetry-breaking
parameters, here the quark masses. In 1979 Weinberg initiated the application of
an effective-field-theory program beyond tree level allowing for a systematic
calculation of corrections to the chiral limit [100]. When calculating one-loop
graphs, using vertices from L2; one generates ultraviolet divergences which in the
framework of dimensional regularization appear as poles at space-time dimension
n ¼ 4: The loop diagrams are renormalized by absorbing the infinite parts into the
redefinition of the fields and the parameters of the most general Lagrangian. Since
L2 is not renormalizable in the traditional sense, the infinities cannot be absorbed
by a renormalization of the coefficients F0 and B0: According to Weinberg’s power
counting of Eq. 3.121, one-loop graphs with vertices from L2 are of Oðq4Þ:
Therefore, one needs to construct the most general Lagrangian L4 and adjust
(renormalize) its parameters to cancel the one-loop infinities originating from L2:

Beyond the quantum corrections to processes already described by L2; at next-
to-leading order we encounter another important feature, namely, the effective
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Wess-Zumino-Witten (WZW) action [102, 103]. The WZW action provides an
effective description of the constraints due to the anomalous Ward identities. In
general, anomalies arise if the symmetries of the Lagrangian at the classical level
are not supported by the quantized theory after renormalization.

3.5.1 The Oðq4Þ Lagrangian of Gasser and Leutwyler

Applying the ideas outlined in Sect. 3.4.3, it is possible to construct the most
general SUð3ÞL � SUð3ÞR-invariant Lagrangian at Oðq4Þ: Here we only quote the
result of Gasser and Leutwyler [53]:

L4 ¼ L1 Tr½DlUðDlUÞy�
n o2

þL2Tr DlUðDmUÞy
h i

Tr DlUðDmUÞy
h i

þ L3Tr DlUðDlUÞyDmUðDmUÞy
h i

þ L4Tr DlUðDlUÞy
h i

Tr vUy þ Uvy
� �

þ L5Tr DlUðDlUÞyðvUy þ UvyÞ
h i

þ L6 Tr vUy þ Uvy
� �� 	2

þ L7 Tr vUy � Uvy
� �� 	2þL8Tr UvyUvy þ vUyvUy

� �

� iL9Tr f R
lmD

lUðDmUÞy þ f L
lmðDlUÞyDmU

h i
þ L10Tr Uf L

lmU
yf lm

R

� �

þ H1Tr f R
lmf

lm
R þ f L

lmf
lm
L

� �
þ H2Tr vvy

� �
: ð3:123Þ

The numerical values of the low-energy constants Li are not determined by chiral
symmetry. In analogy to F0 and B0 of L2 they are parameters containing infor-
mation on the underlying dynamics and should, in principle, be calculable in terms
of the (remaining) parameters of QCD, namely, the heavy-quark masses and the
QCD scale KQCD: In practice, they parameterize our inability to solve the
dynamics of QCD in the non-perturbative regime. So far they have either been
fixed using empirical input (see, e.g., Refs. [19, 25, 53]) or theoretically using
QCD-inspired models, meson-resonance saturation [47, 79], and lattice QCD (see
Ref. [76] for a recent overview and the report of the Flavianet Lattice Averaging
Group (FLAG) on the lattice determination of LECs for a detailed review [40]).

By construction, Eq. 3.123 represents the most general Lagrangian at Oðq4Þ;
and it is thus possible to absorb all one-loop divergences originating from L2 by
an appropriate renormalization of the coefficients Li and Hi:

Li ¼ Lr
i þ

Ci

32p2
R ði ¼ 1; . . .; 10Þ; Hi ¼ Hr

i þ
Di

32p2
R ði ¼ 1; 2Þ; ð3:124Þ

where R has already been defined in Eq. 3.111:

R ¼ 2
n� 4

� ½lnð4pÞ þ C0ð1Þ þ 1�;
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with n denoting the number of space-time dimensions and cE ¼ �C0ð1Þ being
Euler’s constant. The constants Ci and Di are given in Table 3.4. Except for L3 and
L7; the low-energy constants Li and the ‘‘contact terms’’—i.e., pure external-field
terms—H1 and H2 are required in the renormalization of the one-loop graphs.
Since H1 and H2 contain only external fields, they are of no physical relevance.
The idea of renormalization consists of adjusting the parameters of the counter
terms of the most general effective Lagrangian so that they cancel the divergences
of (multi-) loop diagrams. In doing so, one still has the freedom of choosing a
suitable renormalization condition. For example, in the minimal subtraction
scheme (MS) one would fix the parameters of the counter-term Lagrangian such
that they would precisely absorb the contributions proportional to 2=ðn� 4Þ in R;

while the modified minimal subtraction scheme of ChPT ðgMSÞ would, in addition,
cancel the term in the square brackets.25

The renormalized coefficients Lr
i depend on the scale l introduced by dimen-

sional regularization (see Eq. 3.105) and their values at two different scales l1 and
l2 are related by

Lr
i ðl2Þ ¼ Lr

i ðl1Þ þ
Ci

16p2
ln

l1

l2

� �
: ð3:125Þ

We will see that the scale dependence of the coefficients and the finite part of the
loop diagrams compensate each other in such a way that physical observables are
scale independent.

Table 3.4 Renormalized
low-energy constants Lr

i in
units of 10�3 at the scale
l ¼ Mq; see Ref. [19].
D1 ¼ �1=8; D2 ¼ 5=24:
Recent preliminary results
of a global fit of the
renormalized LECs
Lr

i including Oðq6Þ
corrections are discussed
in Ref. [25]

Coefficient Empirical Value Ci

Lr
1 0:4
 0:3 3

32

Lr
2 1:35
 0:3 3

16

Lr
3 �3:5
 1:1 0

Lr
4 �0:3
 0:5 1

8

Lr
5 1:4
 0:5 3

8

Lr
6 �0:2
 0:3 11

144

Lr
7 �0:4
 0:2 0

Lr
8 0:9
 0:3 5

48

Lr
9 6:9
 0:7 1

4

Lr
10 �5:5
 0:7 � 1

4

25 In distinction to the MS scheme commonly used in Standard Model calculations, the gMS
scheme contains an additional finite subtraction term. To be specific, in gMS one uses multiples
of 2=ðn� 4Þ � lnð4pÞ þ C0ð1Þ þ 1½ � instead of 2=ðn� 4Þ � lnð4pÞ þ C0ð1Þ½ � in MS:

122 3 Chiral Perturbation Theory for Mesons



3.5.2 Masses of the Goldstone Bosons at Oðq4Þ

A discussion of the masses at Oðq4Þ is one of the simplest applications of chiral
perturbation theory beyond tree level and will allow us to illustrate various
characteristic properties:

1. The relation between the bare low-energy constants Li and the renormalized
coefficients Lr

i in Eq. 3.124 is such that the divergences of one-loop diagrams
are canceled.

2. Similarly, the scale dependence of the coefficients Lr
i ðlÞ on the one hand and of

the finite contributions of the one-loop diagrams on the other hand lead to scale-
independent predictions for physical observables.

3. A perturbative expansion in the explicit symmetry-breaking parameter with
respect to a symmetry that is realized in the Nambu-Goldstone mode generates
corrections which are nonanalytic in the symmetry-breaking parameter, here
the quark masses.

Let us consider L2 þL4 for QCD with finite quark masses, but in the absence
of external fields. We restrict ourselves to the limit of isospin symmetry, i.e.,
mu ¼ md ¼ m̂: In order to determine the masses, we calculate the self energies
Rðp2Þ of the Goldstone bosons.

Let

DF/ðpÞ ¼
1

p2 �M2
/;2 þ i0þ

; / ¼ p;K; g; ð3:126Þ

denote the Feynman propagator containing the lowest-order masses of
Eqs. 3.59–3.61,

M2
p;2 ¼ 2B0m̂; M2

K;2 ¼ B0ðm̂þ msÞ; M2
g;2 ¼

2
3

B0 m̂þ 2msð Þ:

The subscript 2 refers to chiral order 2. The proper self-energy insertions,
�iR/ðp2Þ; consist of one-particle-irreducible diagrams only, i.e., diagrams which
do not fall apart into two separate pieces when cutting an arbitrary internal line. At
chiral order D ¼ 4; the contributions to �iR/;4ðp2Þ are those shown in Fig. 3.11.
In general, the full (unrenormalized) propagator may be summed using a geo-
metric series (see Fig. 3.12):

4 2

Fig. 3.11 Self-energy
diagrams at Oðq4Þ: Vertices
derived from L2n are
denoted by 2n in the
interaction blobs
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iD/ðpÞ ¼
i

p2 �M2
/;2 þ i0þ

þ i

p2 �M2
/;2 þ i0þ

½�iR/ðp2Þ� i

p2 �M2
/;2 þ i0þ

þ � � �

¼ i

p2 �M2
/;2 � R/ðp2Þ þ i0þ

:

ð3:127Þ

The physical mass, including the interaction, is defined as the pole of Eq. 3.127,

M2
/ �M2

/;2 � R/ðM2
/Þ ¼ 0; ð3:128Þ

where the accuracy of the determination of M2
/ depends on the accuracy of the

calculation of R/:

For our particular application with exactly two external meson lines, the rele-
vant interaction Lagrangians can be written as

Lint ¼L4/
2 þL2/

4 ; ð3:129Þ

where L4/
2 is given by (see Exercise 3.14)

L4/
2 ¼

1

48F2
0

Trð½/; ol/�½/; ol/�Þ þ 2B0TrðM/4Þ
� �

: ð3:130Þ

The terms of L4 proportional to L9; L10; H1; and H2 do not contribute, because
they either contain field-strength tensors or external fields only. Since olU ¼
Oð/Þ; the L1; L2; and L3 terms of Eq. 3.123 are Oð/4Þ and need not be considered.
The only candidates are the L4 – L8 terms, of which we consider the L4 term as an
explicit example,26

L4TrðolUolUyÞTrðvUy þ UvyÞ ¼ L4
2

F2
0

½olgolgþ olp
0olp0 þ 2olp

þolp�

þ 2olKþolK� þ 2olK0ol �K0 þ Oð/4Þ�
� ½4B0ð2m̂þ msÞ þ Oð/2Þ�:

The remaining terms are treated analogously and we obtain for L2/
4

Fig. 3.12 Unrenormalized propagator as the sum of irreducible self-energy diagrams. Hatched
and cross-hatched ‘‘vertices’’ denote one-particle-reducible and one-particle-irreducible contri-
butions, respectively

26 For pedagogical reasons, we make use of the physical fields. From a technical point of view, it
is often advantageous to work with the Cartesian fields and, at the end of the calculation, express
physical processes in terms of the Cartesian components.
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L2/
4 ¼ �

1
2

app
0p0 þ bpolp

0olp0
� �

� app
þp� � bpolp

þolp�

� aKKþK� � bKolKþolK� � aKK0 �K0 � bKolK0ol �K0

� 1
2

agg
2 þ bgolgolg

� �
; ð3:131Þ

where the constants a/ and b/ are given by

ap ¼
64B2

0

F2
0

ð2m̂þ msÞm̂L6 þ m̂2L8
� 	

;

bp ¼ �
16B0

F2
0

ð2m̂þ msÞL4 þ m̂L5½ �;

aK ¼
32B2

0

F2
0

ð2m̂þ msÞðm̂þ msÞL6 þ
1
2
ðm̂þ msÞ2L8


 �
;

bK ¼ �
16B0

F2
0

ð2m̂þ msÞL4 þ
1
2
ðm̂þ msÞL5


 �
;

ag ¼
64B2

0

3F2
0

ð2m̂þ msÞðm̂þ 2msÞL6 þ 2ðm̂� msÞ2L7 þ ðm̂2 þ 2m2
s ÞL8

h i
;

bg ¼ �
16B0

F2
0

ð2m̂þ msÞL4 þ
1
3
ðm̂þ 2msÞL5


 �
: ð3:132Þ

At Oðq4Þ the self energies are of the form

R/;4ðp2Þ ¼ A/ þ B/p2; ð3:133Þ

where the constants A/ and B/ receive a tree-level contribution from L4 and a
one-loop contribution with a vertex from L2 (see Fig. 3.11). For the tree-level
contribution of L4 this is easily seen, because the Lagrangians of Eq. 3.131
contain either exactly two derivatives of the fields or no derivatives at all. For
example, the tree contribution for the g reads

�iRtree
g;4 ðp2Þ ¼ 2i �1

2
ag � bg

1
2
ðiplÞð�iplÞ


 �
¼ �iðag þ bgp2Þ;

where, as usual, ol/ generates �ipl and ipl for initial and final lines, respectively,
and the factor two takes account of two combinations of contracting the fields with
external lines.

For the one-loop contribution the argument is as follows. The Lagrangian L4/
2

contains either two derivatives or no derivatives at all which, symbolically, can be
written as //o/o/ and /4; respectively. The first term results in M2 (see below)
or p2; depending on whether the / or the o/ are contracted with the external fields.
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The ‘‘mixed’’ situation vanishes upon integration. The second term, /4; does not
generate a momentum dependence.

As a specific example, we evaluate the pion-loop contribution to the p0 self
energy (see Fig. 3.13) by applying the Feynman rule of Eq. 3.90 for a ¼ c ¼
3; pa ¼ pc ¼ p; b ¼ d ¼ j; and pb ¼ pd ¼ k:27

1
2

Z
d4k

ð2pÞ4
i

"
d3jd3j|ffl{zffl}
¼ 1

ðpþ kÞ2 �M2
p;2

F2
0

þ d33djj|ffl{zffl}
¼ 3

�M2
p;2

F2
0

þ d3jdj3|ffl{zffl}
¼ 1

ðp� kÞ2 �M2
p;2

F2
0

� 1

3F2
0

ðd3jd3j þ d33djj þ d3jdj3Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ 5

2p2 þ 2k2 � 4M2
p;2

� �# i

k2 �M2
p;2 þ i0þ

¼ 1
2

Z
d4k

ð2pÞ4
i

3F2
0

�4p2 � 4k2 þ 5M2
p;2

� � i

k2 �M2
p;2 þ i0þ

;

ð3:134Þ

where 1=2 is a symmetry factor.28 The integral of Eq. 3.134 diverges and we thus
consider its extension to n dimensions in order to make use of the dimensional-
regularization technique described in Sect. 3.4.7. In addition to the loop integral of
Eq. 3.110,

IðM2; l2; nÞ ¼ l4�n
Z

dnk

ð2pÞn
i

k2 �M2 þ i0þ
¼ M2

16p2
Rþ ln

M2

l2

� �
 �
þ Oðn� 4Þ;

ð3:135Þ

where R is given in Eq. 3.111, we need

l4�ni

Z
dnk

ð2pÞn
k2

k2 �M2 þ i0þ
¼ l4�ni

Z
dnk

ð2pÞn
k2 �M2 þM2

k2 �M2 þ i0þ
;

where we have added 0 ¼ �M2 þM2 in the numerator. We make use of

l4�ni

Z
dnk

ð2pÞn ¼ 0

in dimensional regularization which is ‘‘shown’’ as follows. Consider the (more
general) integral

27 Note that we work in the three-flavor sector and thus with the exponential parameterization of U:
28 When deriving the Feynman rule of Exercise 3.14, we took account of 24 distinct
combinations of contracting four field operators with four external lines. However, the Feynman
diagram of Eq. 3.134 involves only 12 possibilities to contract two fields with each other and the
remaining two fields with two external lines.
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Z
dnk ðk2Þp;

substitute k ¼ kk0 ðk[ 0Þ; and relabel k0 ¼ k;
Z

dnk ðk2Þp ¼ knþ2p
Z

dnk ðk2Þp: ð3:136Þ

Since k[ 0 is arbitrary and, for fixed p; the result is to hold for arbitrary n;
Eq. 3.136 is set to zero in dimensional regularization. We emphasize that the
vanishing of Eq. 3.136 has the character of a prescription. The integral does not
depend on any scale and its analytic continuation is ill defined in the sense that
there is no dimension n where it is meaningful. It is ultraviolet divergent for
nþ 2p� 0 and infrared divergent for nþ 2p� 0:

We then obtain

l4�ni

Z
dnk

ð2pÞn
k2

k2 �M2 þ i0þ
¼ M2IðM2; l2; nÞ;

with IðM2; l2; nÞ of Eq. 3.135. The pion-loop contribution to the p0 self energy is
thus

i

6F2
0

ð�4p2 þM2
p;2ÞIðM2

p;2; l
2; nÞ;

which is indeed of the type discussed in Eq. 3.133 and diverges as n! 4:
After analyzing all loop contributions and combining them with the tree-level

contributions of Eqs. 3.132, the constants A/ and B/ of Eq. 3.133 are given by

Ap ¼
M2

p;2

F2
0

(
� 1

6
IðM2

p;2Þ �
1
6

IðM2
g;2Þ �

1
3

IðM2
K;2Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
loop contribution

þ32½ð2m̂þ msÞB0L6 þ m̂B0L8�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
tree-level contribution

)
;

Bp ¼
2
3

IðM2
p;2Þ

F2
0

þ 1
3

IðM2
K;2Þ

F2
0

� 16B0

F2
0

ð2m̂þ msÞL4 þ m̂L5½ �;

AK ¼
M2

K;2

F2
0

1
12

IðM2
g;2Þ �

1
4

IðM2
p;2Þ �

1
2

IðM2
K;2Þ

�

þ32 ð2m̂þ msÞB0L6 þ
1
2
ðm̂þ msÞB0L8


 ��
;

p, 3 p, 3

k,j

2

Fig. 3.13 Contribution of
the pion loops (j ¼ 1; 2; 3) to
the p0 self energy
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BK ¼
1
4

IðM2
g;2Þ

F2
0

þ 1
4

IðM2
p;2Þ

F2
0

þ 1
2

IðM2
K;2Þ

F2
0

� 16
B0

F2
0

ð2m̂þ msÞL4 þ
1
2
ðm̂þ msÞL5


 �
;

Ag ¼
M2

g;2

F2
0

� 2
3

IðM2
g;2Þ


 �
þ

M2
p;2

F2
0

1
6

IðM2
g;2Þ �

1
2

IðM2
p;2Þ þ

1
3

IðM2
K;2Þ


 �

þ
M2

g;2

F2
0

½16M2
g;2L8 þ 32ð2m̂þ msÞB0L6� þ

128
9

B2
0ðm̂� msÞ2

F2
0

ð3L7 þ L8Þ;

Bg ¼
IðM2

K;2Þ
F2

0

� 16

F2
0

ð2m̂þ msÞB0L4 � 8
M2

g;2

F2
0

L5; ð3:137Þ

where, for simplicity, we have suppressed the dependence on the scale l and the
number of dimensions n in the integrals IðM2; l2; nÞ (see Eq. 3.135). Both the
integrals I and the bare coefficients Li (with the exception of L7) have 1=ðn� 4Þ
poles and finite pieces. In particular, the coefficients A/ and B/ are not finite as
n! 4; showing that they do not correspond to observables.

The masses at Oðq4Þ are determined by solving Eq. 3.128 with the predictions
of Eq. 3.133 for the self energies,

M2
/ ¼ M2

/;2 þ A/ þ B/M2
/;

from which we obtain

M2
/ ¼

M2
/;2 þ A/

1� B/
¼ M2

/;2ð1þ B/Þ þ A/ þ Oðq6Þ;

because A/ ¼ Oðq4Þ and fB/;M2
/;2g ¼ Oðq2Þ: Expressing the bare coefficients Li

in Eq. 3.137 in terms of the renormalized coefficients by using Eq. 3.124, the
results for the masses of the Goldstone bosons at Oðq4Þ read [53]

M2
p;4 ¼ M2

p;2 1þ
M2

p;2

32p2F2
0

ln
M2

p;2

l2

 !
�

M2
g;2

96p2F2
0

ln
M2

g;2

l2

 !(

þ 16

F2
0

ð2m̂þ msÞB0ð2Lr
6 � Lr

4Þ þ m̂B0ð2Lr
8 � Lr

5Þ
� 	

)
;

ð3:138Þ

M2
K;4 ¼ M2

K;2 1þ
M2

g;2

48p2F2
0

ln
M2

g;2

l2

 !(

þ 16

F2
0

ð2m̂þ msÞB0ð2Lr
6 � Lr

4Þ þ
1
2
ðm̂þ msÞB0ð2Lr

8 � Lr
5Þ


 �)
;

ð3:139Þ

128 3 Chiral Perturbation Theory for Mesons



M2
g;4 ¼ M2

g;2 1þ
M2

K;2

16p2F2
0

ln
M2

K;2

l2

 !
�

M2
g;2

24p2F2
0

ln
M2

g;2

l2

 !"

þ 16

F2
0

ð2m̂þ msÞB0ð2Lr
6 � Lr

4Þ þ 8
M2

g;2

F2
0

ð2Lr
8 � Lr

5Þ
#

þM2
p;2

M2
g;2

96p2F2
0

ln
M2

g;2

l2

 !
�

M2
p;2

32p2F2
0

ln
M2

p;2

l2

 !
þ

M2
K;2

48p2F2
0

ln
M2

K;2

l2

 !" #

þ 128
9

B2
0ðm̂� msÞ2

F2
0

ð3Lr
7 þ Lr

8Þ: ð3:140Þ

First of all, we note that the expressions for the masses are finite. The infinite parts
of the coefficients Li of the Lagrangian of Gasser and Leutwyler exactly cancel the
divergent terms resulting from the integrals. This is the reason why the bare
coefficients Li must be infinite. Furthermore, at Oðq4Þ the masses of the Goldstone
bosons vanish if the quark masses are sent to zero. This is, of course, what we
expected from QCD in the chiral limit but it is comforting to see that the self
interaction in L2 (in the absence of quark masses) does not generate Goldstone-
boson masses at higher order. At Oðq4Þ; the squared Goldstone-boson masses
contain terms which are analytic in the quark masses, namely, of the form m2

q

multiplied by the renormalized low-energy constants Lr
i : However, there are also

nonanalytic terms of the type m2
q lnðmqÞ—so-called chiral logarithms—which do

not involve new parameters. Such a behavior is an illustration of the mechanism
found by Li and Pagels [72], who noticed that a perturbation theory around a
symmetry which is realized in the Nambu-Goldstone mode results in both analytic
as well as nonanalytic expressions in the perturbation. Finally, the scale depen-
dence of the renormalized coefficients Lr

i of Eq. 3.124 is by construction such that
it cancels the scale dependence of the chiral logarithms. Thus, physical observ-
ables do not depend on the scale l:

Exercise 3.24 We want to verify this statement by differentiating Eq. 3.138 with
respect to l:

(a) Using Eq. 3.125, show

dLr
i ðlÞ
dl

¼ � Ci

16p2l
:

(b) Verify

dM2
p;4

dl
¼ 0:
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Hints: Make use of Eqs. 3.59–3.61 and the values of the coefficients Ci of
Table 3.4.

Exercise 3.25 In this exercise we want to familiarize ourselves with the con-
ventions of the two-flavor sector of ChPT. Moreover, it will serve as an illustration
of the equivalence theorem of field theory [34, 42, 65] beyond tree level: results for
observables (such as, e.g., S-matrix elements) do not depend on the parameteri-
zation of the fields. In the discussion of pp scattering we have already seen an
example at tree level.

In the two-flavor sector two different parameterizations of the SU(2) matrix
UðxÞ are popular,

UðxÞ ¼ exp i
/~ðxÞ � s~

F

" #
; ð3:141Þ

UðxÞ ¼ 1
F

rðxÞ1þ ip~ðxÞ � s~½ �; rðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 � p~2ðxÞ

p
; ð3:142Þ

where the pion fields of the two parameterizations are nonlinearly related (see
Eq. 3.97). Furthermore, independent of the parameterizations of Eqs. 3.141 and
3.142, at Oðq4Þ two Lagrangians are commonly used, namely, those of Gasser and
Leutwyler [52] and of Gasser, Sainio, and Švarc [54], respectively:

LGL
4 ¼

l1
4

Tr½DlUðDlUÞy�
n o2

þ l2
4

Tr½DlUðDmUÞy�Tr½DlUðDmUÞy�

þ l3
16

TrðvUy þ UvyÞ
� 	2þ l4

4
Tr½DlUðDlvÞy þ DlvðDlUÞy�

þ l5 TrðfRlmUf lm
L UyÞ � 1

2
TrðfLlmf

lm
L þ fRlmf

lm
R Þ


 �

þ i
l6
2

Tr½fRlmD
lUðDmUÞy þ fLlmðDlUÞyDmU�

� l7
16

TrðvUy � UvyÞ
� 	2

þ h1 þ h3

4
TrðvvyÞ þ h1 � h3

16
TrðvUy þ UvyÞ
� 	2n

þ TrðvUy � UvyÞ
� 	2�2TrðvUyvUy þ UvyUvyÞ

o

� 2h2TrðfLlmf
lm
L þ fRlmf

lm
R Þ; ð3:143Þ
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LGSS
4 ¼ l1

4
Tr½DlUðDlUÞy�
n o2

þ l2
4

Tr½DlUðDmUÞy�Tr½DlUðDmUÞy�

þ l3 þ l4
16

TrðvUy þ UvyÞ
� 	2þ l4

8
Tr½DlUðDlUÞy�TrðvUy þ UvyÞ

þ l5TrðfRlmUf lm
L UyÞ þ i

l6
2

Tr½fRlmD
lUðDmUÞy þ fLlmðDlUÞyDmU�

� l7
16

TrðvUy � UvyÞ
� 	2þ h1 þ h3 � l4

4
TrðvvyÞ

þ h1 � h3 � l4
16

TrðvUy þ UvyÞ
� 	2þ TrðvUy � UvyÞ

� 	2n

�2TrðvUyvUy þ UvyUvyÞ
�
� 4h2 þ l5

2
TrðfLlmf

lm
L þ fRlmf

lm
R Þ:

ð3:144Þ

When comparing with the three-flavor version of Eq. 3.123 we first note that
Eqs. 3.143 and 3.144 contain fewer independent terms. This follows from the
application of certain trace relations which reduce the number of independent
structures for 2� 2 matrices in comparison with 3� 3 matrices. The expressions
proportional to ðh1 � h3Þ and ðh1 � h3 � l4Þ in LGL

4 and LGSS
4 ; respectively, can

be rewritten so that the U’s completely drop out, i.e., they contain only external
fields. The trick is to use

2TrðvUyvUy þUvyUvyÞ ¼ ½TrðvUy þUvyÞ�2þ½TrðvUy �UvyÞ�2þTrðsivÞTrðsivÞ
þTrðsiv

yÞTrðsiv
yÞ� ½TrðvÞ�2�½TrðvyÞ�2:

In terms of a field transformation [86] the two Lagrangians LGL
4 and LGSS

4 can be
shown to be equivalent (see App. D.1 of Ref. [87] for details). In principle, we are
free to combine any of the two parameterizations for U with any of the two
Lagrangians L4: The outcome for physical observables should not depend on the
specific choice.

Remark Like in Eq. 3.124, the bare and the renormalized low-energy constants li

and lri are related by

li ¼ lri þ ci
R

32p2
;

where R ¼ 2=ðn� 4Þ � ½lnð4pÞ þ C0ð1Þ þ 1� and

c1 ¼
1
3
; c2 ¼

2
3
; c3 ¼ �

1
2
; c4 ¼ 2; c5 ¼ �

1
6
; c6 ¼ �

1
3
; c7 ¼ 0:

In the two-flavor sector one often uses the scale-independent parameters �li which
are defined by
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lr
i ¼

ci

32p2
�li þ ln

M2

l2

� �
 �
; i ¼ 1; . . .; 6; ð3:145Þ

where M2 ¼ 2Bm̂: Since lnð1Þ ¼ 0; the �li are proportional to the renormalized low-
energy constants at the scale l ¼ M:

We will now turn to the calculation of the squared pion mass at Oðq4Þ: For the
two-flavor calculation of the Goldstone-boson self energies at Oðq4Þ we need the
interaction Lagrangian

Lint ¼L4/
2 þL2/

4 :

Setting the external fields to zero and inserting v ¼ 2Bm̂; derive L2/
4 for

Eqs. 3.143 and 3.144 for both parameterizations of U:

Exercise 3.26 Using isospin symmetry, at Oðq4Þ the pion self energy is of the
form

Rbaðp2Þ ¼ dabðAþ Bp2Þ:

The constants A and B (not to be confused with the low-energy constant related to
the quark condensate) receive a tree-level contribution from L4 and a one-loop
contribution from L2 (see Fig. 3.14). Their numerical values depend on the
parameterization of U and the version of L4:

(a) Using the results of Exercises 3.14 and 3.25, derive the expressions of
Table 3.5 for the self-energy coefficients.

(b) Using

M2
p;4 ¼

M2
p;2 þ A

1� B
¼ M2

p;2ð1þ BÞ þ Aþ Oðq6Þ;

derive the squared pion mass at Oðq4Þ :

M2
p;4 ¼ M2 �

�l3

32p2F2
M4 þ OðM6Þ;

where M2 ¼ 2Bm̂: Note that the result for the pion mass is, as expected,
independent of the Lagrangian and parameterization used. On the other hand,
the constants A and B are auxiliary mathematical quantities and thus depend
on both Lagrangian and parameterization.

p,a p,b
4

p,a p,b

k,c

2

Fig. 3.14 Self-energy
diagrams at Oðq4Þ: Vertices
derived from L2n are
denoted by 2n in the
interaction blobs
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3.5.3 The Effective Wess-Zumino-Witten Action

The Lagrangians discussed so far have a larger symmetry than QCD [103]. For
example, if we consider the case of ‘‘pure’’ QCD, i.e., no external fields except for
v ¼ 2B0M with the quark-mass matrix of Eq. 3.53, the two Lagrangians L2 and
L4 are invariant under the substitution /ðxÞ 7! �/ðxÞ: As discussed in
Sect. 3.4.1, they contain interaction terms with an even number of Goldstone
bosons only, i.e., they are of even intrinsic parity. In other words, they cannot
describe, e.g, KþK� ! pþp�p0: Analogously, L2 and L4 including a coupling to
electromagnetic fields cannot describe the decay p0 ! cc:

These observations lead us to a discussion of the effective Wess-Zumino-Witten
(WZW) action [102, 103]. Whereas normal Ward identities are related to the
invariance of the generating functional under local transformations of the external
fields (see Sects. 1.4.1 and 1.4.4), the anomalous Ward identities [2–4, 11, 15],
which were first obtained in the framework of renormalized perturbation theory,
give a particular form to the variation of the generating functional [52, 102].
Wess and Zumino derived consistency or integrability relations which are satis-
fied by the anomalous Ward identities and then explicitly constructed a func-
tional involving the pseudoscalar octet which satisfies the anomalous Ward
identities [102]. In particular, Wess and Zumino emphasized that their interaction
Lagrangians cannot be obtained as part of a chirally invariant Lagrangian.

Witten suggested to add to the lowest-order equation of motion the simplest
term possible which breaks the symmetry of having only an even number of
Goldstone bosons at the Lagrangian level [103]. For the case of massless
Goldstone bosons without any external fields the modified equation of motion
reads29

Table 3.5 Self-energy coefficients and wave function renormalization constants. I denotes the

dimensionally regularized integral I ¼ IðM2;l2; nÞ ¼ M2

16p2 Rþ ln M2

l2

� �h i
þ Oðn� 4Þ; R ¼ 2

n�4�
lnð4pÞ þ C0ð1Þ þ 1½ �; M2 ¼ 2Bm̂: The abbreviations GL and GSS refer to the Lagrangians of

Eqs. 3.143 and 3.144, respectively, exponential and square-root to the parameterizations of U of
Eqs. 3.141 and 3.142, respectively

Lagrangian and parameterization A B

GL, exponential � 1
6

M2

F2 I þ 2l3 M4

F2
2
3

I
F2

GL, square-root 3
2

M2

F2 I þ 2l3 M4

F2 � I
F2

GSS, exponential � 1
6

M2

F2 I þ 2ðl3 þ l4ÞM4

F2
2
3

I
F2 � 2l4 M2

F2

GSS, square-root 3
2

M2

F2 I þ 2ðl3 þ l4ÞM4

F2 � I
F2 � 2l4 M2

F2

29 In order to conform with our previous convention of Eq. 3.35, we need to replace U of Ref.
[103] by Uy: Furthermore, Fp of Ref. [103] corresponds to 2F0: Finally, o2UUy � Uo2Uy ¼
2olðolUUyÞ:
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ol
F2

0

2
UolUy

� �
þ kelmqrUolUyUomU

yUoqUyUorUy ¼ 0; ð3:146Þ

where k is a (purely imaginary) constant and e0123 ¼ 1: Substituting U $ Uy in
Eq. 3.146 and subsequently multiplying from the left by U and from the right by
Uy; we verify that the two terms transform with opposite relative signs. Recall that
a term which is even (odd) in the Lagrangian leads to a term which is odd (even) in
the equation of motion. For the purpose of writing down an action corresponding
to Eq. 3.146, we extend the domain of definition of U to a hypothetical fifth
dimension,

UðyÞ ¼ exp ia
/ðxÞ
F0

� �
; yi ¼ ðxl; aÞ; i ¼ 0; . . .; 4; 0� a� 1; ð3:147Þ

where Minkowski space is defined as the surface of the five-dimensional space for
a ¼ 1: Let us first quote the result of the effective Wess-Zumino-Witten (WZW)
action in the absence of external fields (denoted by a superscript 0) [103]:

S0
WZW ¼ �

i

240p2

Z1

0

da
Z

d4x eijklmTr ULiULjULkULlULm

� �
; ð3:148Þ

where the indices i; . . .;m run from 0 to 4, y4 ¼ y4 ¼ a; eijklm is the completely
antisymmetric tensor with e01234 ¼ �e01234 ¼ 1; and ULi � UyoU=oyi:

Exercise 3.27 Consider the action30

S ¼ S2 þ S0
ano;

where S2 is the action corresponding to the Lagrangian of Eq. 3.42 and S0
ano ¼

nS0
WZW is the anomalous action, with n an integer still to be determined.

(a) Using the ansatz

U0ðyÞ ¼ 1þ iaDðxÞ½ �UðyÞ; DðxÞ ¼
X8

a¼1

DaðxÞka;

verify

dS0
ano ¼

n

48p2

Z1

0

da
Z

d4x eijklmTr UyoiðaDÞUULjULkULlULm

� �
:

Hint: Make use of permutation symmetries.
(b) Make use of integration by parts, the boundary conditions Dðx~; t1Þ ¼

Dðx~; t2Þ ¼ 0 for the test functions, and the permutation symmetries to obtain

30 The subscript ano refers to anomalous.
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dS0
ano ¼

n

48p2

Z
d4x elmqrTrðDURlURmURqURrÞ;

where URl � UolUy: In combination with the result for dS2 (see Sect. 3.4.3),
this yields
Z

d4x DaTr ka i
F2

0

4
ðhUUy � UhUyÞ þ n

48p2
elmqrURlURmURqURr


 �� �
¼ 0

ð3:149Þ

for arbitrary test functions Da: Using hUUy � UhUy ¼ �2olðUolUyÞ and
the fact that the expression inside the square brackets is traceless, Eqs. 3.146
and 3.149 are equivalent provided that the constants k and n are related by
k ¼ in=ð48p2Þ:

A rather unusual and surprising feature of Eq. 3.148 is that the action functional
corresponding to the new term cannot be written as the four-dimensional integral
of a Lagrangian expressed in terms of U and its derivatives. Expanding the SU(3)
matrix UðyÞ in terms of the Goldstone-boson fields, UðyÞ ¼ 1þ ia/ðxÞ=F0 þ
Oð/2Þ; one obtains an infinite series of terms, each involving an odd number of
Goldstone bosons, i.e., the WZW action S0

WZW is of odd intrinsic parity. For each
individual term the a integration can be performed explicitly resulting in an
ordinary action in terms of a four-dimensional integral of a local Lagrangian. For
example, the term with the smallest number of Goldstone bosons reads

S5/
WZW ¼

1

240p2F5
0

Z1

0

da
Z

d4x eijklmTr½oiða/Þojða/Þokða/Þolða/Þomða/Þ�

¼ 1

240p2F5
0

Z1

0

da
Z

d4x eijklmoiTr½a/ojða/Þokða/Þolða/Þomða/Þ�

¼ 1

240p2F5
0

Z
d4x elmqrTrð/ol/om/oq/or/Þ: ð3:150Þ

In the last step we made use of the fact that exactly one index can take the value 4.
The term involving i ¼ 4 has been integrated with respect to a; whereas the other
four possibilities cancel each other because the e tensor in four dimensions is
antisymmetric under a cyclic permutation of the indices, whereas the trace is
symmetric under a cyclic permutation. In particular, the WZW action without
external fields involves at least five Goldstone bosons [102]. Once the constant n is
known, it allows, e.g., for the description of the process KþK� ! pþp�p0:

Using topological arguments, Witten showed that the constant n appearing in
Eq. 3.148 must be an integer. However, it was pointed out in Ref. [12] that the
traditional argument relating n with the number of colors Nc is incomplete. The
connection to Nc is established by introducing the coupling to electromagnetism
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[102, 103]. In the presence of external fields there will be an additional term in the
anomalous action,

Sano ¼ S0
ano þ Sext

ano ¼ nðS0
WZW þ Sext

WZWÞ; ð3:151Þ

given by (see, e.g., Ref. [18])

Sext
WZW ¼ �

i

48p2

Z
d4x elmqrTrðZlmqrÞ ð3:152Þ

with

Zlmqr

¼ 1
2

UllUyrmUlqUyrr þ UlllmlqUyrr � UyrlrmrqUlr

þ iUollmlqUyrr � iUyolrmrqUlr þ iolrmUlqUyrr � iollmU
yrqUlr

� iULllmU
yrqUlr þ iURlrmUlqUyrr � iULllmlqlr þ iURlrmrqrr

þ 1
2
ULlUyomrqUlr �URlUomlqUyrr þULlUyrmUoqlr �URlUlmU

yoqrr
� �

�ULlULmU
yrqUlr þURlURmUlqUyrr þ

1
2
ULllmULqlr �

1
2
URlrmURqrr

þULllmoqlr �URlrmoqrr þULlomlqlr �URlomrqrr

� iULlULmULqlr þ iURlURmURqrr;

ð3:153Þ

with the abbreviations ULl � UyolU and URl � UolUy:
As a special case, let us consider the coupling to external electromagnetic four-

vector potentials by inserting

rl ¼ ll ¼ �eAlQ;

where Q is the quark-charge matrix. The terms involving three and four electro-
magnetic four-vector potentials vanish upon contraction with the totally anti-
symmetric tensor elmqr; because their contributions to Zlmqr are symmetric in at
least two indices, and we obtain

nLext
WZW ¼ �enAlJl þ i

ne2

48p2
elmqromAqAr

� Tr½2Q2ðUolUy � UyolUÞ � QUyQolU þ QUQolUy�: ð3:154Þ

We note that the current

Jl ¼ elmqr

48p2
TrðQomUUyoqUUyorUUy þ QUyomUUyoqUUyorUÞ; e0123 ¼ 1;

ð3:155Þ
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by itself is not gauge invariant and the additional terms of Eq. 3.154 are required
to obtain a gauge-invariant action. The standard procedure of determining n is to
investigate the interaction Lagrangian which is relevant to the decay p0 ! cc by
expanding U ¼ 1þ idiagðp0;�p0; 0Þ=F0 þ � � � : However, as pointed out by Bär
and Wiese [12], when considering the electromagnetic interaction for an arbitrary
number of colors one should replace the ordinary quark-charge matrix in the
Standard Model by

Q ¼
2
3 0 0
0 � 1

3 0
0 0 � 1

3

0

@

1

A!

1
2Nc
þ 1

2 0 0
0 1

2Nc
� 1

2 0
0 0 1

2Nc
� 1

2

0
B@

1
CA:

Exercise 3.28 From Eq. 3.154, derive the corresponding effective Lagrangian for
p0 ! cc decay,

Lp0cc ¼ �
n

Nc

e2

32p2
elmqrFlmFqr

p0

F0
:

Hint: Make use of integration by parts to shift the derivative from the pion field
onto the electromagnetic four-vector potential.

The corresponding invariant amplitude at tree level reads

M ¼ i
n

Nc

e2

4p2F0
elmqrq1le

	
1mq2qe

	
2r: ð3:156Þ

Exercise 3.29 Sum over the final photon polarizations and integrate over phase
space to obtain the decay rate (see Exercise 3.13)

Cp0!cc ¼
a2M3

p0

64p3F2
0

n2

N2
c

¼ 7:6 eV� n

Nc

� �2

; ð3:157Þ

where a ¼ e2=ð4pÞ denotes the fine-structure constant.
Hints: Let e1lðk1Þe2mðk2ÞMlm denote the invariant amplitude of a general process
involving two real photons. As a consequence of electromagnetic current con-
servation, q1lMlm ¼ 0 and q2mMlm ¼ 0; the sum over photon polarizations is given
by

X2

k1;k2¼1

je1lðk1Þe2mðk2ÞMlmj2 ¼ MlmM
lm	:

Finally, make use of

elmabe
lmqr ¼ �2ðga

qgb
r � ga

rgb
qÞ:
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Equation 3.157 is in good agreement with the experimental value ð7:7

0:6Þ eV for n ¼ Nc: However, the result is no indication for Nc ¼ 3 [12]. Bär and
Wiese conclude from their analysis that one should rather consider three-flavor
processes such as g! pþp�c or Kc! Kp to test the expected Nc dependence in a
low-energy reaction. For example, the Lagrangian relevant to the decay g!
pþp�c is given by

Lgpþp�c ¼
ien

12
ffiffiffi
3
p

p2F3
0

ðQu � QdÞelmqrAlomgoqp
þorp

�;

where the quark-charge difference Qu � Qd ¼ 1 is independent of Nc: However,
by investigating the corresponding g and g0 decays up to next-to-leading order in
the framework of the combined 1=Nc and chiral expansions, Borasoy and Lipartia
have concluded that the number of colors cannot be determined from these decays
due to the importance of sub-leading terms which are needed to account for the
experimental decay widths and photon spectra [28].

3.5.4 Chiral Perturbation Theory at Oðq6Þ

Mesonic chiral perturbation theory at Oðq4Þ has led to a host of successful
applications and may be considered a full-grown and mature area of low-energy
particle physics. For the time being, calculations at Oðq6Þ are state of the art (see
Ref. [24] for an overview). Calculations in the even-intrinsic-parity sector start at
Oðq2Þ; and two-loop calculations at Oðq6Þ are thus of next-to-next-to-leading order
(NNLO). The corresponding effective Lagrangian L6 was constructed in Refs.
[22, 49] and contains, in its final form, 90 terms in the three-flavor sector (plus four
contact terms analogous to the Hi terms of L4). The odd-intrinsic-parity sector
starts at Oðq4Þ with the anomalous WZW action, as discussed in Sect. 3.5.3. In this
sector next-to-leading-order (NLO), i.e. one-loop, calculations are of Oðq6Þ: It has
been known for some time that quantum corrections to the WZW classical action
do not renormalize the coefficient of the WZW term [6, 17, 44] (D. Issler, 1990,
SLAC-PUB-4943-REV, unpublished). The counter terms needed to renormalize
the one-loop singularities at Oðq6Þ are of a conventional chirally invariant struc-
ture. In the three-flavor sector, the most general odd-intrinsic-parity Lagrangian at
Oðq6Þ contains 23 independent terms [23, 46]. For an overview of applications in
the odd-intrinsic-parity sector, we refer to Ref. [18].

Although an explicit calculation at the two-loop level is beyond the scope of
these lecture notes, we want to discuss the results for the s-wave pp-scattering
lengths a0

0 and a2
0 of Eq. 3.95. The s-wave pp-scattering lengths have been

calculated at next-to-leading order [52] and at next-to-next-to-leading order
[20, 21]. Let us have a closer look at the individual contributions to a0

0 as reported
in Ref. [20]:
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a0
0 ¼ 0:156

zfflffl}|fflffl{
Oðq2Þ

þ 0:039|fflffl{zfflffl}
L

þ 0:005|fflffl{zfflffl}
anal:

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{
Oðq4Þ : þ28%

þ 0:013|fflffl{zfflffl}
ki

þ 0:003|fflffl{zfflffl}
L

þ 0:001|fflffl{zfflffl}
anal:

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
Oðq6Þ : þ8:5%

¼ 0:217
zfflffl}|fflffl{total

: ð3:158Þ

The corrections at Oðq4Þ consist of a dominant part from the chiral logarithms (L)
of the one-loop diagrams and a less important analytical contribution (anal.)
resulting from the one-loop diagrams as well as the tree graphs of L4: The total
corrections at Oðq4Þ amount to 28% of the Oðq2Þ prediction. At Oðq6Þ; one obtains
two-loop corrections, one-loop corrections, and L6-tree-level contributions. Once
again, the loop corrections (ki; involving double chiral logarithms, and L) are more
important than the analytical contributions. The influence of L6 was estimated via
scalar- and vector-meson exchange and found to be very small. The result of
Eq. 3.158 reveals a nice convergence and is in excellent agreement with the
empirical data to be discussed below. Due to the relatively large strange-quark
mass, the convergence in three-flavor calculations is usually slower.

By matching the chiral representation of the scattering amplitude with a dis-
persive representation [7, 85], the predictions for the s-wave pp-scattering lengths
are [35, 37]

a0
0 ¼ 0:220
 0:005; a2

0 ¼ �0:0444
 0:0010: ð3:159Þ

The empirical results for the s-wave pp-scattering lengths have been obtained from
various sources. In the Ke4 decay Kþ ! pþp�eþme; the connection with low-
energy pp scattering stems from a partial-wave analysis of the form factors
relevant for the Ke4 decay in terms of pp angular momentum eigenstates. In the
low-energy regime, the phases of these form factors are related by (a general-
ization of) Watson’s theorem [96] to the corresponding phases of I ¼ 0 s-wave and
I ¼ 1 p-wave elastic scattering [36]. Using effective-field-theory techniques, iso-
spin-symmetry-breaking effects, generated by real and virtual photons and by the
mass difference of the up and down quarks, were discussed in Ref. [39]. Per-
forming a combined analysis of the Geneva-Saclay data [84], the BNL-E865 data
[80, 81], and the NA48/2 data [13] results in [39]

a0
0 ¼ 0:217
 0:008exp 
 0:006th; ð3:160Þ

which is in excellent agreement with the prediction of Eq. 3.159. The p
p!
p
pþn reactions require an extrapolation to the pion pole to extract the pp
amplitude and are thus regarded as containing more model dependence,
a0

0 ¼ 0:204
 0:014 ðstatÞ 
 0:008 ðsystÞ [67]. The DIRAC Collaboration [1]
makes use of a lifetime measurement of pionium to extract ja0

0 � a2
0j ¼

0:264þ0:033
�0:020: Finally, in the K
 ! p
p0p0 decay, isospin-symmetry breaking leads

to a cusp structure � a0 � a2 in the p0p0 invariant mass distribution near sp0p0 �
4M2

pþ [31, 32]. Based on the model of Ref. [32], the NA48/2 Collaboration extracts
a0

0 � a2
0 ¼ 0:268
 0:010 ðstatÞ 
 0:004 ðsystÞ 
 0:013 ðextÞ: A more sophisticated
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analysis of the cusps in K ! 3p within an effective-field-theory framework can be
found in Refs. [26, 27, 38].

In particular, when analyzing the data of Ref. [80] in combination with the Roy
equations, an upper limit j�l3j � 16 was obtained in Ref. [36] for the scale-
independent low-energy constant of the two-flavor Lagrangian L4 (see
Eq. 3.145). The great interest generated by this result is to be understood in the
context of the pion mass at Oðq4Þ (see Exercise 3.26),

M2
p ¼ M2 �

�l3
32p2F2

M4 þ OðM6Þ; ð3:161Þ

where M2 ¼ 2m̂B: Recall that the constant B is related to the scalar quark con-
densate in the chiral limit and that a nonvanishing quark condensate is a sufficient
criterion for spontaneous chiral symmetry breakdown in QCD. If the expansion of
M2

p in powers of the quark masses is dominated by the linear term in Eq. 3.161, the
result is often referred to as the Gell-Mann-Oakes-Renner relation [56]. If the
terms of order m̂2 were comparable or even larger than the linear terms, a different
power counting or bookkeeping in ChPT would be required [68]. The estimate
j�l3j � 16 implies that the Gell-Mann-Oakes-Renner relation is indeed a decent
starting point, because the contribution of the second term of Eq. 3.161 to the pion
mass is approximately given by

�
�l3M2

p

64p2F2
p

Mp ¼ �0:054Mp for �l3 ¼ 16;

i.e., more than 94 % of the pion mass must stem from the quark condensate [36].
As our final example, let us discuss a constraint provided by chiral symmetry,

relating the electromagnetic polarizabilities of the charged pion and radiative pion
beta decay. In the framework of classical electrodynamics, the electric and mag-
netic polarizabilities a and b describe the response of a system to a static, uniform,
external electric and magnetic field in terms of induced electric and magnetic
dipole moments [62]. In principle, empirical information on the pion polariz-
abilities can be obtained from the differential cross section of low-energy Compton
scattering on a charged pion, cðqÞ þ pþðpÞ ! cðq0Þ þ pþðp0Þ (see Exercise 3.18),

dr
dXlab

¼ x0

x

� �2 e2

4pMp

e2

4pMp

1þ z2

2

�

�xx0

2
ðaþ bÞpþð1þ zÞ2 þ ða� bÞpþð1� zÞ2
h i�

þ � � � ;

where z ¼ q̂ � q̂ 0 and x0=x ¼ ½1þ xð1� zÞ=Mp�: The forward and backward
differential cross sections are sensitive to ðaþ bÞpþ and ða� bÞpþ ; respectively.

Within the framework of the partially conserved axial-vector current (PCAC)
hypothesis and current algebra the electromagnetic polarizabilities of the charged
pion are related to the radiative charged-pion beta decay pþ ! eþmec [89, 90].

140 3 Chiral Perturbation Theory for Mesons



The result obtained using ChPT at leading nontrivial order ½Oðq4Þ� [16] is equiv-
alent to the original PCAC result,

apþ ¼ �bpþ ¼ 2
e2

4p
1

ð4pFpÞ2Mp

�lD
6
;

where �lD � ð�l6 ��l5Þ is a linear combination of scale-independent parameters of
the two-flavor Lagrangian L4 (see Eq. 3.145). At Oðq4Þ; this difference is
related to the ratio c ¼ FA=FV of the pion axial-vector form factor FA and the
vector form factor FV of radiative pion beta decay [52], c ¼ �lD=6: Once this ratio
is known, chiral symmetry makes an absolute prediction for the polarizabilities.
This situation is similar to the s-wave pp-scattering lengths of Eq. 3.96 which
are predicted once Fp is known. Using the most recent determination c ¼
0:443
 0:015 by the PIBETA Collaboration [50] (assuming FV ¼ 0:0259
obtained from the conserved vector current hypothesis) results in the Oðq4Þ
prediction apþ ¼ ð2:64
 0:09Þ � 10�4 fm3; where the estimate of the error is
only the one due to the error of c and does not include effects from higher orders
in the quark-mass expansion.

Corrections to the leading-order PCAC result have been calculated at Oðq6Þ and
turn out to be rather small [30, 55]. Using updated values for the LECs, the
predictions of Ref. [55] are

ðaþ bÞpþ ¼ 0:16� 10�4 fm3; ð3:162Þ

ða� bÞpþ ¼ ð5:7
 1:0Þ � 10�4 fm3: ð3:163Þ

The corresponding corrections to the Oðq4Þ result indicate a similar rate of con-
vergence as for the pp-scattering lengths [20, 52]. The error for ðaþ bÞpþ is of the
order 0:1� 10�4 fm3; mostly from the dependence on the scale at which the Oðq6Þ
low-energy coupling constants are estimated by resonance saturation.

As there is no stable pion target, empirical information about the pion polar-
izabilities is not easy to obtain. For that purpose, one has to consider reactions
which contain the Compton scattering amplitude as a building block, such as, e.g.,
the Primakoff effect in high-energy pion-nucleus bremsstrahlung, p�Z ! p�Zc;
radiative pion photoproduction on the nucleon, cp! cpþn; and pion pair pro-
duction in eþe� scattering, eþe� ! eþe�pþp�: Unfortunately, at present, the
experimental situation looks rather contradictory (see Refs. [5, 55] for recent
reviews of the data and further references to the experiments).

In terms of Feynman diagrams, the reaction cp! cpþn contains real Compton
scattering on a charged pion as a pion pole diagram (see Fig. 3.15). This reaction
was recently investigated at the Mainz Microtron MAMI with the result [5]

ða� bÞpþ ¼ ð11:6
 1:5stat 
 3:0syst 
 0:5modÞ � 10�4 fm3: ð3:164Þ
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A similar result was obtained at Serpukhov using the Primakoff method [8],

ða� bÞpþ ¼ ð13:6
 2:8stat 
 2:4systÞ � 10�4 fm3; ð3:165Þ

in agreement with the value from MAMI. Recently, also the COMPASS Collab-
oration at CERN has investigated this reaction [61] but a final result is not yet
available. Unfortunately, the third method based on the reactions eþe� ! cc!
pþp�; has led to even more contradictory results (see Ref. [55]).

Comparing the empirical results of Eqs. 3.164 and 3.165 with the ChPT result
of ð5:7
 1:0Þ � 10�4 fm3; we conclude that the electromagnetic polarizabilities of
the charged pion remain one of the challenging topics of hadronic physics in the
low-energy domain. Chiral symmetry provides a strong constraint in terms of
radiative pion beta decay and mesonic chiral perturbation theory makes a firm
prediction beyond the current-algebra result at the two-loop level. Both the
experimental determination as well as the theoretical extraction from experiment
require further efforts.
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Chapter 4
Chiral Perturbation Theory for Baryons

In this chapter we will discuss matrix elements with a single baryon in the initial
and final states. With such matrix elements we can, e.g., describe static properties
such as masses or magnetic moments, form factors, or, finally, more complicated
processes, such as pion-nucleon scattering, Compton scattering, pion photopro-
duction etc. Technically speaking, we are interested in the baryon-to-baryon
transition amplitude in the presence of external fields (as opposed to the vacuum-
to-vacuum transition amplitude of Sect. 1.4.4),

Fðp~0; p~; v; a; s; pÞ ¼ hp~0; outjp~; inicv;a;s;p; p~ 6¼ p~0;

determined by the Lagrangian of Eq. 1.151,

L ¼L0
QCD þLext ¼L0

QCD þ �qcl vl þ 1
3

vl
ðsÞ þ c5al

� �
q� �qðs� ic5pÞq:

In the above equation, jp~; ini and jp~0; outi denote asymptotic one-baryon in- and
out-states, i.e., states which in the remote past and distant future behave as free
one-particle states of momentum p~ and p~0, respectively. The functional F consists
of connected diagrams only (superscript c). For example, the matrix elements of
the vector and axial-vector currents between one-baryon states are given by

hp~0jVl
a ðxÞjp~i ¼

d
idvalðxÞ

Fðp~0; p~; v; a; s; pÞ
����
v¼0;a¼0;s¼M;p¼0

;

hp~0jAl
aðxÞjp~i ¼

d
idaalðxÞ

Fðp~0; p~; v; a; s; pÞ
����
v¼0;a¼0;s¼M;p¼0

;

where M ¼ diagðmu;md;msÞ denotes the quark-mass matrix and

Vl
a ðxÞ ¼ �qðxÞclka

2
qðxÞ; Al

aðxÞ ¼ �qðxÞclc5
ka

2
qðxÞ:
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As in the mesonic sector the method of calculating the Green functions associated
with the above functional consists of an effective-Lagrangian approach in com-
bination with an appropriate power counting. Specific matrix elements will be
calculated applying the Gell-Mann and Low formula of perturbation theory [29].

4.1 Transformation Properties of the Fields

The group-theoretical foundations of constructing phenomenological Lagrangians
in the presence of spontaneous symmetry breaking were developed in Refs.
[13, 15, 63]. The fields entering the Lagrangian are assumed to transform under
irreducible representations of the subgroup H which leaves the vacuum invariant,
whereas the symmetry group G of the Hamiltonian or Lagrangian is nonlinearly
realized (for the transformation behavior of the Goldstone bosons, see Sect. 3.3).

Our aim is a description of the interaction of baryons with the Goldstone bosons
as well as the external fields at low energies. To that end we need to specify the
transformation properties of the dynamical fields entering the Lagrangian. Our
discussion follows Refs. [26, 30].

To be specific, we consider the octet of the 1
2
þ

baryons (see Fig. 3.4). With each
member of the octet we associate a complex, four-component Dirac field which we
arrange in a traceless 3� 3 matrix B,

B ¼
X8

a¼1

Bakaffiffiffi
2
p ¼

1ffiffi
2
p R0 þ 1ffiffi

6
p K Rþ p

R� � 1ffiffi
2
p R0 þ 1ffiffi

6
p K n

N� N0 � 2ffiffi
6
p K

0
BB@

1
CCA; ð4:1Þ

where we have suppressed the dependence on x. For later use, we have to keep in
mind that each entry of Eq. 4.1 is a Dirac field, but for the purpose of discussing
the transformation properties under global flavor SU(3) this can be ignored,
because these transformations act on each of the four components in the same way.
In contrast to the mesonic case of Eq. 3.37, where we collected the fields of the
Goldstone-boson octet in a Hermitian traceless matrix /, the Ba of the spin-1=2
case are not real (Hermitian), i.e., B 6¼ By.

Exercise 4.1 Using Eq. 4.1, express the physical fields in terms of Cartesian
fields.

Now let us define the set

M � fBðxÞjBðxÞ complex, traceless 3� 3 matrixg; ð4:2Þ

which under the addition of matrices is a complex vector space. The following
homomorphism is a representation of the abstract group H ¼ SUð3ÞV on the vector
space M (see also Eq. 3.38):
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u : H ! uðHÞ; V 7!uðVÞ where uðVÞ : M ! M;

BðxÞ 7!B0ðxÞ ¼ uðVÞBðxÞ � VBðxÞVy:
ð4:3Þ

B0ðxÞ is again an element of M, because Tr½B0ðxÞ� ¼ Tr½VBðxÞVy� ¼ Tr½BðxÞ� ¼ 0.
Equation 4.3 satisfies the homomorphism property,

uðV1ÞuðV2ÞBðxÞ ¼ uðV1ÞV2BðxÞVy2 ¼ V1V2BðxÞVy2Vy1 ¼ ðV1V2ÞBðxÞðV1V2Þy

¼ uðV1V2ÞBðxÞ;

and is indeed a representation of SU(3), because

uðVÞ½k1B1ðxÞ þ k2B2ðxÞ� ¼ V ½k1B1ðxÞ þ k2B2ðxÞ�Vy ¼ k1VB1ðxÞVy þ k2VB2ðxÞVy

¼ k1uðVÞB1ðxÞ þ k2uðVÞB2ðxÞ:

Equation 4.3 is just the familiar statement that B transforms as an octet under
(the adjoint representation of) SU(3)V .1

Let us now turn to various representations and realizations of the group
SUð3ÞL � SUð3ÞR. We consider two explicit examples and refer the interested
reader to the textbook by Georgi [30] for more details. In analogy to the discussion
of the quark fields in QCD, we may introduce left- and right-handed components
of the baryon fields (see Eq. 1.37):

B1 ¼ PLB1 þ PRB1 ¼ BL þ BR: ð4:4Þ

We define the set M1 � fðBLðxÞ;BRðxÞÞg which under the addition of matrices is a
complex vector space. The following homomorphism is a representation of the
abstract group G ¼ SUð3ÞL � SUð3ÞR on M1:

ðBL;BRÞ 7! ðB0L;B0RÞ � ðLBLLy;RBRRyÞ; ð4:5Þ

where we have suppressed the x dependence. The proof proceeds in complete
analogy to that of Eq. 4.3.

As a second example, consider the set M2 � fB2ðxÞg with the homomorphism

B2 7!B02 � LB2Ly; ð4:6Þ

i.e., the transformation behavior is independent of R. The mapping defines a
representation of the group G ¼ SUð3ÞL � SUð3ÞR, although the transformation
behavior is drastically different from the first example. However, the important
feature which both mappings have in common is that under the subgroup H ¼
fðV ;VÞjV 2 SU(3)g of G both fields Bi transform as an octet:

1 Technically speaking the adjoint representation is faithful (one-to-one) modulo the center Z of
SU(3), which is defined as the set of all elements commuting with all elements of SU(3) and is
given by Z ¼ f1; expð2pi=3Þ1; expð4pi=3Þ1g.
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B1 ¼ BLþBR 7!
H

VBLVy þ VBRVy ¼ VB1Vy;

B2 7!
H

VB2Vy:

We will now show how in a theory also containing Goldstone bosons the
various realizations may be connected to each other using field redefinitions. Here
we consider the second example, with the fields B2 of Eq. 4.6 and U of Eq. 3.41
transforming as

B2 7! LB2Ly; U 7!RULy;

and define new baryon fields by

~B � UB2 �
1
3

TrðUB2Þ;

so that the new pair ð~B;UÞ transforms as

~B 7!RUB2Ly � 1
3

TrðRUB2LyÞ; U 7!RULy:

Note in particular that ~B still transforms as an octet under the subgroup
H ¼ SU(3)V .

Given that physical observables are invariant under field transformations we
may choose a description of baryons that is maximally convenient for the con-
struction of the effective Lagrangian [30] and which is commonly used in chiral
perturbation theory. We start with G ¼ SU(2)L � SU(2)R and consider the case of
G ¼ SU(3)L � SU(3)R later. Let

W ¼ p
n

� �
ð4:7Þ

denote the nucleon field with two four-component Dirac fields for the proton and
the neutron, and U the SU(2) matrix containing the pion fields. We have already
seen in Sect. 3.3.2 that the mapping U 7!RULy defines a realization of G. We
denote the unitary square root of U by u, u2ðxÞ ¼ UðxÞ, and define the SU(2)-
valued function KðL;R;UÞ by

uðxÞ 7! u0ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
RULy
p

� RuK�1ðL;R;UÞ; ð4:8Þ

i.e.,

KðL;R;UÞ ¼ u0�1Ru ¼
ffiffiffiffiffiffiffiffiffiffiffi
RULy
p �1

R
ffiffiffiffi
U
p

:

The following homomorphism defines an operation of G on the set fðU;WÞg:

uðgÞ :
U
W

� �
7! U0

W0

� �
¼ RULy

KðL;R;UÞW

� �
; ð4:9Þ

because the identity leaves ðU;WÞ invariant and
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uðg1Þuðg2Þ
U

W

� �
¼ uðg1Þ

R2ULy2
KðL2;R2;UÞW

 !

¼
R1R2ULy2Ly1

KðL1;R1;R2ULy2ÞKðL2;R2;UÞW

 !

¼ R1R2UðL1L2Þy

KðL1L2;R1R2;UÞW

 !

¼ uðg1g2Þ
U

W

� �
:

Exercise 4.2 Consider the SU(N)-valued function (N ¼ 2; 3)

KðL;R;UÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
RULy
p �1

R
ffiffiffiffi
U
p

:

Verify the homomorphism property

KðL1;R1;R2ULy2ÞKðL2;R2;UÞ ¼ K½ðL1L2Þ; ðR1R2Þ;U�:

Note that for a general group element g ¼ ðL;RÞ the transformation behavior of W
depends on U. For the special case of an isospin transformation, R ¼ L ¼ V , one
obtains u0 ¼ VuVy, because

U0 ¼ u02 ¼ VuVyVuVy ¼ Vu2Vy ¼ VUVy:

Comparison with Eq. 4.8 yields K�1ðV;V ;UÞ ¼ Vy or KðV ;V;UÞ ¼ V , i.e., W
transforms linearly as an isospin doublet under the isospin subgroup H ¼ SU(2)V

of SU(2)L � SU(2)R. A general feature here is that the transformation behavior
under the subgroup which leaves the ground state invariant is independent of U.
Moreover, as already discussed in Sect. 3.3.2, the Goldstone bosons / transform
according to the adjoint representation of SU(2)V , i.e., as an isospin triplet.

For the case G ¼ SU(3)L � SU(3)R one uses the realization

uðgÞ :
U
B

� �
7! U0

B0

� �
¼ RULy

KðL;R;UÞBKyðL;R;UÞ

� �
; ð4:10Þ

where K is defined in complete analogy to Eq. 4.8 after inserting the corre-
sponding SU(3) matrices.

4.2 Baryonic Effective Lagrangian at Lowest Order

Given the dynamical fields of Eqs. 4.9 and 4.10 and their transformation proper-
ties, we will now discuss the most general effective baryonic Lagrangian at lowest
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order. As in the vacuum sector, chiral symmetry provides constraints among the
single-baryon Green functions. Analogous to the mesonic sector, these Ward
identities will be satisfied if the Green functions are calculated from the most
general effective Lagrangian coupled to external fields with a local invariance
under the chiral group (see Sect. 1.4).

Let us start with the construction of the pN effective Lagrangian L
ð1Þ
pN which we

demand to have a local SU(2)L � SU(2)R � U(1)V symmetry. The transformation
behavior of the external fields is given in Eq. 1.163, whereas the nucleon doublet
W and U transform as

UðxÞ
WðxÞ

� �
7! VRðxÞUðxÞVyLðxÞ

exp½�iHðxÞ�K½VLðxÞ;VRðxÞ;UðxÞ�WðxÞ

� �
: ð4:11Þ

The phase factor exp½�iHðxÞ� is responsible for the U(1)V transformation of the
nucleon field (see Eq. 1.162 for the corresponding transformation behavior of the
quark fields). The local character of the transformation implies that we need to
introduce a covariant derivative DlW with the usual property that it transforms in
the same way as W:

DlWðxÞ 7! ½DlWðxÞ�0 ¼ exp½�iHðxÞ�K½VLðxÞ;VRðxÞ;UðxÞ�DlWðxÞ: ð4:12Þ

Since K not only depends on VL and VR but also on U, we may expect the
covariant derivative to contain u and uy as well as their derivatives.

The so-called chiral connection (recall oluuy ¼ �uoluy),

Cl ¼
1
2

uyðol � irlÞuþ uðol � illÞuy
� �

; ð4:13Þ

is an integral part of the covariant derivative of the nucleon doublet:

DlW ¼ ol þ Cl � ivðsÞl

� 	
W: ð4:14Þ

What needs to be shown is

D0lW
0 ¼ ol þ C0l � i vðsÞl � olH

� 	h i
expð�iHÞKW

¼ expð�iHÞK ol þ Cl � ivðsÞl

� 	
W: ð4:15Þ

To that end, we make use of the product rule,

ol½expð�iHÞKW� ¼ �iolH expð�iHÞKWþ expð�iHÞolKWþ expð�iHÞKolW;

in Eq. 4.15 and multiply by expðiHÞ, reducing it to

olK ¼ KCl � C0lK:

Using Eq. 4.8,
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K ¼ u0yVRu ¼ u0u0y|{z}
¼ 1

u0yVRu ¼ u0U0yVRu ¼ u0VL Uy|{z}
¼ uyuy

VyRVR|ffl{zffl}
¼ 1

u ¼ u0VLuy;

we find

2ðKCl � C0lKÞ

¼ K uyðol � irlÞu
� �

� u0yðol � iVRrlVyR þ VRolVyRÞu0
h i

K

þ ðR! L; rl ! ll; u$ uy; u0 $ u0yÞ
¼ u0yVRðolu� irluÞ � u0yolu0 K|{z}

¼ u0yVRu

þ iu0yVRrl VyRu0K|fflffl{zfflffl}
¼ u

�u0yVRolVyR u0K|{z}
¼ VRu

þ ðR! L; rl ! ll; u$ uy; u0 $ u0yÞ
¼ u0yVRolu� iu0yVRrlu� u0yolu0u0y|fflfflfflfflffl{zfflfflfflfflffl}

¼ �olu0y

VRuþ iu0yVRrlu� u0y VRolVyRVR|fflfflfflfflfflffl{zfflfflfflfflfflffl}
¼ �olVR

u

þ ðR! L; rl ! ll; u$ uy; u0 $ u0yÞ
¼ u0yVRoluþ olu0yVRuþ u0yolVRuþ ðR! L; u$ uy; u0 $ u0yÞ
¼ olðu0yVRuþ u0VLuyÞ ¼ 2olK;

i.e., the covariant derivative defined in Eq. 4.14 indeed satisfies the condition of
Eq. 4.12. At OðqÞ, another Hermitian building block exists,2 the so-called chiral
vielbein,

ul � i uyðol � irlÞu� uðol � illÞuy
� �

; ð4:16Þ

which under parity transforms as an axial vector:

ul 7!
P

i uðol � illÞuy � uyðol � irlÞu
� �

¼ �ul:

Exercise 4.3 Using

u0 ¼ VRuKy ¼ KuVyL;

show that, under SU(2)L � SU(2)R � U(1)V , ul transforms as

ul 7!KulKy:

The most general effective pN Lagrangian describing processes with a single

nucleon in the initial and final states is then of the type �WbOW, where bO is an operator
acting in Dirac and isospin space, transforming under SU(2)L � SU(2)R � U(1)V

2 The power counting will be discussed below.
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as K bOKy. As in the mesonic sector, the Lagrangian must be a Hermitian Lorentz
scalar which is even under the discrete symmetries C, P, and T .

The most general such Lagrangian with the smallest number of derivatives is
given by [26]

L
ð1Þ
pN ¼ �W i 6D� mþ gA

2
clc5ul

� 	
W: ð4:17Þ

It contains two parameters (LECs) not determined by chiral symmetry: m, the
nucleon mass in the chiral limit, and gA, the axial-vector coupling constant in the
chiral limit. We denote the physical values of these two quantities by mN and gA,
respectively. The physical value of gA is determined from neutron beta decay and
is given by gA ¼ 1:2694� 0:0028 [47]. The overall normalization of the
Lagrangian is chosen such that in the case of no external fields and no pion fields it
reduces to that of a free nucleon of mass m.

Exercise 4.4 Consider the lowest-order pN Lagrangian of Eq. 4.17. Assume that

there are no external fields, ll ¼ rl ¼ vðsÞl ¼ 0, so that

Cl ¼
1
2
ðuyoluþ uoluyÞ; ul ¼ iðuyolu� uoluyÞ:

By expanding

u ¼ exp i
/~ � s~
2F

 !
¼ 1þ i

/~ � s~
2F
� /~

2

8F2
þ � � �;

derive the interaction Lagrangians containing one and two pion fields,
respectively.

Exercise 4.5 Consider the two-flavor Lagrangian

Leff ¼L
ð1Þ
pN þL2;

where

L
ð1Þ
pN ¼ �W i 6D� mþ gA

2
clc5ul

� 	
W;

L2 ¼
F2

4
Tr½DlUðDlUÞy� þ F2

4
TrðvUy þ UvyÞ:

(a) We would like to study this Lagrangian in the presence of an (external)
electromagnetic four-vector potential Al. For that purpose we need to insert
for the external fields (see Eq. 1.165)

rl ¼ ll ¼ �eAl
s3

2
; vðsÞl ¼ �

e

2
Al; e [ 0;

e2

4p
� 1

137
:
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Derive the interaction Lagrangians LcNN , LpNN , LcpNN , and Lcpp. Here, the
nomenclature is such that LcNN denotes the interaction Lagrangian describing
the interaction of an external electromagnetic four-vector potential with a
single nucleon in the initial and final states, respectively. For example, LcpNN

must be symbolically of the type �W/AW. Using Feynman rules, these four
interaction Lagrangians would be sufficient to describe pion photoproduction
on the nucleon, cN ! pN, at lowest order in ChPT.

(b) Now we would like to describe the interaction with a massive charged weak
boson W�

l ¼ ðW1l 	 iW2lÞ=
ffiffiffi
2
p

(see Eq. 1.166),

rl ¼ 0; ll ¼ �
gffiffiffi
2
p ðWþ

l Tþ þ H:c:Þ;

where H.c. refers to the Hermitian conjugate and

Tþ ¼
0 Vud

0 0

� �
:

Here, Vud denotes an element of the Cabibbo-Kobayashi-Maskawa quark-
mixing matrix,

jVudj ¼ 0:97425� 0:00022:

At lowest order in perturbation theory, the Fermi constant is related to the
gauge coupling g and the W mass by

GF ¼
ffiffiffi
2
p g2

8M2
W

¼ 1:16637ð1Þ � 10�5 GeV�2:

Derive the interaction Lagrangians LWNN and LWp.
(c) Finally, we consider the neutral weak interaction (see Eq. 1.168),

rl ¼ e tanðhWÞZl
s3

2
;

ll ¼ �
g

cosðhWÞ
Zl

s3

2
þ e tanðhWÞZl

s3

2
;

vðsÞl ¼
e tanðhWÞ

2
Zl;

where hW is the weak angle, e ¼ g sinðhWÞ. Derive the interaction Lagrangians
LZNN and LZp.

Since the nucleon mass mN does not vanish in the chiral limit, the zeroth
component o0 of the partial derivative acting on the nucleon field does not produce
a ‘‘small’’ quantity. We thus have to address the new features of chiral power
counting in the baryonic sector. The counting of the external fields as well as of
covariant derivatives acting on the mesonic fields remains the same as in mesonic
chiral perturbation theory (see Eq. 3.69). On the other hand, the counting of
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bilinears �WCW is probably easiest understood by investigating the matrix elements
of positive-energy plane-wave solutions to the free Dirac equation in the Dirac
representation:

wðþÞðx~; tÞ ¼ expð�ip � xÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E þ mN

p v
r~�p~

EþmN
v

� �
; ð4:18Þ

where v denotes a two-component Pauli spinor and p ¼ ðE; p~Þ with E ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p~2 þ m2

N

q
. In the low-energy limit, i.e., for nonrelativistic kinematics, the lower

(small) component is suppressed as jp~j=mN in comparison with the upper (large)
component. For the analysis of the bilinears it is convenient to divide the 16 C
matrices into even and odd ones, E ¼ f1; c0; c5ci; rijg and O ¼ fc5; c5c0; ci; ri0g
[19, 23], respectively, where odd matrices couple large and small components but
not large with large, whereas even matrices do the opposite. Finally, iol acting on
the nucleon solution produces pl which we write symbolically as p ¼
ðmN ; 0~Þ þ ðE � mN ; p~Þ, where we count the second term as OðqÞ, i.e., as a small
quantity. Therefore, 6p� m counts as OðqÞ.3 We are now in the position to sum-
marize the chiral counting scheme for the (new) elements of baryon chiral per-
turbation theory [40]:

W; �W ¼ Oðq0Þ;DlW ¼ Oðq0Þ; ði 6D� mÞW ¼ OðqÞ;
1; cl; c5cl; rlm ¼ Oðq0Þ; c5 ¼ OðqÞ;

ð4:19Þ

where the order given is the minimal one. For example, cl has both an Oðq0Þ piece,
c0, as well as an OðqÞ piece, ci. A rigorous nonrelativistic reduction may be
achieved in the framework of the Foldy-Wouthuysen method [19, 23] or the
heavy-baryon approach [5, 37] (see Sect. 4.6.1).

The construction of the SUð3ÞL � SUð3ÞR Lagrangian proceeds similarly except
for the fact that the baryon fields are contained in the 3� 3 matrix of Eq. 4.1
transforming as KBKy. Analogously to the mesonic sector, the building blocks are
written as products transforming as K. . .Ky with a trace taken at the end. The
lowest-order Lagrangian reads [30, 40]

L
ð1Þ
MB ¼ Tr �B i6D�M0ð ÞB½ � � D

2
Tr �Bclc5ful;Bg
� �

� F

2
Tr �Bclc5½ul;B�
� �

; ð4:20Þ

where M0 denotes the mass of the baryon octet in the chiral limit. The covariant
derivative of B is defined as

DlB ¼ olBþ ½Cl;B�; ð4:21Þ

with Cl of Eq. 4.13 (for SUð3ÞL � SUð3ÞR). The constants D and F may be
determined by fitting the semi-leptonic decays B! B0 þ e� þ �me at tree level [9]:

3 The quantity mN � m is of Oðq2Þ as we will see in Sect. 4.5.3.
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D ¼ 0:80; F ¼ 0:50: ð4:22Þ

Exercise 4.6 Consider the three-flavor Lagrangian of Eq. 4.20 in the absence of
external fields:

DlB ¼ olBþ 1
2
½uyoluþ uoluy;B�; ul ¼ iðuyolu� uoluyÞ:

Using

B ¼ Bakaffiffiffi
2
p ; �B ¼

�Bbkbffiffiffi
2
p ;

show that the interaction Lagrangians with one and two mesons can be written as

L
ð1Þ
/BB ¼

1
F0
ðdabcDþ ifabcFÞ�Bbc

lc5Baol/c;

L
ð1Þ
//BB ¼ �

i

2F2
0

fabefcde�Bbc
lBa/col/d:

Hint: uyoluþ uoluy ¼ uyolu� oluuy ¼ ½uy; olu�. Make use of Eqs. 1.10 and 1.12.

4.3 Applications at Lowest Order

4.3.1 Goldberger-Treiman Relation and the Axial-Vector
Current Matrix Element

We have seen in Sect. 1.3.6 that the quark masses in QCD give rise to a non-
vanishing divergence of the axial-vector current operator (see Eq. 1.112). Here we
will discuss the implications for the matrix elements of the pseudoscalar density
and of the axial-vector current evaluated between single-nucleon states in terms of
the lowest-order Lagrangians of Eqs. 3.77 and 4.17. In particular, we will see that
the divergence equation

hNðp0ÞjolAl
i ð0ÞjNðpÞi ¼ hNðp0Þjm̂Pið0ÞjNðpÞi; ð4:23Þ

where m̂ ¼ mu ¼ md, is satisfied in ChPT.
The nucleon matrix element of the pseudoscalar density can be parameterized

as4

m̂hNðp0ÞjPið0ÞjNðpÞi ¼
M2

pFp

M2
p � t

GpNðtÞi�uðp0Þc5siuðpÞ; ð4:24Þ

4 In the following, spin and isospin quantum numbers as well as isospinors are suppressed.
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where t ¼ ðp0 � pÞ2. Equation 4.24 defines the form factor GpNðtÞ in terms of the
QCD operator m̂PiðxÞ. The operator m̂PiðxÞ=ðM2

pFpÞ serves as an interpolating
pion field and thus GpNðtÞ is also referred to as the pion-nucleon form factor (for
this specific choice of the interpolating pion field). The pion-nucleon coupling
constant gpN is defined as gpN � GpNðt ¼ M2

pÞ.
The Lagrangian L

ð1Þ
pN of Eq. 4.17 does not generate a direct coupling of an

external pseudoscalar field piðxÞ to the nucleon, i.e., it does not contain any terms
involving v or vy. At lowest order in the chiral expansion, the matrix element of the
pseudoscalar density is therefore given in terms of the diagram of Fig. 4.1, i.e.,
the pseudoscalar source produces a pion which propagates and is then absorbed by
the nucleon. The coupling of a pseudoscalar field to the pion in the framework of
L2 is given by

Lext ¼ i
F2B

2
TrðpUy � UpÞ ¼ 2BFpi/i þ � � �: ð4:25Þ

When working with the realization of Eq. 4.9 it is convenient to use the expo-
nential parameterization

UðxÞ ¼ exp i
/~ðxÞ � s~

F

" #
;

because in that case the square root is simply given by

uðxÞ ¼ exp i
/~ðxÞ � s~

2F

" #
:

According to Fig. 4.1, we need to identify the interaction term of a nucleon with a
single pion. In the absence of external fields the chiral vielbein of Eq. 4.16 is odd
in the pion fields,

ul ¼ i uyolu� uoluy
� �

7!/i 7!�/i
i uoluy � uyolu
� �

¼ �ul: ð4:26Þ

Expanding u and uy as

u ¼ 1þ i
/~ � s~
2F
þ O /2� �

; uy ¼ 1� i
/~ � s~
2F
þ O /2� �

; ð4:27Þ

we obtain

ul ¼ �
ol/~ � s~

F
þ O /3� �

; ð4:28Þ

which, when inserted into L
ð1Þ
pN of Eq. 4.17, generates the following interaction

Lagrangian (see Exercise 4.4):
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Lint ¼ �
1
2

gA

F
�Wclc5 ol/~ � s~|fflfflffl{zfflfflffl}

¼ ol/jsj

W: ð4:29Þ

(Note that the sign is opposite to the conventionally-used pseudovector
pion-nucleon coupling.5) The Feynman rule for the vertex of an incoming pion
with four-momentum q and Cartesian isospin index i is given by

i �1
2

gA

F

� �
clc5sjdjið�iqlÞ ¼ �

1
2

gA

F
6qc5si: ð4:30Þ

On the other hand, the chiral connection of Eq. 4.13 with the external fields set to
zero is even in the pion fields,

Cl ¼
1
2

uyoluþ uoluy
� �

7!/i 7!�/i 1
2

uoluy þ uyolu
� �

¼ Cl; ð4:31Þ

i.e., it does not contribute to the single-pion vertex.
We now put the individual pieces together and obtain for the diagram of

Fig. 4.1

m̂2BF
i

t �M2
�uðp0Þ �1

2
gA

F
6qc5si

� �
uðpÞ ¼ M2F

mgA

F

1
M2 � t

�uðp0Þc5isiuðpÞ;

where we used M2 ¼ 2Bm̂ and the Dirac equation to show �u 6qc5u ¼ 2m�uc5u.
At Oðq2Þ, Fp ¼ F and M2

p ¼ M2 so that, by comparison with Eq. 4.24, we can read
off the lowest-order result

GpNðtÞ ¼
m

F
gA; ð4:32Þ

i.e., at this order the form factor does not depend on t. In general, the pion-nucleon
coupling constant is defined at t ¼ M2

p which, in the present case, simply yields

p p ′

q

m̂p i

1

2

Fig. 4.1 Lowest-order contribution to the single-nucleon matrix element of the pseudoscalar

density. The mesonic and baryonic vertices derived from L2 and L
ð1Þ
pN , respectively, are denoted

by the numbers 2 and 1 in the interaction blobs

5 In fact, also the definition of the pion-nucleon form factor of Eq. 4.24 contains a sign opposite
to the standard convention so that, in the end, the Goldberger-Treiman relation emerges with the
conventional sign.
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gpN ¼ GpNðM2
pÞ ¼

m

F
gA: ð4:33Þ

Equation 4.33 represents the famous Goldberger-Treiman relation [32, 48] which
establishes a connection between quantities entering weak processes, Fp and gA (to
be discussed below), and a typical strong-interaction quantity, namely the
pion-nucleon coupling constant gpN . The numerical violation of the Goldberger-
Treiman relation, as expressed in the so-called Goldberger-Treiman discrepancy
[50],

D � 1� mNgA

FpgpN
; ð4:34Þ

is at the percent level,6 although one has to keep in mind that all four physical
quantities move from their chiral-limit values gA etc. to the empirical ones gA etc.

Using Lorentz covariance and isospin symmetry, the matrix element of the
axial-vector current between initial and final nucleon states—excluding second-
class currents [61]—can be parameterized as7

hNðp0ÞjAl
i ð0ÞjNðpÞi ¼ �uðp0Þ clGAðtÞ þ

ðp0 � pÞl

2mN
GPðtÞ


 �
c5

si

2
uðpÞ; ð4:35Þ

where t ¼ ðp0 � pÞ2, and GAðtÞ and GPðtÞ are the axial and induced pseudoscalar
form factors, respectively.

At lowest order, an external axial-vector field ail couples directly to the nucleon
as

Lext ¼ gA
�Wclc5

si

2
Wailþ � � �; ð4:36Þ

which is obtained from L
ð1Þ
pN with ul ¼ ðrl � llÞþ � � � ¼ 2alþ � � �. A second

contribution results from the coupling of an external axial-vector field to the pion,
propagation of the pion, and subsequent absorption of the pion by the nucleon. The
coupling of an external axial-vector field to pions is obtained from L2 with
rl ¼ �ll ¼ al,

Lext ¼ �Fol/iailþ � � �; ð4:37Þ

which gives rise to a diagram similar to Fig. 4.1, with m̂pi replaced by ail.

6 Using mN ¼ ðmp þ mnÞ=2 ¼ 938:92 MeV, gA ¼ 1:2695ð29Þ, Fp ¼ 92:42ð26Þ MeV, and
gpN ¼ 13:21þ0:11

�0:05 [56], one obtains DpN ¼ ð2:37þ0:89
�0:51Þ %.

7 The terminology ‘‘first and second classes’’ refers to the transformation property of
strangeness-conserving semi-leptonic weak interactions under G conjugation [61] which is the
product of charge symmetry and charge conjugation G ¼ C expðipQV2Þ. A second-class
contribution would appear in terms of a third form factor GT contributing as

GT ðtÞ�uðp0Þi
rlmqm

2mN
c5

si

2
uðpÞ:

Assuming perfect G-conjugation symmetry, the form factor GT vanishes.
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The matrix element is thus given by

�uðp0Þ gAclc5
si

2
þ �1

2
gA

F
ð6p0� 6pÞc5si


 �
i

q2 �M2
ð�iFqlÞ

� �
uðpÞ;

from which we obtain, by applying the Dirac equation,

GAðtÞ ¼ gA; ð4:38Þ

GPðtÞ ¼ �
4m2gA

t �M2
: ð4:39Þ

At this order, the axial form factor does not yet show a t dependence. The
axial-vector coupling constant is defined as GAð0Þ, which is simply given by gA.

We have thus identified the second new parameter of L
ð1Þ
pN besides the nucleon

mass m. Both quantities refer to the chiral limit. The induced pseudoscalar form
factor is determined by pion exchange, which is the simplest version of the so-
called pion-pole dominance. The 1=ðt �M2Þ behavior of GP is not in conflict with
the book-keeping of a calculation at OðqÞ, because, according to Eq. 3.69, the
external axial-vector field al counts as OðqÞ, and the definition of the matrix
element contains a momentum ðp0 � pÞl and the chirality matrix c5 (see Eq. 4.19)
so that the combined order of all elements is indeed OðqÞ.

It is straightforward to verify that the form factors of Eqs. 4.32, 4.38, and 4.39
satisfy the relation

2mNGAðtÞ þ
t

2mN
GPðtÞ ¼ 2

M2
pFp

M2
p � t

GpNðtÞ; ð4:40Þ

which is required by the divergence equation of Eq. 4.23 with the parameteriza-
tions of Eqs. 4.24 and 4.35 for the matrix elements. In other words, only two of the
three form factors GA, GP, and GpN are independent. Note that this relation is not
restricted to small values of t but holds for any t.

Exercise 4.7 According to Eq. 1.112, the divergence of the axial-vector current in
the two-flavor sector is given by

olAl
i ðxÞ ¼ m̂PiðxÞ; i ¼ 1; 2; 3;

where we have assumed m̂ ¼ mu ¼ md. Let jAi and jBi denote some (arbitrary)
hadronic states which are eigenstates of the four-momentum operator P with
eigenvalues pA and pB, respectively. Evaluating the above operator equation
between jAi and hBj and using translational invariance, one obtains

hBjolAl
i ðxÞjAi ¼ olhBjAl

i ðxÞjAi ¼ ol hBjeiP�xAl
i ð0Þe�iP�xjAi

� �

¼ ol eiðpB�pAÞ�xhBjAl
i ð0ÞjAi

h i
¼ iqleiq�xhBjAl

i ð0ÞjAi

¼ eiq�xm̂hBjPið0ÞjAi;
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where we introduced q ¼ pB � pA. Dividing both sides by eiq�x 6¼ 0, we obtain

iqlhBjAl
i ð0ÞjAi ¼ m̂hBjPið0ÞjAi:

(a) Make use of the parameterizations of Eqs. 4.24 and 4.35 for the nucleon
matrix elements and derive Eq. 4.40.
Hint: Make use of the Dirac equation.

(b) Verify that the lowest-order predictions

GAðtÞ ¼ gA; GPðtÞ ¼ �
4m2gA

t �M2
; GpNðtÞ ¼

m

F
gA;

indeed satisfy this constraint. Note that mN ¼ mþ Oðq2Þ.

4.3.2 Pion-Nucleon Scattering

As another example, we will consider pion-nucleon scattering and show how the
effective Lagrangian of Eq. 4.17 reproduces the Weinberg-Tomozawa predictions
for the s-wave scattering lengths [60, 62]. We will contrast the results with those of
a tree-level calculation within pseudoscalar (PS) and pseudovector (PV) pion-
nucleon couplings.

Before calculating the pN scattering amplitude within ChPT, we introduce a
general parameterization of the invariant amplitude M ¼ iT for the process
paðqÞ þ NðpÞ ! pbðq0Þ þ Nðp0Þ [14]:8

Tabðp; q; p0; q0Þ ¼ 1
2
fsb; sagTþðp; q; p0; q0Þ þ 1

2
½sb; sa�T�ðp; q; p0; q0Þ

¼ dabTþðp; q; p0; q0Þ � ieabcscT�ðp; q; p0; q0Þ; ð4:41Þ

where

T�ðp; q; p0; q0Þ ¼ �uðp0Þ A�ðm; mBÞ þ
1
2
ð6q þ 6q0ÞB�ðm; mBÞ


 �
uðpÞ: ð4:42Þ

The amplitudes A� and B� are functions of the two independent scalar kinematical
variables

8 One also finds the parameterization

T ¼ �uðp0Þ D� 1
4mN
½6q0; 6q�B

� �
uðpÞ

with D ¼ Aþ mB, where, for simplicity, we have omitted the isospin labels.
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m ¼ s� u

4mN
¼ ðpþ p0Þ � q

2mN
¼ ðpþ p0Þ � q0

2mN
; ð4:43Þ

mB ¼ �
q � q0
2mN

¼ t � 2M2
p

4mN
; ð4:44Þ

where s ¼ ðpþ qÞ2, t ¼ ðp0 � pÞ2, and u ¼ ðp0 � qÞ2 are the usual Mandelstam
variables satisfying sþ t þ u ¼ 2m2

N þ 2M2
p. From pion-crossing symmetry,

Tabðp; q; p0; q0Þ ¼ Tbaðp;�q0; p0;�qÞ;

we obtain for the crossing behavior of the amplitudes:

Aþð�m; mBÞ ¼ Aþðm; mBÞ; A�ð�m; mBÞ ¼ �A�ðm; mBÞ;
Bþð�m; mBÞ ¼ �Bþðm; mBÞ; B�ð�m; mBÞ ¼ B�ðm; mBÞ:

ð4:45Þ

As in pp scattering, one often also finds the isospin decomposition as in
Exercise 3.14,

hI0; I03jT jI; I3i ¼ TIdII0dI3I3
0:

In this context we would like to point out that our convention for the physical pion
fields (and states) (see Exercise 3.5) differs by a factor ð�1Þ for the pþ from the
spherical convention which is commonly used in the context of applying
the Wigner-Eckart theorem. Taking into account a factor of ð�1Þ for each pþ in
the initial and final states, the relation between the two sets is given by [18]

T
1
2 ¼ Tþ þ 2T�;

T
3
2 ¼ Tþ � T�:

ð4:46Þ

To verify Eqs. 4.46, we consider

Tpþpþ ¼ 1
2
ðT11 � iT12 þ iT21 þ T22Þ ¼ Tþ � s3T�;

Tpþp0 ¼ 1ffiffiffi
2
p ðT13 þ iT23Þ ¼ sþT�;

where s� ¼ ðs1 � is2Þ=
ffiffiffi
2
p

. We then evaluate the matrix elements

hppþjT jppþi ¼ Tþ � T�;

hpp0jT jnpþi ¼
ffiffiffi
2
p

T�:

A comparison with the results of Exercise 4.8 below,
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sph:hppþjT jppþisph: ¼ T
3
2 ¼ ð�1Þ2hppþjTjppþi ¼ Tþ � T�;

sph:hpp0jT jnpþisph: ¼
ffiffiffi
2
p

3
ðT 3

2 � T
1
2Þ ¼ ð�1Þhpp0jT jnpþi ¼ �

ffiffiffi
2
p

T�;

results in Eq. 4.46. (The subscript sph. serves to distinguish the spherical con-
vention from our convention.)

Exercise 4.8 Consider the general parameterization of the invariant amplitude
M ¼ iT for the process paðqÞ þ NðpÞ ! pbðq0Þ þ Nðp0Þ of Eqs. 4.41 and 4.42
with the kinematical variables of Eqs. 4.43 and 4.44.

(a) Show that
s� m2

N ¼ 2mNðm� mBÞ; u� m2
N ¼ �2mNðmþ mBÞ:

Hint: Make use of four-momentum conservation, pþ q ¼ p0 þ q0, and of the
mass-shell conditions, p2 ¼ p02 ¼ m2

N , q2 ¼ q02 ¼ M2
p.

Derive the threshold values

m thr ¼ Mp; mBj jthr¼ �
M2

p

2mN
:

(b) Show that from pion-crossing symmetry,

Tabðp; q; p0; q0Þ ¼ Tbaðp;�q0; p0;�qÞ;

we obtain the crossing behavior of Eq. 4.45.
(c) The physical pN channels may be expressed in terms of the isospin eigenstates

as (a spherical convention is understood)

jppþi ¼ 3
2
;
3
2

����
�
;

jpp0i ¼
ffiffiffi
2
3

r
3
2
;
1
2

����
�
þ 1ffiffiffi

3
p 1

2
;
1
2

����
�
;

jnpþi ¼ 1ffiffiffi
3
p 3

2
;
1
2

����
�
�

ffiffiffi
2
3

r
1
2
;
1
2

����
�
;

jpp�i ¼ 1ffiffiffi
3
p 3

2
;�1

2

����
�
þ

ffiffiffi
2
3

r
1
2
;�1

2

����
�
;

jnp0i ¼
ffiffiffi
2
3

r
3
2
;�1

2

����
�
� 1ffiffiffi

3
p 1

2
;�1

2

����
�
;

jnp�i ¼ 3
2
;�3

2

����
�
:

Using
hI0; I03jT jI; I3i ¼ TIdII0dI3I3

0;

derive the expressions for hpp0jT jnpþi, hpp0jT jpp0i, and hnpþjT jnpþi. Verify
that
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hpp0jT jpp0i � hnpþjT jnpþi ¼ 1ffiffiffi
2
p hpp0jT jnpþi:

Exercise 4.9 Consider the so-called pseudoscalar pion-nucleon interaction9

LPS
pNN ¼ igpN

�Wc5/~ � s~W:

The Feynman rule for both the absorption and the emission of a pion with
Cartesian isospin index a is given by

�gpNc5sa:

Derive the s- and u-channel pole contributions to the invariant amplitude of
pion-nucleon scattering (see Fig. 4.3). A t-channel pion-pole contribution does not
exist, because a triple-pion vertex does not exist.

Remark The Feynman propagator of a nucleon with mass m (in the chiral limit)
reads

iSFðpÞ ¼
i

6p� mþ i0þ
;

where the unit matrix in isospin space has been omitted.

Let us turn to the tree-level approximation to the pN scattering amplitude as

obtained from L
ð1Þ
pN of Eq. 4.17. In order to derive the relevant interaction

Lagrangians from Eq. 4.17, we reconsider the chiral connection of Eq. 4.13 with
the external fields set to zero and obtain

Cl ¼
i

4F2
/~� ol/~ � s~þ O /4� �

: ð4:47Þ

The linear pion-nucleon interaction term was already derived in Eq. 4.29 so that
we obtain the following interaction Lagrangian:

Lint ¼ �
1
2

gA

F
�Wclc5ol/bsbW�

1
4F2

�Wcl /~� ol/~ � s~|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
¼ ecde/dol/esc

W: ð4:48Þ

The first term is the pseudovector pion-nucleon coupling and the second the
contact interaction with two factors of the pion field interacting with the nucleon at
a single point. The Feynman rules for the vertices derived from Eq. 4.48 read

1. for an incoming pion with four-momentum q and Cartesian isospin index a:

9 For easier comparison with the result of ChPT we have chosen the sign opposite to the standard
convention of Eq. 1.70. See also Sect. 4.3.1.
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�1
2

gA

F
6qc5sa; ð4:49Þ

2. for an incoming pion with q; a and an outgoing pion with q0; b:

i � 1
4F2

� �
clecde ddadebiq0l þ ddbdeað�iqlÞ

h i
sc ¼

6q þ 6q0
4F2

eabcsc: ð4:50Þ

The latter gives a contact contribution to M (see Fig. 4.2),

Mcont ¼ �uðp0Þ 6q þ 6q
0

4F2
eabcsc|fflffl{zfflffl}

¼ i 1
2 ½sb; sa�

uðpÞ ¼ i
1

2F2
�uðp0Þ 1

2
ð6qþ 6q0Þ 1

2
½sb; sa�uðpÞ:

ð4:51Þ
We emphasize that such a term is not present in a conventional calculation with

either a pseudoscalar or a pseudovector pion-nucleon interaction.
For the s- and u-channel nucleon-pole diagrams the pseudovector vertex

appears twice (see Fig. 4.3) and we obtain

Msþu ¼ i
g2

A

4F2
�uðp0Þð�6q0Þc5

1
6p0 þ 6q0 � m

6qc5sbsauðpÞ

þ i
g2

A

4F2
�uðp0Þ6qc5

1
6p0 � 6q� m

ð�6q0Þc5sasbuðpÞ: ð4:52Þ

The s- and u-channel pole contributions are related to each other through pion
crossing a$ b and q$ �q0. In what follows we explicitly calculate only the s
channel and make use of pion-crossing symmetry at the end to obtain the
u-channel result. We perform the manipulations such that the result of a pseudo-
scalar coupling may also be read off. To that end, we need to apply the Dirac
equation where, to the given accuracy, we make use of mN ¼ mþ Oðq2Þ. Using
the Dirac equation, we rewrite

p p ′

q,a q ′, b

1

Fig. 4.2 Contact
contribution to the
pion-nucleon scattering
amplitude

p p + q p′

q, a q ′, b

1 1
p p − q′ p′

q, a q′, b

1 1

Fig. 4.3 s- and u-channel
pole contributions to the
pion-nucleon scattering
amplitude
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6qc5uðpÞ ¼ ð6p0 þ 6q0 � mþ m� 6pÞc5uðpÞ ¼ ð6p0 þ 6q0 � mÞc5uðpÞ þ 2mc5uðpÞ

and obtain

Ms ¼ i
g2

A

4F2
�uðp0Þð�6q0Þc5

1
6p0 þ 6q0 � m

ð6p0 þ 6q0 � mÞ þ 2m½ �c5sbsauðpÞ

¼
c2

5¼1
i
g2

A

4F2
�uðp0Þ ð�6q0Þ þ ð�6q0Þc5

1
6p0 þ 6q0 � m

2mc5


 �
sbsauðpÞ:

We repeat the above procedure

�uðp0Þ6q0c5 ¼ �uðp0Þ½�2mc5 � c5ð6p þ 6q� mÞ�;

yielding

Ms ¼ i
g2

A

4F2
�uðp0Þ½ð�6q0Þ þ 4m2c5

1
6p0 þ 6q0 � m

c5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
PS coupling

þ 2m�sbsauðpÞ; ð4:53Þ

where, for the identification of the PS-coupling result, one has to make use of the
Goldberger-Treiman relation (see Sect. 4.3.1)

gA

F
¼ gpN

m
;

where gpN denotes the pion-nucleon coupling constant in the chiral limit.
Since we only work at lowest-order tree level, we now replace m! mN , gA ! gA

etc. Using

s� m2
N ¼ 2mNðm� mBÞ;

we find

�uðp0Þc5
1

6p0 þ 6q0 � mN
c5uðpÞ ¼ �uðp0Þc5

6p0 þ 6q0 þ mN

ðp0 þ q0Þ2 � m2
N

c5uðpÞ

¼ 1
2mNðm� mBÞ

�1
2
�uðp0Þð6q þ 6q0ÞuðpÞ


 �
;

where we again made use of the Dirac equation. We finally obtain for the
s-channel pole contribution

Ms ¼ i
g2

A

4F2
p
�uðp0Þ 2mN þ

1
2
ð6q þ 6q0Þ �1� 2mN

m� mB

� �
 �
sbsauðpÞ: ð4:54Þ

As noted above, the expression for the u channel results from the substitution
a$ b and q$ �q0,
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Mu ¼ i
g2

A

4F2
p

�uðp0Þ 2mN þ
1
2
ð6q þ 6q0Þ 1� 2mN

mþ mB

� �
 �
sasbuðpÞ: ð4:55Þ

We combine the s- and u-channel pole contributions using

sbsa ¼
1
2
fsb; sag þ

1
2
½sb; sa�; sasb ¼

1
2
fsb; sag �

1
2
½sb; sa�;

and

1
m� mB

� 1
mþ mB

¼

2m
2mB

� �

m2 � m2
B

;

and summarize the contributions to the functions A� and B� of Eq. 4.42 in
Table 4.1 (see also Eq. A.26 of Ref. [26]).

In order to extract the scattering lengths, let us consider threshold kinematics,

pl ¼ p0l ¼ ðmN ; 0~Þ; ql ¼ q0l ¼ ðMp; 0~Þ; m thr ¼ Mp; mBj jthr¼ �
M2

p

2mN
:

ð4:56Þ

Together with10

uðpÞ !
ffiffiffiffiffiffiffiffiffi
2mN

p v
0

� �
; �uðp0Þ !

ffiffiffiffiffiffiffiffiffi
2mN

p
v0y 0
� �

we find for the threshold matrix element

Tjthr ¼ 2mNv0y dab Aþ þMpBþð Þ � ieabcsc A� þMpB�ð Þ½ �thrv: ð4:57Þ

Using

Table 4.1 Tree-level contributions to the functions A� and B� of Eq. 4.42

Amplitude/origin PS DPV Contact Sum

Aþ 0 g2
AmN

F2
p

0 g2
AmN

F2
p

A� 0 0 0 0
Bþ �g2

A
F2

p

mN m
m2�m2

B

0 0 �g2
A

F2
p

mN m
m2�m2

B

B� �g2
A

F2
p

mN mB

m2�m2
B

� g2
A

2F2
p

1
2F2

p

1�g2
A

2F2
p
� g2

A
F2

p

mNmB

m2�m2
B

The second column (PS) denotes the result using the pseudoscalar pion-nucleon coupling (using
the Goldberger-Treiman relation). The sum of the second and third column (PS + DPV) repre-
sents the result of the pseudovector pion-nucleon coupling. The contact term is specific to the
chiral approach. The last column, the sum of the second, third, and fourth columns, is the lowest-
order ChPT result

10 Recall that we use the normalization �uu ¼ 2mN .
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m2 � m2
B

� �
thr
¼ M2

p 1� l2

4

� �
; l ¼ Mp

mN
� 1

7
;

we obtain

T
��
thr
¼ 2mNv0y



dab

�
g2

AmN

F2
p

þMp �
g2

A

F2
p

� �
mN

Mp

1

1� l2

4|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
PS

�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ChPT ¼ PV

� ieabcscMp

�
1

2F2
p
� g2

A

2F2
p
�g2

A

F2
p
�1

2

� �
1

1� l2

4|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
PS|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

PV

�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ChPT

�
v; ð4:58Þ

where we have indicated the results for the various coupling schemes.
Let us discuss the s-wave scattering lengths resulting from Eq. 4.58. Using the

above normalization for the Dirac spinors, the differential cross section in the
center-of-mass frame is given by [18]

dr
dX
¼ jq~

0j
jq~j

1
8p

ffiffi
s
p

� �2

jT j2; ð4:59Þ

which, at threshold, reduces to

dr
dX

����
thr

¼ 1
8pðmN þMpÞ

� �2

Tj j2thr¼ jaj
2: ð4:60Þ

The s-wave scattering lengths are defined as11

a�0þ �
1

8pðmN þMpÞ
T�
��
thr
¼ 1

4pð1þ lÞ A� þMpB�
� �

thr
: ð4:61Þ

11 The threshold parameters are defined in terms of a multipole expansion of the pN scattering
amplitude [14]. The sign convention for the s-wave scattering parameters að�Þ0þ is opposite to the
convention of the effective-range expansion.
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The subscript 0þ refers to the fact that the pN system is in an orbital s wave
(l ¼ 0) with total angular momentum 1=2 ¼ 0þ 1=2. Inserting the results of
Table 4.1, we obtain at OðqÞ,12

a�0þ ¼
Mp

8pð1þ lÞF2
p

1þ g2
Al2

4
1

1� l2

4

 !
¼ Mp

8pð1þ lÞF2
p

1þ Oðq2Þ
� �

; ð4:62Þ

aþ0þ ¼ �
g2

AMp

16pð1þ lÞF2
p

l

1� l2

4

¼ Oðq2Þ; ð4:63Þ

where we have also indicated the chiral order. Taking the linear combinations a
1
2 ¼

aþ0þ þ 2a�0þ and a
3
2 ¼ aþ0þ � a�0þ (see Eq. 4.46), we see that the results of Eqs. 4.62

and 4.63 at OðqÞ indeed satisfy the Weinberg-Tomozawa relation [60, 62]:13

aI ¼ � Mp

8pð1þ lÞF2
p

IðI þ 1Þ � 3
4
� 2


 �
; ð4:64Þ

where I denotes the total isospin of the pion-nucleon system. As in pp scattering,
the scattering lengths vanish in the chiral limit reflecting the fact that the inter-
action of Goldstone bosons vanishes in the zero-energy limit. The pseudoscalar
pion-nucleon interaction produces a scattering length aþ0þ proportional to mN

instead of lMp and is clearly in conflict with the requirements of chiral symmetry.
Moreover, the scattering length a�0þ of the pseudoscalar coupling is too large by a
factor g2

A in comparison with the two-pion contact term of Eq. 4.51 (sometimes
also referred to as the Weinberg-Tomozawa term) induced by the nonlinear
realization of chiral symmetry. On the other hand, the pseudovector pion-nucleon
interaction gives a completely wrong result for a�0þ, because it misses the two-pion
contact term of Eq. 4.51.

Using the values

gA ¼ 1:267; Fp ¼ 92:4 MeV;

mN ¼ mp ¼ 938:3 MeV; Mp ¼ Mpþ ¼ 139:6 MeV;
ð4:65Þ

the numerical results for the scattering lengths are given in Table 4.2. We have
included the full results of Eqs. 4.62 and 4.63 and the consistent corresponding
prediction at OðqÞ. The empirical results quoted have been taken from low-energy
partial-wave analyses [39, 43] and precision X-ray experiments on pionic hydro-
gen and deuterium [56]. For a discussion of pN scattering beyond tree level, see,
e.g., Refs. [4, 21, 45].

12 We do not expand the fraction 1=ð1þ lÞ, because the l dependence is not of dynamical
origin.
13 The result, in principle, holds for a general target of isospin T (except for the pion) after
replacing 3/4 by TðT þ 1Þ and l by Mp=MT .
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4.4 The Next-to-Leading-Order Lagrangian

The next-to-leading-order pion-nucleon Lagrangian contains seven low-energy
constants ci [22, 26],

L
ð2Þ
pN ¼ c1TrðvþÞ �WW� c2

4m2
TrðulumÞð �WDlDmWþ H:c:Þ

þ c3

2
TrðululÞ �WW� c4

4
�Wclcm½ul; um�Wþ c5

�W vþ �
1
2

TrðvþÞ

 �

W

þ �Wrlm c6

2
fþlm þ

c7

2
vðsÞlm

h i
W; ð4:66Þ

where H.c. refers to the Hermitian conjugate and

v� ¼ uyvuy � uvyu;

vðsÞlm ¼ olvðsÞm � omv
ðsÞ
l ;

f�lm ¼ ufLlmu
y � uyfRlmu;

fLlm ¼ ollm � omll � i ll; lm
� �

;

fRlm ¼ olrm � omrl � i rl; rm
� �

:

In order to be able to make predictions for physical quantities, the values of the ci

have to be determined from comparisons with experiments. A first estimate of the
low-energy constants c1; . . .; c4 may be obtained from a tree-level fit [3] to the pN
threshold parameters of Koch [39]:

c1 ¼ �0:9m�1
N ; c2 ¼ 2:5m�1

N ; c3 ¼ �4:2m�1
N ; c4 ¼ 2:3m�1

N : ð4:67Þ

In general, once calculations are performed beyond tree level and LECs are fitted
to empirical data, it is necessary to specify the renormalization prescription to
which the given values of the LECs refer. We will come back to this point in
Sect. 4.5.3. When considering the chiral expansion of an observable, the coeffi-
cient at a given order does not depend on the renormalization scale l (see
Sect. 3.5.2 for an illustration in terms of the Goldstone-boson masses).

Table 4.2 s-wave scattering lengths a�0þ
Scattering length aþ0þ [MeV�1] a�0þ [MeV�1]

Tree-level result �6:80� 10�5 þ5:71� 10�4

ChPT OðqÞ 0 þ5:66� 10�4

PS �1:23� 10�2 þ9:14� 10�4

PV �6:80� 10�5 þ5:06� 10�6

Empirical values [39] ð�7� 1Þ � 10�5 ð6:6� 0:1Þ � 10�4

Empirical values [43] ð2:04� 1:17Þ � 10�5 ð5:71� 0:12Þ � 10�4

ð5:92� 0:11Þ � 10�4

Experiment [56] ð�2:7� 3:6Þ � 10�5 ðþ6:59� 0:30Þ � 10�4
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In particular, if a renormalization scheme is set up such that renormalized loop
contributions start at Oðq3Þ (see Sect. 4.5.2) this means that the renormalized

coefficients of Lð2Þ
pN do not depend on l in this scheme.

Combining the analyses of several sources, the following estimates for the ci

have been compiled in Ref. [44] (values in GeV�1):

c1 ¼ �0:9þ0:5
�0:2; c2 ¼ 3:3� 0:2; c3 ¼ �4:7þ1:2

�1:0; c4 ¼ 3:5þ0:5
�0:2: ð4:68Þ

The constant c5 is related to the strong contribution to the neutron-proton mass
difference and has been estimated to be c5 ¼ �0:09� 0:01 [7].

Finally, the constants c6 and c7 are related to the isovector and isoscalar
magnetic moments of the nucleon in the chiral limit. This is seen by considering
the coupling to an external electromagnetic four-vector potential by setting

rl ¼ ll ¼ �eAl
s3

2
; vðsÞl ¼ �e

1
2
Al:

We then obtain

vðsÞlm ¼ �e
1
2
Flm; Flm ¼ olAm � omAl;

fLlm ¼ ollm � omll � i ½ll; lm�|fflffl{zfflffl}
¼ 0

¼ �eFlm
s3

2
¼ fRlm;

and thus

fþlm ¼ ufLlmu
y þ uyfRlmu ¼ fLlm þ fRlm þ � � � ¼ �eFlms3 þ � � � :

Inserting these terms into the Lagrangian we see that the contributions without
pion fields are given by

�e

2
�Wrlm c6s3 þ

1
2

c7

� �
WFlm:

Comparing with the interaction Lagrangian of a magnetic field with the anomalous
magnetic moment of the nucleon,

� e

4mp

�Wrlm1
2

jðsÞ þ jðvÞs3

� 	
WFlm;

we obtain
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c7 ¼


j
ðsÞ

2m
; c6 ¼



j
ðvÞ

4m
;

where 
 denotes the chiral limit. The physical values read

jp ¼
1
2

jðsÞ þ jðvÞ
� 	

¼ 1:793; jn ¼
1
2

jðsÞ � jðvÞ
� 	

¼ �1:913;

and thus jðsÞ ¼ �0:120 and jðvÞ ¼ 3:706. The results for jðsÞ and jðvÞ up to and
including Oðq3Þ [6, 20],14

jðsÞ ¼ j

 ðsÞ þ Oðq4Þ;

jðvÞ ¼ j

 ðvÞ �MpmNg2

A

4pF2
p
þ Oðq4Þ;

are used to express the parameters c6 and c7 in terms of physical quantities. Note
that the numerical correction of �1:96 (parameters of Eq. 4.65) to the isovector
anomalous magnetic moment is substantial.

4.5 Loop Diagrams: Renormalization and Power Counting

For the applications in Sects. 4.3.1 and 4.3.2 we only considered contributions at
leading order, which meant that only tree-level diagrams had to be taken into
account. To go beyond leading order, we will have to calculate loop diagrams as
well. In Sect. 3.4.9 we saw that in the purely mesonic sector contributions of n-loop
diagrams are at least of Oðq2nþ2Þ, i.e., they are suppressed by q2n in comparison
with tree-level diagrams. An important ingredient in deriving this result was the fact
that we treated the squared pion mass as a small quantity of order q2. Such an
approach is motivated by the observation that the masses of the Goldstone bosons
must vanish in the chiral limit. In the framework of ordinary chiral perturbation
theory M2

p�mq (see Eqs. 3.59 and 3.161), which translates into a momentum
expansion of observables at fixed ratio mq=q2. On the other hand, there is no reason
to believe that the masses of hadrons other than the Goldstone bosons should vanish
or become small in the chiral limit. In other words, the nucleon mass entering the
pion-nucleon Lagrangian of Eq. 4.17 should—as already anticipated in the dis-
cussion following Eq. 4.17—not be treated as a small quantity of, say, OðqÞ.

Before discussing how this affects the calculation of loop diagrams and the
construction of a consistent power counting, we recall the principles of renor-
malization. As we will see, the choice of a renormalization condition is intimately
connected with the power counting.

14 The calculations were performed in the heavy-baryon approach (see Sect. 4.6.1) in which the
ci are renormalization-scale independent.
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4.5.1 Counter Terms of the Baryonic ChPT Lagrangian

In Sect. 3.4.8 we discussed how to renormalize a toy model by expressing all bare
fields and parameters in terms of renormalized quantities. The procedure results in
counter terms which are used to absorb divergences appearing in loop diagrams.
We also pointed out that one is free to specify a renormalization condition,
determining which finite parts of the loop integrals are absorbed in the counter
terms. As this freedom to choose a renormalization condition plays a crucial role in
baryon chiral perturbation theory, we briefly want to discuss the counter terms

appearing in L
ð1Þ
pN , for simplicity only considering the free part in combination

with the pN interaction term with the smallest number of pion fields. In terms of
bare fields this part of the Lagrangian reads

L
ð1Þ
pN ¼ �WB iclol � mB �

1
2
gAB

FB
clc5ol/iBsi

� �
WB þ � � �: ð4:69Þ

After introducing renormalized fields as

W ¼ WBffiffiffiffiffiffi
ZW
p ; /i ¼

/iBffiffiffiffiffiffi
Z/

p ; ð4:70Þ

we express the field redefinition constants for the nucleon and pion fields as well as
the bare quantities in terms of renormalized parameters:

ZW ¼ 1þ dZW m; gA; gi; mð Þ;
Z/ ¼ 1þ dZ/ m; gA; gi; mð Þ;
mB ¼ mðmÞ þ dm m; gA; gi; mð Þ;
gAB ¼ gAðmÞ þ dgA m; gA; gi; mð Þ;

ð4:71Þ

where gi, i ¼ 1; . . .;1, collectively denote all the renormalized parameters which
correspond to bare parameters giB of the full effective Lagrangian. As before, the
dependence on the renormalization prescription is contained in the parameter m.
Here we choose the renormalized mass parameter to be the nucleon mass in the
chiral limit, mðmÞ ¼ m. We emphasize that our choice is only one among an infinite
number of possibilities. The basic and counter-term Lagrangians are given by

Lbasic ¼ �W iclol � m� 1
2

gA

F
clc5ol/isi

� �
W; ð4:72Þ

Lct ¼ dZW
�WiclolW� dfmg �WW� 1

2
d

gA

F

n o
�Wclc5ol/isiW; ð4:73Þ

where we introduced the abbreviations
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dfmg � dZWmþ ZWdm;

d
gA

F

n o
� dZW

gA

F

ffiffiffiffiffiffi
Z/

p
þ ZW

gAB

FB
� gA

F

� � ffiffiffiffiffiffi
Z/

p
þ gA

F
ð
ffiffiffiffiffiffi
Z/

p
� 1Þ:

As previously explained (see Sects. 3.4.4, 3.4.5, 4.2, and 4.3.1), m, gA, and F
denote the chiral limit values of the physical nucleon mass, the axial-vector
coupling constant, and the pion-decay constant, respectively. Divergences
appearing in loop diagrams can be absorbed by expanding the counter-term
Lagrangian of Eq. 4.73 in powers of the renormalized coupling constants and by
suitably adjusting the expansion coefficients.

4.5.2 Power Counting

Our goal is to obtain a power counting for tree-level and loop diagrams of the
(relativistic) EFT for baryons which is analogous to that for mesons given in
Sect. 3.4.9. It is important to note that the power counting applies to renormalized
diagrams, i.e., the sum of diagrams generated with the basic Lagrangian and the
corresponding contributions from the counter-term Lagrangian. The counter-term
contribution not only absorbs any potential divergence, we can also implement
different renormalization conditions by adjusting the finite pieces of the counter
terms. Choosing a suitable renormalization condition will allow us to apply the
following power counting: a loop integration in n dimensions counts as qn, pion
and fermion propagators count as q�2 and q�1, respectively, vertices derived from

L2k and L
ðkÞ
pN count as q2k and qk, respectively. Here, q generically denotes a small

expansion parameter such as, e.g., the pion mass. In total this yields for the power
D of a diagram the standard formula [17, 64]

D ¼ nNL � 2Ip � IN þ
X1

k¼1

2kNp
2k þ

X1

k¼1

kNN
k ; ð4:74Þ

where NL; Ip; IN ; Np
2k, and NN

k denote the number of independent loop momenta,
internal pion lines, internal nucleon lines, vertices originating from L2k, and

vertices originating from L
ðkÞ
pN , respectively. We make use of the relation15

NL ¼ Ip þ IN � Np � NN þ 1

15 This relation can be understood as follows: For each internal line we have a propagator in

combination with an integration with measure d4k=ð2pÞ4. Therefore, there are Ip þ IN
integrations. However, at each vertex we have a four-momentum conserving delta function,
reducing the number of integrations by Np þ NN � 1, where the �1 is related to the overall
four-momentum conserving delta function d4ðPf � PiÞ.
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with Np and NN the total number of pionic and baryonic vertices, respectively, to
eliminate Ip:

D ¼ ðn� 2ÞNL þ IN þ 2þ
X1

k¼1

2ðk � 1ÞNp
2k þ

X1

k¼1

ðk � 2ÞNN
k :

Finally, for processes containing exactly one nucleon in the initial and final states
we have16 NN ¼ IN þ 1 and we thus obtain

D ¼ 1þ ðn� 2ÞNL þ
X1

k¼1

2ðk � 1ÞNp
2k þ

X1

k¼1

ðk � 1ÞNN
k ð4:75Þ

� 1 in four dimensions.

According to Eq. 4.75, one-loop calculations in the single-nucleon sector should
start contributing at Oðqn�1Þ. For example, let us consider the one-loop contri-
bution of the first diagram of Fig. 4.4 to the nucleon self energy. According to
Eq. 4.74, the renormalized result should be of order

D ¼ n � 1� 2 � 1� 1 � 1þ 1 � 2 ¼ n� 1: ð4:76Þ

We will see below that a renormalization scheme that respects this power counting
is more complex than in the mesonic sector.

4.5.3 One-Loop Correction to the Nucleon Mass

In the mesonic sector, the combination of dimensional regularization and the
modified minimal subtraction scheme (see Eq. 3.124) leads to a straightforward
correspondence between the chiral and loop expansions. By studying the one-loop
contributions of Fig. 4.4 to the nucleon self energy, we will see that this corre-
spondence, at first sight, seems to be lost in the baryonic sector.

Fig. 4.4 One-loop contributions to the nucleon self energy

16 In the low-energy effective field theory there are no closed fermion loops. In other words, in
the single-nucleon sector exactly one fermion line runs through the diagram connecting the initial
and final states.
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Exercise 4.10 In the following we will calculate the mass mN of the nucleon up to
and including Oðq3Þ. As in the case of pions, the physical mass is defined through
the pole of the full propagator (at 6p ¼ mN for the nucleon). The full unrenor-
malized propagator of the nucleon is defined as the Fourier transform

SBðpÞ ¼
Z

d4xeip�xSBðxÞ ð4:77Þ

of the two-point function

SBðxÞ ¼ �ih0jT ½WBðxÞ �WBð0Þ�j0i; ð4:78Þ

where WB denotes the bare nucleon field. We parameterize

SBðpÞ ¼
1

6p� mB � RBð6pÞ
� 1
6p� m� Rð6pÞ; ð4:79Þ

where mB refers to the bare mass of Eq. 4.69 and RB is the self energy calculated in
terms of bare parameters. On the other hand, m is the nucleon mass in the chiral
limit and Eq. 4.79 defines the quantity R. Here, RBð6pÞ and Rð6pÞ are matrix
functions [36] which, using 6p 6p ¼ p2, can be parameterized as

RBðxÞ ¼ �xfBðx2Þ þ mBgBðx2Þ

with an analogous expression for R. To determine the mass, the equation

mN � mB � RBðmNÞ ¼ mN � m� RðmNÞ ¼ 0 ð4:80Þ

has to be solved, so the task is to calculate the nucleon self energy Rð6pÞ.

According to the power counting specified above, we need to calculate the two
types of one-loop contributions shown in Fig. 4.4 together with the corresponding
counter-term contribution and a tree-level contribution. After renormalization, we
would like the first loop diagram to be of chiral order D ¼ n � 1� 2 � 1� 1 � 1þ
2 � 1 ¼ n� 1, and the second loop diagram of order D ¼ n � 1� 2 � 1þ
1 � 1 ¼ n� 1.

(a) The pN Lagrangian at Oðq2Þ is given in Eq. 4.66. Which of these terms
contain only the nucleon fields and therefore give a tree-level contribution to

the self energy? Determine �iRtree
2 ð6pÞ from ih �WjLð2Þ

pN jWi:
Remark There are no tree-level contributions from the Lagrangian Lð3ÞpN .

(b) By using the expansion of Lð1ÞpN up to two pion fields (see Exercise 4.4), verify
the following Feynman rules:17

17 Note that we work with the basic Lagrangian.
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(c) Use the Feynman rules to show that the second diagram in Fig. 4.4 does not
contribute to the self energy.

(d) Use the Feynman rules and the expressions for the propagators,

iDFðpÞ ¼
i

p2 �M2 þ i0þ
;

iSFðpÞ ¼ i
6pþ m

p2 � m2 þ i0þ
;

to verify that in dimensional regularization the first diagram in Fig. 4.4 gives
the contribution

�iRloopð6pÞ ¼ �i
3g2

A

4F2
il4�n

Z
dnk

ð2pÞn
6kð6p� m� 6kÞ6k

½ðp� kÞ2 � m2 þ i0þ�ðk2 �M2 þ i0þÞ
:

ð4:81Þ

(e) Show that the numerator can be rewritten as

�ð6pþ mÞðk2 �M2Þ � ð6pþ mÞM2 þ ðp2 � m2Þ6k � ðp� kÞ2 � m2
h i

6k; ð4:82Þ

which, when inserted in Eq. 4.81, gives

Rloopð6pÞ ¼ 3g2
A

4F2
�ð6pþ mÞl4�ni

Z
dnk

ð2pÞn
1

ðp� kÞ2 � m2 þ i0þ

(

� ð6pþ mÞM2l4�ni

Z
dnk

ð2pÞn
1

½ðp� kÞ2 � m2 þ i0þ�ðk2 �M2 þ i0þÞ

þ ðp2 � m2Þl4�ni

Z
dnk

ð2pÞn
6k

½ðp� kÞ2 � m2 þ i0þ�ðk2 �M2 þ i0þÞ

�l4�ni

Z
dnk

ð2pÞn
6k

k2 �M2 þ i0þ

�
: ð4:83Þ

Hint: fcl; cmg ¼ 2glm1; fcl; c5g ¼ 0; c5c5 ¼ 1; k2 ¼ k2 �M2 þM2:

(f) The last term in Eq. 4.83 vanishes since the integrand is odd in k. We use the
following convention for scalar loop integrals:
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IN...p...ðp1; . . .; q1; . . .Þ

¼ l4�ni

Z
dnk

ð2pÞn
1

½ðk þ p1Þ2 � m2 þ i0þ�. . .½ðk þ q1Þ2 �M2 þ i0þ�. . .
:

To determine the vector integral use the ansatz

l4�ni

Z
dnk

ð2pÞn
kl

½ðp� kÞ2 � m2 þ i0þ�ðk2 �M2 þ i0þÞ
¼ plC: ð4:84Þ

Multiply Eq. 4.84 by pl to show that C is given by

C ¼ 1
2p2

IN � Ip þ ðp2 � m2 þM2ÞINpð�p; 0Þ
� �

: ð4:85Þ

Using the above convention, the loop contribution to the nucleon self energy
reads

Rloopð6pÞ ¼ � 3g2
A

4F2
ð6pþ mÞIN þ ð6pþ mÞM2INpð�p; 0Þ
�

� ðp2 � m2Þ 6p
2p2

IN � Ip þ ðp2 � m2 þM2ÞINpð�p; 0Þ
� ��

: ð4:86Þ

The explicit expressions for the integrals are given by

Ip ¼
M2

16p2
Rþ ln

M2

l2

� �
 �
;

IN ¼
m2

16p2
Rþ ln

m2

l2

� �
 �
;

INpðp;0Þ ¼
1

16p2
Rþ ln

m2

l2

� �
� 1þ p2�m2�M2

p2
ln

M

m

� �
þ 2mM

p2
FðXÞ


 �
;

ð4:87Þ

where R is given in Eq. 3.111, X is defined as

X ¼ p2 � m2 �M2

2mM
;

and

FðXÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � 1
p

ln �X�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � 1
p� 	

; X
 � 1;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X2
p

arccosð�XÞ; �1
X
 1;ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � 1
p

ln Xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � 1
p� 	

� ip
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � 1
p

; 1
X:

8
>><

>>:

(g) The result for the self energy contains divergences as n! 4 (the terms pro-
portional to R), so it has to be renormalized. The counter-term Lagrangian must
produce structures which precisely cancel the divergences, as otherwise the
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result for the nucleon mass will not be finite. For convenience, choose the
renormalization parameter l ¼ m. In the modified minimal subtraction scheme
gMS all contributions proportional to R are canceled by corresponding contri-
butions generated by the counter-term Lagrangian of Eq. 4.73, as well as by
counter-term Lagrangians resulting from higher-order terms of the most general
effective pN Lagrangian. Operationally this means that we simply drop all terms

proportional to R and indicate the gMS-renormalized coupling constants by a
subscript r. Again, this is possible because we include in the Lagrangian all of the
infinite number of interactions allowed by symmetries [65]. The renormalized
diagram is depicted in Fig. 4.5, where the cross generically denotes counter-term

contributions. The gMS-renormalized self-energy contribution then reads

Rloop
r ð6pÞ ¼ � 3g2

Ar

4F2
r

�
ð6pþ mÞM2Ir

Npð�p; 0Þ

�ðp2 � m2Þ 6p
2p2
ðp2 � m2 þM2ÞIr

Npð�p; 0Þ � Ir
p

� ��
; ð4:88Þ

where the superscript r on the integrals means that the terms proportional to R
have been dropped. Writing 6pþ m ¼ 2mþ ð6p� mÞ and comparing the first

term of Eq. 4.86 with Eq. 4.88, we note that, among other terms, the gMS

renormalization involves (even in the chiral limit) an infinite renormalization
yielding the relation between the bare and the renormalized mass [26]

mB ¼ mþ 3g2
Ar

32p2F2
r

m3Rþ � � � :

Using the definition of the integrals, show that Eq. 4.88 contains a term of
Oðq2Þ. What does the presence of this term indicate about the applicability of

the gMS scheme in baryon ChPT?
Hint: What chiral order did the power counting assign to the diagram from
which we calculated Rloop?

(h) We can now solve Eq. 4.80 for the nucleon mass,

mN ¼ mþ Rtree
2r ðmNÞ þ Rloop

r ðmNÞ ¼ m� 4c1rM
2 þ Rloop

r ðmNÞ: ð4:89Þ

We find mN � m ¼ Oðq2Þ. Since our calculation is only valid up to Oðq3Þ,18

determine Rloop
r ðmNÞ to that order. Check that you only need an expansion of

Ir
Np which, using

Fig. 4.5 Renormalized one-
loop self-energy diagram

18 For brevity, we use the expression ‘‘up to OðqnÞ’’ to mean ‘‘up to and including OðqnÞ’’ in the
following.
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arccos ð�XÞ ¼ p
2
þ � � �;

verify to be

Ir
Np ¼

1
16p2

�1þ pM

m
þ � � �

� �
: ð4:90Þ

Show that this yields

mN ¼ m� 4c1rM
2 þ 3g2

ArM
2

32p2F2
r

m� 3g2
ArM

3

32pF2
r

: ð4:91Þ

(i) The solution to the power-counting problem is the observation that the term
violating the power counting (the third on the right of Eq. 4.91) is analytic in
small quantities and can thus be absorbed in counter terms. In addition to the
gMS scheme we have to perform an additional finite renormalization. Rewrite

c1r ¼ c1 þ dc1 ð4:92Þ

in Eq. 4.91 and determine dc1 so that the term violating the power counting is
absorbed, which then gives the final result for the nucleon mass at Oðq3Þ,

mN ¼ m� 4c1M2 � 3g2
AM3

32pF2
: ð4:93Þ

Note that the renormalized LECs of Eq. 4.93 are, in general, different from

those in the gMS scheme, as they correspond to a renormalization scheme that
does not violate the power counting.

We have seen in the exercise above that, for the case of the nucleon self energy,
the expression for loop diagrams renormalized by applying dimensional regular-

ization in combination with the gMS scheme as in the mesonic sector contained
terms not consistent with the power counting. The appearance of terms violating

the power counting when using the gMS scheme is a general feature of loop
calculations in baryonic chiral perturbation theory [26].

4.6 Renormalization Schemes

In the calculation of the nucleon mass, a subtraction of suitable finite terms in

addition to the gMS scheme leads to expressions for loop diagrams consistent with
the power counting of Sect. 4.5.2. The question arises whether this procedure can
be generalized. We will discuss three approaches that solve the power-counting
problem: the so-called heavy-baryon approach [5, 37], the infrared regularization
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of Becher and Leutwyler [3], and the extended on-mass-shell scheme of Ref.
[24, 27]. The heavy-baryon formalism consists of an additional expansion of the
Lagrangian in powers of the inverse nucleon mass in the chiral limit, 1=m, similar
to a Foldy-Wouthuysen expansion [23]. Both the infrared regularization and the
extended on-mass-shell scheme are manifestly Lorentz-invariant approaches that
result in a consistent power counting.

4.6.1 Heavy-Baryon Approach

The nucleon mass is not expected to vanish in the chiral limit, and it is roughly of
the same size as the chiral-symmetry-breaking scale 4pF which appears in the
calculations of pion loop contributions. This complicates the expansion of
observables in powers of momenta, as the energy component of the nucleon four-
momentum p is not small compared to 4pF, i.e.,

p0

4pF
� 1; ð4:94Þ

and thus the ratio of Eq. 4.94 is not a good expansion parameter. The basic idea of
heavy-baryon chiral perturbation theory (HBChPT) consists of separating the
nucleon four-momentum p into a large piece close to on-shell kinematics and a
soft residual contribution kp,

pl ¼ mvl þ kl
p : ð4:95Þ

The four-vector vl has the properties

v2 ¼ 1; v0� 1; ð4:96Þ

and is often taken as vl ¼ ð1; 0; 0; 0Þ for convenience. Note that

v � kp ¼ �
k2

p

2m
¼vl¼ð1;0;0;0Þ

k0
p ¼ E � m� m: ð4:97Þ

In addition, the relativistic nucleon field is decomposed into two velocity-depen-
dent fields,

WðxÞ ¼ e�imv�x NvðxÞ þHvðxÞ½ �; ð4:98Þ

where

Nv ¼ eþimv�xPvþW; Hv ¼ eþimv�xPv�W; ð4:99Þ
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and we have defined the projection operators19

Pv� �
1
2
ð1 � 6vÞ: ð4:100Þ

Exercise 4.11 Using Eq. 4.96, show that

Pvþ þ Pv� ¼ 1; P2
v� ¼ Pv�; Pv�Pv	 ¼ 0:

Use these results to verify that

6vNv ¼Nv; 6vHv ¼ �Hv: ð4:101Þ

Starting from the relativistic leading-order Lagrangian of Eq. 4.17,

L
ð1Þ
pN ¼ �W i 6D� mþ gA

2
clc5ul

� 	
W; ð4:102Þ

we now derive the leading-order Lagrangian of HBChPT. While it is possible to
employ the path-integral formalism [5, 42], we follow a different method using the
equations of motion that does not require detailed knowledge of functional
integrals.

Exercise 4.12 Our aim is to derive the leading-order Lagrangian in the heavy-
baryon formalism.

(a) Use the Euler-Lagrange equation for the nucleon field,

�ol
oL

ð1Þ
pN

ool
�W
þ oL

ð1Þ
pN

o �W
¼ 0;

to derive the equation of motion (EOM)

i6D� mþ gA

2
6uc5

� 	
W ¼ 0: ð4:103Þ

(b) Insert the decomposition of the nucleon field of Eq. 4.98 into the EOM, use
the properties of Eq. 4.101, and multiply the result with eimv�x to obtain

i 6Dþ gA

2
6uc5

� 	
Nv þ i 6D� 2mþ gA

2
6uc5

� 	
Hv ¼ 0: ð4:104Þ

(c) In order to separate the Pvþ and Pv� components, use the algebra of gamma
matrices, clcm þ cmcl ¼ 2glm1, to verify the relations:

19 Note that Pv� do not define orthogonal projectors in the mathematical sense, because they
do not satisfy Pyv� ¼ Pv�, with the exception of the special case vl ¼ ð1; 0; 0; 0Þ.
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Pvþ6APvþ ¼ v � APvþ;

Pvþ6APv� ¼ 6A?Pv� ¼ Pvþ6A?;
Pv�6APv� ¼ �v � APv�;

Pv�6APvþ ¼ 6A?Pvþ ¼ Pv�6A?;
Pvþ6Bc5Pvþ ¼ 6B?c5Pvþ;

Pvþ6Bc5Pv� ¼ v � Bc5Pv� ¼ v � BPvþc5;

Pv�6Bc5Pv� ¼ 6B?c5Pv�;

Pv�6Bc5Pvþ ¼ �v � Bc5Pvþ ¼ �v � BPv�c5; ð4:105Þ

where A and B are arbitrary four-vectors and

Al
? ¼ Al � v � Avl; v � A? ¼ 0; 6A? ¼ Al

?cl:

(d) We can now separate the projections onto the Pvþ and Pv� parts of the EOM.
Show that, using Eq. 4.105, the relations

iv � Dþ gA

2
6u?c5

� 	
Nv þ i6D? þ

gA

2
v � uc5

� 	
Hv ¼ 0; ð4:106Þ

i 6D? �
gA

2
v � uc5

� 	
Nv þ �iv � D� 2mþ gA

2
6u?c5

� 	
Hv ¼ 0; ð4:107Þ

hold.
(e) In the next step, we isolate the EOM for the so-called light component Nv. To

this end, formally solve Eq. 4.107 for Hv and insert the result into Eq. 4.106.
Show that the resulting EOM for Nv reads

iv � Dþ gA

2
6u?c5

� 	
Nv þ i6D? þ

gA

2
v � uc5

� 	

� 2mþ iv � D� gA

2
6u?c5

� 	�1
i 6D? �

gA

2
v � uc5

� 	
Nv ¼ 0:

ð4:108Þ

Equation 4.108 represents the EOM for the field Nv. The same EOM can be
derived by applying the variational principle to the Lagrangian

Leff ¼ �Nv iv � Dþ gA

2
6u?c5

� 	
Nv þ �Nv i 6D? þ

gA

2
v � uc5

� 	

� 2mþ iv � D� gA

2
6u?c5

� 	�1
i6D? �

gA

2
v � uc5

� 	
Nv: ð4:109Þ

Note that the nucleon mass only appears in the denominator of the second term.
This second term is therefore suppressed relative to the first term.20

20 Because of Eq. 4.99, a partial derivative acting on Nv produces a small four-momentum.
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While the above Lagrangian achieves the objective of isolating the field Nv, it
is not in the form commonly used in HBChPT. It is convenient to introduce the
spin matrix Sl

m , defined as

Sl
v �

i

2
c5r

lmvm ¼ �
1
2
c5ðcl 6v� vlÞ; Sly

v ¼ c0Sl
v c0: ð4:110Þ

Exercise 4.13 Show that, in four dimensions, Sl
m obeys the relations

v � Sv ¼ 0; fSl
v ; S

m
vg ¼

1
2
ðvlvm � glmÞ; ½Sl

v ; S
m
v� ¼ ielmq

rvqSr
v : ð4:111Þ

Hint:

c5r
rs ¼ � i

2
ersabrab; e0123 ¼ 1; elmq

re
rsab ¼ det

gls gla glb

gms gma gmb

gqs gqa gqb

0
@

1
A:

The spin matrix Sl
m allows us to rewrite the 16 combinations �NvCNv, where

C 2 f1; cl; c5; clc5; rlmg, as21

ð �Nv1Nv ¼ �Nv1Nv; Þ
�Nvc5Nv ¼ 0;

�Nvc
lNv ¼ vl �NvNv;

�Nvc
lc5Nv ¼ 2 �NvSl

vNv;

�Nvr
lmNv ¼ 2elmq

rvq
�NvSr

vNv;

�Nvr
lmc5Nv ¼ 2iðvl �NvSm

vNv � vm �NvSl
vNvÞ:

ð4:112Þ

Exercise 4.14 Show that the relations of Eq. 4.112 hold.

Hint: Use Eq. 4.101. For example,

�Nvc5Nv ¼ �Nvc5 6vNv ¼ � � � :

Equations 4.112 result in a nice simplification of the Dirac structures in the
heavy-baryon approach, because only two groups of 4� 4 matrices, the unit
matrix and Sl

v , instead of the original six groups on the left-hand side of Eq. 4.112
appear.

To obtain the final form of the leading-order Lagrangian in HBChPT, we
formally expand Eq. 4.109 in inverse powers of the nucleon mass,

21 We include the combination rlmc5 for convenience.

4.6 Renormalization Schemes 183



Leff ¼ �Nv iv � Dþ gA

2
6u?c5

� 	
Nv þ

X1

n¼1

1
ð2mÞnLeff;n; ð4:113Þ

and apply Eq. 4.112. The result for the leading-order term reads

cL
ð1Þ
pN ¼ �Nv iv � Dþ gASv � uð ÞNv; ð4:114Þ

where the symbol b indicates the heavy-baryon formalism. The nucleon mass
has disappeared from the leading-order Lagrangian, in contrast to the relativ-
istic Lagrangian of Eq. 4.17. It only appears in the terms of higher orders as

powers of 1=m. In the power-counting scheme cLð1Þ
pN counts as OðqÞ, because

the covariant derivative Dl and the chiral vielbein ul both count as OðqÞ. The
heavy-baryon Feynman propagator derived from the free part of the Lagrangian
of Eq. 4.114 is given by

GvFðkÞ ¼
Pvþ

v � k þ i0þ
: ð4:115Þ

The expansion of the Lagrangian of Eq. 4.109 generates terms that are sup-
pressed by powers of 1=m. In addition to these 1=m corrections, the Lagrangian at
higher orders also contains terms that stem from additional chiral structures that do
not contain inverse powers of the nucleon mass. The complete Lagrangian up to
and including order q4 is given in Ref. [22]. A wide variety of processes has been
calculated in the heavy-baryon scheme. We refer the reader to Ref. [6] for a
comprehensive overview.

While the heavy-baryon approach results in a consistent power counting and,
similar to the mesonic sector, allows for the application of dimensional regulari-

zation in combination with the gMS scheme, the complete 1=m expansion can
create difficulties with analyticity under specific kinematics. To illustrate this
point, consider the example of pion-nucleon scattering [2]. The invariant ampli-
tudes have poles at s ¼ m2

N and u ¼ m2
N which, at tree level, can be understood in

terms of the relativistic propagator (see Fig. 4.6),

1

ðpþ qÞ2 � m2
N

¼ 1
2p � qþM2

p
: ð4:116Þ

The propagator of Eq. 4.116 has a pole at 2p � q ¼ �M2
p, which is equivalent to a

pole at s ¼ m2
N . An analogous pole appears in the u-channel diagram at u ¼ m2

N .

p p + q p′

q q′Fig. 4.6 s-channel pole
diagram of pN scattering
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Despite not being in the physical region of pion-nucleon scattering, analyticity of
the invariant amplitudes requires both these poles to be present (see Sect. 4.3.2).

In the heavy-baryon approach, the relativistic propagator is expanded in inverse
powers of mN . Choosing p ¼ mNv for simplicity,

1
2p � qþM2

p
¼ 1

2mN

1

v � qþ M2
p

2mN

¼ 1
2mN

1
v � q 1� M2

p

2mNv � qþ � � �
� �

: ð4:117Þ

To any finite order in the heavy-baryon expansion, poles appear at v � q ¼ 0 instead
of v � q ¼ �M2

p=ð2mNÞ being a single pole. Without summing an infinite number
of diagrams, the heavy-baryon approach therefore does not generate the correct
nucleon pole structure of the invariant amplitudes.

We saw in Exercise 4.10 that applying dimensional regularization in combi-

nation with the gMS scheme does not produce a consistent power counting. The
solution was to subtract the finite terms that violated the power-counting rules,
which was possible since the relevant terms were analytic in small quantities. We
will now present two methods that remove the terms that violate the power
counting while keeping the analytic structure of amplitudes in the low-energy
region intact, the infrared regularization of Ref. [3] and the extended on-mass-shell
scheme of Ref. [24].

4.6.2 Infrared Regularization

The method of infrared regularization relies on the analytic structure of loop
integrals in n dimensions, in particular on infrared singularities which arise for
small momenta. To illustrate the existence of these infrared singularities consider
the integral

Hðp2;m2;M2; nÞ � �i

Z
dnk

ð2pÞn
1

½ðk � pÞ2 � m2 þ i0þ�ðk2 �M2 þ i0þÞ

¼ �i

Z
dnk

ð2pÞn
1

½k2 � 2p � k þ ðp2 � m2Þ þ i0þ�ðk2 �M2 þ i0þÞ;

ð4:118Þ

where, compared to the definition of INp of Exercise 4.10, we are using the sign
convention of Ref. [3] and have dropped the factor l4�n. We consider nucleon
momenta close to the mass shell, p2 � m2, which means that p2 � m2 is counted as
a small quantity of OðqÞ. By counting powers of the loop momentum, we see that
the integral converges for n\4. In the chiral limit M ! 0, however, the integral
becomes infrared singular when going to smaller n. For n ¼ 3, the integral is
infrared regular as long as p2 6¼ m2, but exhibits an infrared singularity for
p2 ¼ m2, since the integrand behaves as k2=k3. For any smaller value of n, the

4.6 Renormalization Schemes 185



integral is infrared singular even for p2 6¼ m2. The infrared singularity stems from
small loop momenta k ¼ OðqÞ. In this momentum region, the first factor of the
integrand is of order q�1 for both p2 ¼ m2 and p2 6¼ m2, since we count
p2 � m2 ¼ OðqÞ, while the second factor is Oðq�2Þ. For n\3, the chiral expansion
of the integral Hðp2;m2;M2; nÞ therefore contains an infrared-singular term of
Oðqn�3Þ in the chiral limit.

Exercise 4.15 Verify by explicit calculation at threshold, i.e., p2 ¼ p2
thr ¼

ðmþMÞ2, that in the limit M ! 0 the integral Hðp2;m2;M2; nÞ of Eq. 4.118
develops an infrared singularity for n
 3.

(a) Use the Feynman parameterization

1
ab
¼
Z1

0

dz
1

½azþ bð1� zÞ�2
; ð4:119Þ

with a ¼ ðk � pÞ2 � m2 þ i0þ and b ¼ k2 �M2 þ i0þ, to show that the inte-
gral can be written as

Hðp2;m2;M2; nÞ ¼ �i

Z1

0

dz

Z
dnk

ð2pÞn
1

½k2 � AðzÞ þ i0þ�2
; ð4:120Þ

with

AðzÞ ¼ z2p2 � zðp2 � m2 þM2Þ þM2:

Hint: Use the shift of variables k! k þ zp.
(b) The integral can be further simplified by use of the formula (see Exercise 3.22)

Z
dnk

ð2pÞn
ðk2Þp

ðk2 � Aþ i0þÞq ¼
ið�Þp�q

ð4pÞ
n
2

C pþ n
2

� �
C q� p� n

2

� �

C n
2

� �
CðqÞ

ðA� i0þÞpþ
n
2�q:

Show that

Hðp2;m2;M2; nÞ ¼ 1

ð4pÞ
n
2
C 2� n

2

� 	Z1

0

dz½AðzÞ � i0þ�
n
2�2: ð4:121Þ

(c) Show that the squared threshold momentum p2
thr ¼ ðmþMÞ2 corresponds to

AðzÞ ¼ ½zðmþMÞ �M�2. Split the integration interval into two parts,

186 4 Chiral Perturbation Theory for Baryons



Z1

0

¼
Zz0

0

þ
Z1

z0

;

with z0 ¼ M=ðmþMÞ, to show that for n [ 3 the integral over AðzÞ is given
by

Z1

0

dz½AðzÞ�
n
2�2 ¼ 1

ðn� 3ÞðmþMÞðM
n�3 þ mn�3Þ:

Why can the small imaginary part, �i0þ, be neglected? What is the sign of
AðzÞ in the considered z interval [0,1]?

(d) The result for arbitrary n can be obtained through analytic continuation and is
given by

H ðmþMÞ2;m2;M2; n
� 	

¼
C 2� n

2

� �

ð4pÞ
n
2ðn� 3Þ

Mn�3

mþM
þ mn�3

mþM

� �
: ð4:122Þ

The first term in Eq. 4.122, proportional to Mn�3, is called the infrared-sin-
gular part of H, while the second term, proportional to mn�3, is the infrared-
regular part. Show that for noninteger values of n the expansion of the
infrared-singular part in small quantities contains only noninteger powers of
M, while the expansion of the infrared-regular part only contains nonnegative
integer powers of M.

The example above introduces the concept of infrared-singular and infrared-
regular parts. We now turn to the formal definition of these terms for arbitrary
momenta p close to the mass shell [3]. Let us introduce the dimensionless variables

X ¼ p2 � m2 �M2

2mM
¼ Oðq0Þ; a ¼ M

m
¼ OðqÞ: ð4:123Þ

In terms of these variables the integrand AðzÞ in Eq. 4.120 is given by

AðzÞ ¼ m2½z2 � 2aXzð1� zÞ þ a2ð1� zÞ2� � m2CðzÞ;

and the integral H can be written as (see Eq. 4.121)

Hðp2;m2;M2; nÞ ¼ jðm; nÞ
Z1

0

dz½CðzÞ � i0þ�
n
2�2; ð4:124Þ

with

jðm; nÞ ¼
C 2� n

2

� �

ð4pÞ
n
2

mn�4: ð4:125Þ
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If we consider M ! 0, which in the new dimensionless variables corresponds to
a! 0, infrared singularities arise for small values of z, as the integrand CðzÞ
vanishes. Since we require both z and a to be small we perform the substitution
z ¼ ax. The upper integration limit z ¼ 1 then becomes x ¼ 1=a!1 as a! 0.
We can define a new integral I that has the same infrared singularities as H. It is
identical to H with the exception that the upper integration limit is 1 even for
finite values of a:

I � jðm; nÞ
Z1

0

dz½CðzÞ � i0þ�
n
2�2 ¼ jðm; nÞan�3

Z1

0

dx½DðxÞ � i0þ�
n
2�2; ð4:126Þ

where

DðxÞ ¼ 1� 2Xxþ x2 þ 2axðXx� 1Þ þ a2x2:

The difference between H and I is the infrared-regular part R,

R � �jðm; nÞ
Z1

1

dz½CðzÞ � i0þ�
n
2�2; ð4:127Þ

so that

H ¼ I þ R: ð4:128Þ

Exercise 4.16 We now show that these more general definitions of the infrared-
singular and infrared-regular parts reproduce the behavior of the threshold integral
of Eq. 4.122.

(a) Show that Xthr ¼ 1, and thus

Ithr ¼ jðm; nÞan�3
Z1

0

dx ½ð1þ aÞx� 1�2 � i0þ
n on

2�2
:

For which values of n does the integral converge?
(b) Verify that the integrand can be rewritten as

½ð1þ aÞx� 1�2 � i0þ
n on

2�2
¼ ð1þ aÞx� 1
ð1þ aÞðn� 4Þ

d

dx
½ð1þ aÞx� 1�2 � i0þ
n on

2�2
:

Using integration by parts, show that
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Z1

0

dx ½ð1þ aÞx� 1�2 � i0þ
n on

2�2

¼ ð1þ aÞx� 1
ð1þ aÞðn� 4Þ ½ð1þ aÞx� 1�2 � i0þ

n on
2�2


 �1

0

� 1
n� 4

Z1

0

dx ½ð1þ aÞx� 1�2 � i0þ
n on

2�2
:

(c) Starting from n\3, show that the integral can be analytically continued to give

Z1

0

dx ½ð1þ aÞx� 1�2 � i0þ
n on

2�2
¼ 1
ðn� 3Þð1þ aÞ:

Verify that the obtained expression for Ithr agrees with the infrared-singular
part of Eq. 4.122.

(d) Show that CthrðzÞ ¼ ½zð1þ aÞ � a�2. Use this result to evaluate Rthr for n\3
and analytically continue to verify that the obtained expression agrees with the
infrared-regular part of Eq. 4.122.

As seen in Eq. 4.126, the infrared-singular part contains an overall factor of
an�3, so that for noninteger n the chiral expansion of I only consists of noninteger
powers of the small expansion parameter,

I ¼ Oðqn�3Þ þ Oðqn�2Þ þ Oðqn�1Þþ � � �; ð4:129Þ

while the infrared-regular term only contains nonnegative integer powers,

R ¼ Oðq0Þ þ Oðq1Þ þ Oðq2Þþ � � �: ð4:130Þ

The method can be extended to general one-loop integrals [3]. It suffices to
consider scalar integrals, as tensor integrals can be reduced to combinations of
integrals of the type

Hmn ¼ �i

Z
dnk

ð2pÞn
1

a1. . .am

1
b1. . .bn

;

where ai ¼ ðqi þ kÞ2 �M2 þ i0þ and bj ¼ ðpj � kÞ2 � m2 þ i0þ are inverse
meson and nucleon propagators, respectively. The four-momenta qi are OðqÞ, while
the four-momenta pj are close to the nucleon mass shell, i.e., p2

j � m2 ¼ OðqÞ. One
first combines all meson propagators and nucleon propagators separately. In the
case of the meson propagators, this can be done with use of the formula
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1
a1. . .am

¼ � o

oM2

� �m�1Z1

0

dx1. . .

Z1

0

dxm�1
X

A
; ð4:131Þ

where X ¼ 1 for m ¼ 2, while for m [ 2 the numerator is given by

X ¼ x2ðx3Þ2. . .ðxmÞm�1:

The denominator is quadratic in the loop momentum k,

A ¼ �A� ðk � �qÞ2 � i0þ;

where �A is constant and �q is a linear combination of the momenta qi. A can be
obtained with the recursion relation

A ¼ Am; A1 ¼ a1; Apþ1 ¼ xpAp þ ð1� xpÞapþ1; ðp ¼ 1; . . .;m� 1Þ:

An analogous calculation for the nucleon propagators gives

1
b1. . .bn

¼ � o

om2

� �n�1Z1

0

dy1. . .

Z1

0

dyn�1
Y

B
; ð4:132Þ

with

Y ¼ y2ðy3Þ2. . .ðynÞn�1;

and

B ¼ �B� ðk � �pÞ2 � i0þ;

where again �B is constant and �p is a linear combination of the external nucleon
momenta. The integrals Hmn can then be written as

Hmn ¼ � o

oM2

� �m�1

� o

om2

� �n�1Z1

0

dxdyð�iÞ
Z

dnk

ð2pÞn
1

AB
; ð4:133Þ

where

Z1

0

dxdy �
Z1

0

dx1. . .

Z1

0

dxm�1

Z1

0

dy1. . .

Z1

0

dyn�1:

Since the denominators A and B have the same general form as single meson and
nucleon propagators, respectively, the integral over the loop momentum k can be
performed in complete analogy to the integral H considered above. One again
combines the two terms in the denominator using the Feynman parameterization of
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Eq. 4.119 and splits the original integral Hmn into an infrared-singular part Imn and
an infrared-regular part Rmn,

Hmn ¼ Imn þ Rmn: ð4:134Þ

Just as in the case of the nucleon self-energy integral H above, the infrared-
singular part Imn is identical to the original integral Hmn with the exception of the
upper limit in the integration that combines the denominators A and B, with the
integration running to 1 for Hmn and to 1 for Imn.

The chiral expansion of the infrared-singular part Imn only contains noninteger
powers for noninteger n, while the infrared-regular term Rmn can be expanded in an
ordinary Taylor series. The infrared-regular term can therefore be absorbed in the
counter terms of the most general Lagrangian. This is equivalent to replacing Hmn

with its infrared-singular part Imn, which is the infrared renormalization condition,

Hr
mn ¼ Imn:

All terms violating the power counting are contained in Rmn [3], therefore the
renormalized expressions containing Imn automatically satisfy the power counting.

Depending on the dimension n and the number of nucleon and meson propa-
gators, the integral Hmn might contain an ultraviolet (UV) divergence, e.g., the
integrand of H11 for n ¼ 4 scales as k3=k4 in the UV limit, which results in a
logarithmic divergence upon integration. We can thus write

Hmn ¼
HUV

mn

e
þ ~Hmn;

where as before e ¼ 4� n. When separating the integral Hmn into its infrared-
singular and infrared-regular parts, these terms might contain additional diver-
gences that are not present in Hmn [3],

Imn ¼
Iadd
mn

e
þ ~Imn; Rmn ¼

RUV
mn

e
þ Radd

mn

e
þ ~Rmn;

where RUV
mn corresponds to the original UV divergence. Since the additional

divergences are not present in the original integral Hmn, they have to cancel in the
sum of I and R, i.e.,

Iadd
mn ¼ �Radd

mn :

The renormalized expression for Hmn is then given by

Hr
mn ¼ ~Imn:

While the infrared renormalization solves the power-counting problem, it would
not be useful if the resulting expressions violated chiral symmetry. This would be
manifest in a violation of the Ward identities of the theory. It can be shown,
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however, that chiral symmetry is preserved in infrared regularization [3].
Expressions containing the original integrals Hmn ¼ Imn þ Rmn satisfy the Ward
identities since they are derived from a Lagrangian that is explicitly symmetric,
and since dimensional regularization preserves the symmetries of the Lagrangian.
As seen above, infrared-singular and infrared-regular parts differ in the analytic
structure of their chiral expansions. Since the expansion of Imn (Rmn) only contains
noninteger (nonnegative integer) powers of the small quantity q for noninteger n,
infrared-singular and infrared-regular terms have to satisfy the Ward identities
separately. This means that replacing the original integral Hmn by its infrared-
singular part Imn preserves the Ward identities and thus chiral symmetry is
preserved.

4.6.3 Extended On-Mass-Shell Scheme

While infrared regularization offers one solution to the power-counting problem, it
is not the only one. We now turn to a different solution, the extended on-mass-shell
(EOMS) scheme. This approach was first motivated in Ref. [27] and has been
worked out in detail in Ref. [24]. In infrared regularization, the terms that violate
the power counting are contained in the infrared-regular part of an integral.
However, the chiral expansion of this infrared-regular part can also contain an
infinite number of terms that do not violate the power counting. While the general
principles of renormalization allow us to subtract these terms by absorbing them in
counter terms in the Lagrangian, it is not necessary to do so. The idea behind the
EOMS scheme is to absorb only those terms that violate the power counting by

performing finite subtractions in addition to the gMS scheme such that the resulting
expressions for renormalized diagrams satisfy the power-counting rules. As was
the case for infrared regularization, this procedure can be made systematic. It
offers the additional advantage of allowing for the application to multi-loop dia-
grams and diagrams containing additional degrees of freedom such as vector
mesons.

To illustrate the EOMS approach we consider the integral H in the chiral limit,

Hðp2;m2; 0; nÞ ¼ �i

Z
dnk

ð2pÞn
1

½ðk � pÞ2 � m2 þ i0þ�ðk2 þ i0þÞ
:

Going to the chiral limit simplifies the calculations while keeping the main fea-
tures of the method intact. According to the power-counting rules in Sect. 4.5.2,
the renormalized integral is supposed to be of order D ¼ n� 1� 2 ¼ n� 3. Since
the nucleon momentum p is close to the mass shell, we define the small dimen-
sionless quantity
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D ¼ p2 � m2

m2
¼ OðqÞ:

Introducing Cðz;DÞ ¼ z2 � Dzð1� zÞ � i0þ, the integral Hðp2;m2; 0; nÞ can be
written as

Hðp2;m2; 0; nÞ ¼ jðm; nÞ
Z1

0

dz½Cðz;DÞ�
n
2�2; ð4:135Þ

where jðm; nÞ is given in Eq. 4.125. To evaluate Eq. 4.135 we write

Z1

0

dz½Cðz;DÞ�
n
2�2 ¼ ð�DÞ

n
2�2
Z1

0

dz z
n
2�2 1� 1þ D

D
z

� �n
2�2

:

The integral on the right-hand side can be expressed in terms of the integral
representation of the hypergeometric function [1],

Fða; b; c; zÞ ¼ CðcÞ
CðbÞCðc� bÞ

Z1

0

dt tb�1ð1� tÞc�b�1ð1� tzÞ�a;ReðcÞ[ ReðbÞ[ 0:

We substitute a ¼ 2� n
2, b ¼ n

2� 1, c ¼ n
2, and z ¼ ð1þ DÞ=D, make use of

Cð1Þ ¼ 1, and obtain

Hðp2;m2; 0; nÞ ¼ jðm; nÞ
C n

2� 1
� �

C n
2

� � ð�DÞ
n
2�2F 2� n

2
;
n

2
� 1;

n

2
;
1þ D

D

� �
:

We apply the transformation formula [1]

Fða; b; c; zÞ ¼ ð1� zÞ�aF a; c� b; c;
z

z� 1

� �

and the symmetry property Fða; b; c; zÞ ¼ Fðb; a; c; zÞ to obtain

Hðp2;m2; 0; nÞ ¼ jðm; nÞ
C n

2� 1
� �

C n
2

� � F 1; 2� n

2
;
n

2
;

p2

m2

� �
: ð4:136Þ

For nucleon momenta close to the mass shell the last argument in the hypergeo-
metric function is close to unity, p2=m2 � 1, and therefore not a good expansion
parameter. Fortunately, the properties of hypergeometric functions (see Eq. 15.3.6
of Ref. [1]) allow us to rewrite a hypergeometric function of argument z as a
combination of other hypergeometric functions of argument 1� z. In our case, this
corresponds to
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1� p2

m2
¼ m2 � p2

m2
¼ �D:

Equation 4.136 then reads

Hðp2;m2; 0; nÞ ¼ mn�4

ð4pÞ
n
2



C 2� n

2

� �

n� 3
F 1; 2� n

2
; 4� n;�D

� 	

þð�DÞn�3C
n

2
� 1

� 	
Cð3� nÞF n

2
� 1; n� 2; n� 2;�D

� 	�
:

ð4:137Þ

Since D counts as a small quantity of OðqÞ, we can now use the expansion of
Fða; b; c; zÞ for jzj\1,

Fða; b; c; zÞ ¼ 1þ ab

c
zþ aðaþ 1Þbðbþ 1Þ

cðcþ 1Þ
z2

2
þ � � �: ð4:138Þ

Since in our case z ¼ �D, the expansion of the hypergeometric functions results in
terms with only nonnegative integer powers of D. While the second term of
Eq. 4.137 thus only contains terms of Oðqn�3Þ and higher as dictated by the power
counting, we see that the first term contains a contribution which does not satisfy
the power counting, i.e., which is not proportional to OðqÞ as n! 4. For n! 4 we
obtain

H ¼ mn�4

ð4pÞ
n
2

C 2� n
2

� �

n� 3
þ 1� p2

m2

� �
ln 1� p2

m2

� �


þ 1� p2

m2

� �2

ln 1� p2

m2

� �
þ � � �

�
; ð4:139Þ

where . . . refers to terms which are at least of Oðq3Þ or Oðn� 4Þ. Terms of the type
�D lnð�DÞ are counted as OðqÞ, i.e., as a small quantity just as �D.

While Eq. 4.139 contains terms with logarithmic dependence on the nucleon
momentum, these terms satisfy the power counting. The term that violates the
power counting is local in the external momentum, which means that it is a
polynomial in p2 (here of zeroth order), and can be absorbed in a finite number of
counter terms in the Lagrangian. We can thus subtract

mn�4

ð4pÞ
n
2

C 2� n
2

� �

n� 3
ð4:140Þ

from Eq. 4.139 to obtain the renormalized integral
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HRðp2;m2; 0; nÞ ¼ mn�4

ð4pÞn=2
1� p2

m2

� �
ln 1� p2

m2

� �


þ 1� p2

m2

� �2

ln 1� p2

m2

� �
þ � � �

�
: ð4:141Þ

Exercise 4.17 Show that the only finite terms appearing in H up to Oðq3Þ and
Oðn� 4Þ as n! 4 are proportional to lnð�DÞ.

(a) Use Eq. 4.138 to show that the expansion of the first hypergeometric function
in Eq. 4.137 is given by

F 1; 2� n

2
; 4� n;�D

� 	
¼ 1� D

2
þ 6� n

5� n

D2

4
þ Oðq3Þ: ð4:142Þ

Using the parameter e � 4� n introduced in Sect. 3.4.7, this expression is
rewritten as

1� D
2
þ 2þ e

1þ e
D2

4
þ Oðq3Þ: ð4:143Þ

(b) Show that the expansion of Eq. 4.143 to order e is given by

1� D
2
þ ð2� eÞD

2

4
þ � � �: ð4:144Þ

(c) We see that the term independent of D reproduces the first term in Eq. 4.139.
For the terms proportional to D and D2 we need to expand the coefficient of the
hypergeometric function about n ¼ 4. Using Cðxþ 1Þ ¼ xCðxÞ, show that

C 2� n
2

� �

n� 3
¼ 2

e
þ 2þ C0ð1Þ þ � � � : ð4:145Þ

(d) Using these results, show that the terms proportional to D and D2 of the first
term in Eq. 4.137 are given by

� 1
e
þ 1þ C0ð1Þ

2

� �
Dþ 1

e
þ 1

2
� C0ð1Þ

2

� �
D2: ð4:146Þ

(e) Show that

ð�DÞn�3 ¼ �Dþ eD lnð�DÞþ � � �: ð4:147Þ

Recall: ab ¼ eb ln a.
(f) Performing an analysis for the second term in Eq. 4.137 analogous to the

calculation above, verify that all finite terms appearing in the expression for H
for n! 4 are proportional to lnð�DÞ.
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In order to identify and subtract the terms that violate the power counting, we have
explicitly calculated the integral H. While this did not pose too great of a problem for
the case of H in the chiral limit, our aim is to find a method to determine the
subtraction terms even in those cases where the explicit calculation of the integrals is
more difficult. As seen in Eq. 4.137, the result for Hðp2;m2; 0; nÞ is of the form

H�Fðn;DÞ þ Dn�3Gðn;DÞ; ð4:148Þ

where F and G are proportional to hypergeometric functions that are analytic in D
for arbitrary n. The term of interest, i.e., the subtraction term, is contained in F.
Central to the development of a systematic scheme is the observation that the
expansion of F can be obtained by first expanding the integrand of H and then
exchanging integration and summation, i.e., integrating each term in the expansion
separately [28] (see Sect. 4.6.4 for an illustration of the general method). After

applying a conventional gMS renormalization scheme we can identify and subtract
the terms that violate the power counting without having to calculate the complete
integral. In essence we work with a modified integrand which is obtained from the
original integrand by subtracting a suitable number of counter terms. To explain
what we mean by suitable consider the series

X1

l¼0

ðp2 � m2Þl

l!

1
2p2

pl
o

opl

� �l 1
½k2 � 2k � pþ ðp2 � m2Þ þ i0þ�ðk2 þ i0þÞ

" #

p2¼m2

¼ 1
ðk2 � 2k � pþ i0þÞðk2 þ i0þÞ

����
p2¼m2

þ ðp2 � m2Þ 1
2m2

1

ðk2 � 2k � pþ i0þÞ2
� 1

2m2

1
ðk2 � 2k � pþ i0þÞðk2 þ i0þÞ

"

� 1

ðk2 � 2k � pþ i0þÞ2ðk2 þ i0þÞ

#

p2¼m2

þ � � �; ð4:149Þ

where ½. . .�p2¼m2 means that the coefficients of ðp2 � m2Þl are considered only for
four-momenta p satisfying the on-mass-shell condition. While the coefficients in
this series still depend on the direction of pl, performing the integration over loop
momenta k and evaluating the corresponding coefficients for p2 ¼ m2 results in a
series that is a function of only p2. In fact, it was shown in Ref. [28] that the
integrated series exactly reproduces the first term in Eq. 4.137.

The EOMS scheme is then defined as follows: We subtract from the integrand
of Hðp2;m2; 0; nÞ those terms of the series of Eq. 4.149 that violate the power
counting. These terms are analytic in the small expansion parameter and do not
contain infrared singularities. In our example only the first term in Eq. 4.137 has to
be subtracted. All higher-order terms contain infrared singularities, such as gen-
erated by the last term in the second coefficient: for small k the integrand scales as
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k3=k4 for n ¼ 4. The integral of the first term of Eq. 4.149 is given by Eq. 4.140,
and our result for the renormalized integral is

HR ¼ H � Hsubtr ¼ Oðqn�3Þ:

Since the subtraction point is p2 ¼ m2, the renormalization condition is denoted
‘‘extended on-mass-shell’’ (EOMS) scheme in analogy with the on-mass-shell
renormalization scheme in renormalizable theories.

So far we have considered the special case of an integral in the chiral limit, but
the method can be generalized to the case of a finite pion mass. Instead of
Eq. 4.149 one now considers a simultaneous expansion in p2 � m2 and M2,

1
k2 � 2k � pþ i0þð Þ k2 þ i0þð Þ

����
p2¼m2

þ ðp2 � m2Þ 1
2m2

1

k2 � 2k � pþ i0þð Þ2
þ � � �

" #

p2¼m2

þM2 1

k2 � 2k � pþ i0þð Þ k2 þ i0þð Þ2

�����
p2¼m2

þ � � �:

Since all terms of order q satisfy the power counting, the contribution resulting
from the first term is still the only one that is subtracted.

While the original formulation of the infrared regularization was specific to
one-loop integrals with pion and nucleon propagators, the EOMS scheme can be
straightforwardly extended to include other degrees of freedom, such as vector
mesons [25] or the Dð1232Þ resonance [33], and it can be applied to multi-loop
diagrams [55].

Moreover, the infrared regularization can be reformulated in a form analogous
to the EOMS scheme and can thus be applied to multi-loop diagrams with an
arbitrary number of particles with arbitrary masses [54]. After combining the
meson and baryon propagators as explained in Sect. 4.6.2 and performing the
integration over the loop momentum, an arbitrary integral can be written as22

H ¼
Z1

0

dz f ðzÞ;

where f ðzÞ is a function depending on the external momenta, masses, and the
space-time dimension n. The chiral expansion of the infrared-regular part R, with

R ¼ �
Z1

1

dz f ðzÞ;

22 For notational convenience we suppress the subscripts m and n of Eq. 4.134.
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can be performed before the z-integration, resulting in integrals of the type

RðiÞ ¼ �
Z1

1

dz znþi; ð4:150Þ

where i is a nonnegative integer. The integrals can be calculated by analytic
continuation from the domain of n in which they converge,

RðiÞ ¼ � znþiþ1

nþ iþ 1

����
1

1

¼ 1
nþ iþ 1

: ð4:151Þ

One can reproduce the result of Eq. 4.151 without splitting the original integral
H into two parts. Instead, we perform the chiral expansion of the integrand in H
and interchange summation and integration. The result thus only contains terms
that are analytic in small parameters. However, since in most cases the original
integral H also contains nonanalytic terms, this procedure does not reproduce the
chiral expansion of H. Summation and integration only commute as long as H
converges absolutely. The series resulting from expanding the integrand of H and
integrating each term separately contains the same coefficients as the chiral
expansion of R, but the integrals RðiÞ are replaced by integrals of the type

JðiÞ ¼
Z1

0

dz znþi: ð4:152Þ

Again performing an analytic continuation, the integrals are given by

JðiÞ ¼ znþiþ1

nþ iþ 1

����
1

0

¼ 1
nþ iþ 1

: ð4:153Þ

Comparing Eqs. 4.151 and 4.153, we see that the chiral expansion of the infrared-
regular part R can be obtained by reducing H to an integral over Feynman
parameters, expanding the resulting expression in small quantities, and inter-
changing summation and integration.

Other approaches to the extension of infrared regularization are given in Refs.
[10, 11, 41].

4.6.4 Dimensional Counting Analysis

While we have been able to find closed-form expressions for the loop integrals we
have considered so far, analytic solutions to more complex integrals, such as two-
or multi-loop integrals containing two or more masses, are increasingly difficult to
obtain. Since we are often interested in the chiral expansion of observables, we can
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avoid having to analytically solve integrals and use the method of dimensional
counting analysis instead [28]. A closely related method of calculating loop
integrals is the so-called ‘‘method of regions’’ [57]. While particularly useful for
two- and multi-loop integrals, the advantage of dimensional counting analysis for
one-loop integrals lies in its applicability to dimensionally regulated integrals
containing several different masses, such as the pion mass and the nucleon mass in
the chiral limit. We provide an illustration of dimensional counting analysis in
terms of the one-loop integral of Eq. 4.118,

Hðp2;m2;M2; nÞ ¼ �i

Z
dnk

ð2pÞn
1

k2 � 2p � k þ p2 � m2 þ i0þ
1

k2 �M2 þ i0þ
:

ð4:154Þ

One would like to know how the integral behaves for small values of M and/or
p2 � m2 as a function of n. If we consider, for fixed p2 6¼ m2, the limit M ! 0, the
integral H can be represented as

Hðp2;m2;M2; nÞ ¼
X

i

Mbi Fiðp2;m2;M2; nÞ; ð4:155Þ

where the functions Fi are analytic in M2 and are obtained as follows. First, one
rewrites the integration variable as k ¼ Mai~k, where ai is an arbitrary nonnegative
real number. Next, one isolates the overall factor of Mbi so that the remaining
integrand can be expanded in positive powers of M2 and interchanges integration
and summation. The resulting series represents the expansion of Fiðp2;m2;M2; nÞ
in powers of M2. The sum of all possible rescalings with subsequent expansions
with nontrivial coefficients then reproduces the expansion of the result of the
original integral.

To be specific, let us apply this program to H:

Hðp2;m2;M2; nÞ

¼ �i

Z
Mnai dn~k

ð2pÞn
1

~k2M2ai � 2p � ~kMai þ p2 � m2 þ i0þ
1

~k2M2ai �M2 þ i0þ
:

ð4:156Þ

From Eq. 4.156 we see that the first fraction does not contribute to the overall factor
Mbi for any ai. It will be expanded in (positive) powers of ð~k2M2ai � 2p � ~kMaiÞ
except for ai ¼ 0. For 0\ai\1, we rewrite the second fraction as

1
M2ai

1

ð~k2 �M2�2ai þ i0þÞ
¼ 1

M2ai

1
~k2 þ i0þ

1þ M2�2ai

~k2 þ i0þ
þ � � �

� �
: ð4:157Þ

On the other hand, if 1\ai we rewrite the second fraction as
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1
M2

1

ð~k2M2ai�2 � 1þ i0þÞ
¼ � 1

M2
1þ ~k2M2ai�2þ � � �
� �

: ð4:158Þ

In both cases one obtains integrals of the type
R

dn~k ~kl1 . . .~klm as the coefficients of
the expansion. However, such integrals vanish in dimensional regularization.
Therefore, the only nontrivial terms in the sum of Eq. 4.155 correspond to either
ai ¼ 0 or ai ¼ 1. Thus we obtain

Hðp2;m2;M2; nÞ ¼ Hð0Þðp2;m2;M2; nÞ þ Hð1Þðp2;m2;M2; nÞ; ð4:159Þ

where

Hð0Þðp2;m2;M2; nÞ

¼ �i
X1

j¼0

M2
� �j

Z
dnk

ð2pÞn
1

k2 � 2p � k þ p2 � m2 þ i0þ
1

ðk2 þ i0þÞjþ1;
ð4:160Þ

and

Hð1Þðp2;m2;M2; nÞ

¼ �i
Mn�2

p2 � m2 þ i0þ
X1

j¼0

ð�1ÞjMj

ðp2 � m2 þ i0þÞj
Z

dn~k

ð2pÞn
~k2M � 2p � ~k
� �j

~k2 � 1þ i0þ
:
ð4:161Þ

A comparison with the direct calculation of H shows that the dimensional-counting
method indeed leads to the correct expressions [28]. While the loop integrals of
Eq. 4.161 have a simple analytic structure in p2 � m2, the same technique can be
repeated for the loop integrals of Eq. 4.160 when p2 � m2 ! 0, now using the
change of variable k ¼ ðp2 � m2Þci~k with arbitrary nonnegative real numbers ci.

4.7 The Delta Resonance

So far we have discussed the lowest-lying states in baryon ChPT with particular
emphasis on the nucleon in the two-flavor sector. However, it is a well-known fact

that the Dð1232Þ resonance ½IðJPÞ ¼ 3
2ð32
þÞ� plays an important role in the

phenomenological description of low- and medium-energy processes such as
pion-nucleon scattering, electromagnetic pion production, Compton scattering, etc.
This is due to the rather small mass gap between the Dð1232Þ and the nucleon, the
strong coupling of the Dð1232Þ to the pN channel, and its relatively large photon
decay amplitudes.

In ordinary baryon ChPT the effects of resonances are implicitly taken into
account through the values of the LECs. A close-by resonance such as the Dð1232Þ
may then result in a rather slow convergence for observables sensitive to the
quantum numbers of the given resonance. Therefore, it seems natural to ask
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whether the chiral effective field theory can be extended to also include resonances
as dynamical degrees of freedom. One thereby not only hopes to improve the
convergence by essentially reordering an infinite number of higher-order terms
which contribute to higher-order LECs in the standard formulation, but also to
extend the kinematic range of the EFT. If one succeeds in defining a consistent
expansion scheme one may even be able to perform calculations of processes
which involve center-of-mass energies covering the resonance region and thus
study properties of the particular resonance.

As in the baryonic sector, a consistent expansion scheme was first developed in
the heavy-baryon approach (see, e.g., Refs. [12, 34, 38]). More recently, the dis-
cussion has focussed on a manifestly Lorentz-invariant approach (see, e.g.,
Refs. [8, 33, 51]). In a Lorentz-invariant formulation of a field theory involving
particles of higher spin (s� 1), one necessarily introduces unphysical degrees of
freedom [46, 53]. Therefore, one has to impose constraints which specify the
physical degrees of freedom. A detailed treatment of systems with constraints is
beyond the scope of these lecture notes (see, e.g., Refs. [16, 31, 35]) and we
restrict ourselves to a basic introduction.

4.7.1 The Free Lagrangian of a Spin-3/2 System

The Rarita-Schwinger formalism [53] allows for a covariant field-theoretical
description of systems with spin 3

2. The field is represented by a so-called vector
spinor denoted by Wl ðl ¼ 0; 1; 2; 3), where each Wl is a Dirac field. Under a
proper orthochronous Lorentz transformation23 x0l ¼ Kl

mxm, the Rarita-Schwinger
field has the mixed transformation properties of a four-vector field and a four-
component Dirac field,

W0lðx0Þ ¼ Kl
mSðKÞWmðxÞ;

where SðKÞ is the usual matrix representation acting on Dirac spinors. For a
relativistic description of spin 3

2 we need 2 � 4 ¼ 8 independent complex fields,
where the factor of two accounts for the description of particles and antiparticles,
and the factor of four results from four spin projections in the rest frame. In other
words, we need to generate 8 complex conditions among the 4 � 4 ¼ 16 complex
fields of the vector spinor in order to eliminate the additional degrees of freedom.

The most general free Lagrangian serving that purpose reads [46]

L3
2
¼ �WlK

lmðAÞWm; ð4:162Þ

where24

23 detðKÞ ¼ 1 and K0
0� 1.

24 It is common practice to denote both Lorentz transformations and the tensor describing the D
with the same symbol K.
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KlmðAÞ ¼ �


ði6o� mDÞglm þ iAðclom þ cmolÞ

þ i

2
ð3A2 þ 2Aþ 1Þcl 6ocm þ mDð3A2 þ 3Aþ 1Þclcm

�
; ð4:163Þ

with A 6¼ �1
2 an arbitrary real parameter and mD the mass of the D.25 The

Lagrangian introduced by Rarita and Schwinger [53] corresponds to A ¼ �1
3. From

the Euler-Lagrange equation,

oL3
2

o �Wl
� oq

oL3
2

ooq
�Wl|fflfflffl{zfflfflffl}

¼ 0

¼ 0;

we obtain the equation of motion (EOM)

KlmðAÞWm ¼ 0: ð4:164Þ

In addition to the EOM, the fields Wl satisfy the equations

ði 6o� mDÞWl ¼ 0; ð4:165Þ

clW
l ¼ 0; ð4:166Þ

olW
l ¼ 0: ð4:167Þ

Each of the Eqs. 4.166 and 4.167 generate four complex (subsidiary) conditions.
Therefore we end up with the correct number of 16� 4� 4 ¼ 8 independent
components. Note that Eq. 4.165 does not reduce the number of independent
fields: given that the subsidiary conditions hold, it may rather be interpreted as the
equation of motion.

Exercise 4.18 Consider the Lagrangian of Eq. 4.162 for A ¼ �1.

(a) Derive the EOM.
(b) Contract the EOM with cl and verify

2iolW
l � 2i6oclW

l � 3mDclW
l ¼ 0 ð4:168Þ

for solutions of the EOM.
(c) Contract the EOM with ol and verify

mDolW
l � mD 6oclW

l ¼ 0 ð4:169Þ

for solutions of the EOM.

25 Note that mD denotes the leading-order contribution to the mass of the D in an expansion in
small quantities.
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(d) Substitute Eq. 4.169 into Eq. 4.168 and verify Eq. 4.166,

clW
l ¼ 0; ð4:170Þ

for solutions of the EOM.
(e) Substitute Eq. 4.170 into Eq. 4.169 and verify Eq. 4.167,

olW
l ¼ 0; ð4:171Þ

for solutions of the EOM.
(f) Substitute Eqs. 4.170 and 4.171 into the EOM and verify

ði 6o� mDÞWl ¼ 0:

Hint:

clcm þ cmcl ¼ 2glm1:

While, using the same techniques, the results may also be verified for general A,
the actual calculation is more elaborate.

For the application of dimensional regularization with n space-time dimensions
the generalization of the Lagrangian is (see, e.g., Ref. [52])

L3
2
¼ �WlK

lmðA; nÞWm; ð4:172Þ

where

KlmðA; nÞ ¼ �
(
ði6o� mDÞglm þ iAðclom þ cmolÞ

þ i

n� 2
ðn� 1ÞA2 þ 2Aþ 1
� �

cl 6ocm

þ mD

ðn� 2Þ2
nðn� 1ÞA2 þ 4ðn� 1ÞAþ n
� �

clcm

)
; n 6¼ 2: ð4:173Þ

In the special case of A ¼ �1, Eq. 4.172 does not explicitly depend on n.
The free Lagrangian of Eq. 4.172 is invariant under the set of transformations

Wl 7!Wl þ
4a

n
clcmW

m;

A 7! An� 8a

nð1þ 4aÞ; a 6¼ �1
4
;

ð4:174Þ

which are often referred to as a point transformation [49]. The invariance under the
point transformation guarantees that physical quantities do not depend on the so-
called ‘‘off-shell parameter’’ A [49, 58], provided that the interaction terms are also
invariant under the point transformation.
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4.7.2 Isospin

So far, we have only discussed the transformation properties under the Lorentz
group. In order to address the transformation properties under SU(2)L�
SU(2)R � U(1)V , we first need a convenient representation of the isospin group
SU(2)V . Once we have found such a representation, we will generate a realization of
SU(2)L � SU(2)R � U(1)V by applying the procedure discussed in Sect. 4.1 [13, 15].

The Dð1232Þ resonance has isospin I ¼ 3
2 and comes in four charged states:

Dþþ, Dþ, D0, and D�. In the following we make use of the isovector-isospinor
formalism, i.e., we consider the D states as the I ¼ 3

2 components of the tensor
product of I ¼ 1 and I ¼ 1

2 states. Let X and Y denote Hilbert spaces carrying
isospin representations with I ¼ 1 and I ¼ 1

2, respectively. Elements of X and Y are
written as

jxi ¼
X3

i¼1

xijii ¼
X1

m¼�1

ð�1Þmx�mj1;mi; jyi ¼
X1

2

r¼�1
2

yr
1
2
; r

����
�
:

For jxi we have displayed both the Cartesian and spherical decompositions.26

Later on, the complex components will be replaced by the vector-spinor fields of
the previous section. Under an SU(2) transformation V the vectors jxi and jyi
transform according to the adjoint and fundamental representations, respectively.
For the components xi and yr this means

x0i ¼
X3

j¼1

DijðVÞxj; DijðVÞ ¼
1
2

Tr siVsjV
y� �
;

y0r ¼
X1

2

s¼�1
2

Vrsys:

Exercise 4.19 Consider an infinitesimal SU(2) transformation

V ¼ 1� iea
sa

2
:

In the adjoint representation the infinitesimal transformation reads

D ¼ 1� ieaTad
a ;

26 The Cartesian notation is convenient for displaying final results in a compact form while the
spherical notation is used to apply angular momentum coupling methods. Recall
x�1 ¼ ðx1 � ix2Þ=

ffiffiffi
2
p

, x0 ¼ x3, and xþ1 ¼ �ðx1 þ ix2Þ=
ffiffiffi
2
p

.

204 4 Chiral Perturbation Theory for Baryons



where the 3� 3 matrices Tad
a are given in Eq. 1.68. Verify that DijðVÞ defines the

adjoint representation.
Hint: TrðsasbÞ ¼ 2dab, ½sa; sb� ¼ 2ieabcsc.

Now consider an element of the tensor product Z ¼ X � Y ,

jzi ¼
X3

i¼1

X1
2

r¼�1
2

zi;rjii �
1
2
; r

����
�
¼
X1

m¼�1

X1
2

r¼�1
2

ð�1Þmz�m;rj1;mi �
1
2
; r

����
�
: ð4:175Þ

Using the Clebsch-Gordan decomposition, the tensor product may be decomposed
into a direct sum, Z ¼ Z3

2
� Z1

2
. The isospin-3

2 states live in the first space and we

therefore need projection operators P3
2

and P1
2

projecting onto the corresponding

subspaces. The basis states of Z3
2

and Z1
2

are given in terms of the uncoupled basis

by27

1
1
2

� �
3
2
;M

����
�
¼
X1

m¼�1

X1
2

r¼�1
2

1;m;
1
2
; r

3
2
;M

����
��
j1;mi 1

2
; r

����
�
; ð4:176Þ

1
1
2

� �
1
2
;M

����
�
¼
X1

m¼�1

X1
2

r¼�1
2

1;m;
1
2
; r

1
2
;M

����
��
j1;mi 1

2
; r

����
�
; ð4:177Þ

where ðj1;m1; j2;m2jJ;MÞ are Clebsch-Gordan coefficients. The corresponding
projection operators for Z3

2
and Z1

2
read

P3
2
¼
X3

2

M¼�3
2

1
1
2

� �
3
2
;M

����
�

1
1
2

� �
3
2
;M

� ����; ð4:178Þ

P1
2
¼
X1

2

M¼�1
2

1
1
2

� �
1
2
;M

����
�

1
1
2

� �
1
2
;M

� ����: ð4:179Þ

Given the representations

j1; 1i ¼
1

0

0

0
B@

1
CA; j1; 0i ¼

0

1

0

0
B@

1
CA; j1;�1i ¼

0

0

1

0
B@

1
CA;

1
2
;
1
2

����
�
¼ v1

2
¼

1

0

� �
;

1
2
;�1

2

����
�
¼ v�1

2
¼

0

1

� �

27 We now follow common practice in physics and omit the � symbol.
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for the basis states, the matrix representation n
1
2
sph of P1

2
with respect to the spherical

basis reads

n
1
2
sph ¼

1
3

1� s3 � 1ffiffi
2
p ðs1 � is2Þ 0

� 1ffiffi
2
p ðs1 þ is2Þ 1 � 1ffiffi

2
p ðs1 � is2Þ

0 � 1ffiffi
2
p ðs1 þ is2Þ 1þ s3

0
BB@

1
CCA: ð4:180Þ

Exercise 4.20 Verify Eq. 4.180.

(a) Insert Eq. 4.177 into Eq. 4.179. Make use of the Clebsch-Gordan coefficients

1; 0;
1
2
;�1

2

� ����
1
2
;�1

2

�
¼ � 1; 0;

1
2
;
1
2

� ����
1
2
;
1
2

�
¼ 1ffiffiffi

3
p ;

1; 1;
1
2
;�1

2

� ����
1
2
;
1
2

�
¼ � 1;�1;

1
2
;
1
2

� ����
1
2
;�1

2

�
¼

ffiffiffi
2
3

r
:

The remaining Clebsch-Gordan coefficients vanish because of the selection
rule for the projections.

(b) Express terms of the type j1;mih1;m0j in terms of 3� 3 matrices. For
example,

j1; 0ih1; 0j ¼
0
1
0

0

@

1

A 0 1 0ð Þ ¼
0 0 0
0 1 0
0 0 0

0

@

1

A:

(c) Finally, express terms of the type 1
2; r
�� �

1
2; r
0� �� in terms of Pauli matrices and the

unit matrix 1. For example,

1
2
;
1
2

����
�

1
2
;
1
2

� ���� ¼
1
0

� �
1 0ð Þ ¼ 1 0

0 0

� �
¼ 1

2
ð1þ s3Þ:

With the transformation matrix

T ¼
� 1ffiffi

2
p iffiffi

2
p 0

0 0 1
1ffiffi
2
p iffiffi

2
p 0

0
B@

1
CA

the transition to Cartesian coordinates yields the matrix representation n
1
2 of P1

2
,

n
1
2 ¼ Tyn

1
2
sphT ¼ 1

3

1 is3 �is2

�is3 1 is1

is2 �is1 1

0
@

1
A; ð4:181Þ

or in compact notation
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n
1
2
ij ¼

1
3
sisj: ð4:182Þ

Note that the entries of n
1
2 are 2� 2 matrices acting on the isospinors vr. Some-

times it may be helpful to also specify the isospinor indices rs of n
1
2. For example

n
1
2

11;12
1
2
¼ 1

3. Either by explicit calculation or using the property of projection oper-

ators, n
1
2 þ n

3
2 ¼ 1, one obtains the matrix representation of the second projection

operator,

n
3
2
ij ¼ dij �

1
3
sisj: ð4:183Þ

For a vector jDi of the subspace Z3
2
,

jDi ¼
X3

2

M¼�3
2

DM
3
2
;M

����
�
¼ D�

3
2
;�3

2

����
�
þ � � �;

the scalar product ðh1;mjh12; rjÞjDi generates the component ð�Þmzð1Þ�m;r of the state
jDi in terms of the Clebsch-Gordan coefficient ð1;m; 1

2; rj32;MÞ and the components
DM . Reexpressing the spherical components in terms of Cartesian components, we

then obtain, in terms of the projection operator n
3
2 of Eq. 4.183,

n
3
2
1jzj ¼

1ffiffiffi
2
p

1ffiffi
3
p D0 � Dþþ

D� � 1ffiffi
3
p Dþ

 !
;

n
3
2
2jzj ¼ �

iffiffiffi
2
p

1ffiffi
3
p D0 þ Dþþ

D� þ 1ffiffi
3
p Dþ

 !
;

n
3
2
3jzj ¼

ffiffiffi
2
3

r
Dþ

D0

 !
:

ð4:184Þ

This phase convention agrees with Ref. [58] but is opposite to Ref. [34].

4.7.3 Leading-Order Lagrangian of the Dð1232Þ Resonance

In the above discussion, the components of the vectors were complex numbers
which we now interpret as fields by adjusting the notation accordingly, i.e., zi;r !
Wi;r etc. We suppress indices referring to the Lorentz-transformation properties
until the very end. Under SU(2)V these fields transform as28

28 We return to the repeated-index summation convention, because the ranges of summation
should now be clear.

4.7 The Delta Resonance 207



Wi;r 7!W0i;r ¼ DijðVÞVrsWj;s:

A realization of SU(2)L � SU(2)R � U(1)V is then obtained as in Sect. 4.1: we first
replace V by KðL;R;UÞ of Eq. 4.8 and then promote global transformations to
local transformations (see Sect. 4.2). Moreover, we take into account that the D
has baryon number þ1. The field components therefore transform as [58]

Wi;rðxÞ 7!W0i;rðxÞ ¼ exp½�iHðxÞ�Kij;rs½VLðxÞ;VRðxÞ;UðxÞ�Wj;sðxÞ; ð4:185Þ

where

Kij;rs ¼
1
2

TrðsiKsjK
yÞKrs; ð4:186Þ

with K defined in Eq. 4.8. The corresponding covariant derivative is given by

ðDlWÞi;r � Dl;ij;rsWj;s;

Dl;ij;rs ¼ oldijdrs � 2ieijkCl;kdrs þ dijCl;rs � ivðsÞl dijdrs;

where we parameterized the chiral connection Cl of Eq. 4.13 as Cl ¼ Cl;ksk.
The leading-order Lagrangian is given by [34]29

L
ð1Þ
pD ¼ �Wln

3
2Kð1Þlm

pD n
3
2Wm; ð4:187Þ

where

Kð1Þlm
pD ¼�

h
ði 6D� mDÞglm þ iAðclDm þ cmDlÞ

þ i

2
ð3A2 þ 2Aþ 1Þcl 6Dcm þ mDð3A2 þ 3Aþ 1Þclcm

þ g1

2
6uc5glm þ g2

2
clum þ ulcmð Þc5 þ

g3

2
cl 6uc5c

m
i
: ð4:188Þ

Similar to the case of the QCD Lagrangian, Eq. 4.187 represents an extremely
compact notation. The vector-spinor isovector-isospinor field W contains 4 � 4 �
3 � 2 ¼ 96 fields Wl;a;i;r , where l denotes the Lorentz-vector index, a the Dirac-
spinor index, i the isovector index, and r the isospinor index. The projection

operator n
3
2 is responsible for the fact that only the isospin-3

2 component of the
isovector-isospinor field enters the Lagrangian. In comparison with the free
Lagrangian of Eqs. 4.162 and 4.163, we notice that the ordinary partial derivative
has been replaced by the covariant derivative. In addition, terms involving the
chiral vielbein of Eq. 4.16 have been constructed. Note that at first sight there
seem to exist three independent structures of this type. Application of Dirac’s
constraint analysis [16] shows that the Lagrangian of Eq. 4.187 only leads to a

29 We have explicitly included the projection operator in the definition of the Lagrangian.
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consistent theory provided certain relations hold among the coupling constants g1,
g2, and g3 [66].

4.7.4 Consistent Interactions

We have seen in Eqs. 4.166 and 4.167 that the free Lagrangian describes a system
with constraints. The same is true for the Lagrangian of Eq. 4.187, which now also
contains interactions with pions and external fields. The interesting question arises
under which conditions the interacting system still has the correct number of
dynamical degrees of freedom.

Applying a method described in Chap. 1 of Ref. [16], one may analyze the
theory including interactions within the Hamiltonian formalism. For a finite
number of degrees of freedom an outline of the method is as follows (for a more
detailed description see, e.g., Refs. [16, 31, 35]). Let us consider a classical system
with N degrees of freedom qi and velocities _qi ¼ dqi=dt described by the Lagrange
function Lðq; _qÞ. Here, we assume that L contains the _q’s at the most quadratically.
The Hamilton function is obtained using the Legendre transform

Hðq; pÞ ¼
XN

i¼1

pi _qi � Lðq; _qÞ; ð4:189Þ

where the pi are the canonical momenta defined by

pi �
oLðq; _qÞ

o _qi
; i ¼ 1; . . .;N: ð4:190Þ

Since H is a function of q and p, the velocities _qi have to be replaced using
Eq. 4.190. If, according to Eq. 4.190, this is not possible because

det A ¼ 0; with Aij ¼
opi

o _qj
; ð4:191Þ

we are dealing with a singular system [35]. With a suitable change of coordinates,
the Lagrange function can be written as a linear function of the unsolvable new
velocities _q0i. In the following the new coordinates are again denoted by qi. Let the
unsolvable _qi be the first n velocities _q1; . . .; _qn. The so-called primary constraints
occur as follows. The Lagrange function L can be written as

Lðq; _qÞ ¼
Xn

i¼1

FiðqÞ _qi þ Gðq; _qnþ1; . . .; _qNÞ; ð4:192Þ
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from which we obtain as the canonical momenta

pi ¼
FiðqÞ for i ¼ 1; . . .; n;

oGðq; _qnþ1;...; _qN Þ
o _qi

for i ¼ nþ 1; . . .;N:

�
ð4:193Þ

The first part of Eq. 4.193 can be reexpressed in terms of the relations

/iðq; pÞ ¼ pi � FiðqÞ � 0; i ¼ 1; . . .; n; ð4:194Þ

which are referred to as the primary constraints. Here, /i � 0 denotes a weak
equation in Dirac’s sense, namely that one must not use one of these constraints
before working out a Poisson bracket [16]. Using Eq. 4.189, we consider the so-
called total Hamilton function [16]

HTðq; pÞ ¼
XN

j¼nþ1

pj _qjðp; qÞ � Gðq; _qnþ1ðp; qÞ; . . .; _qNðp; qÞÞ þ
Xn

i¼1

ki/iðq; pÞ

¼ Hðq; pÞ þ
Xn

i¼1

ki/iðq; pÞ; ð4:195Þ

where the k’s are Lagrange multipliers taking care of the primary constraints and
the _qiðp; qÞ are the solutions to Eq. 4.193 for i ¼ nþ 1; . . .;N. The constraints /i

have to be zero throughout all time. For consistency, also _/i must be zero. The
time evolution of the primary constraints /i is given by the Poisson bracket with
the Hamilton function, leading to the consistency conditions

f/i;HTg ¼ f/i;Hg þ
Xn

j¼1

kjf/i;/jg � 0: ð4:196Þ

Either all the k’s can be determined from these equations, or new constraints arise.
The number of these secondary constraints corresponds to the number of k’s (or
linear combinations thereof) which could not be determined. Again one demands
the conservation in time of these (new) constraints and tries to solve the remaining
k’s from these equations, etc. The number of physical degrees of freedom is given
by the initial number of degrees of freedom (coordinates plus momenta) minus the
number of constraints. In order for a theory to be consistent, the chain of new
constraints has to terminate such that at the end of the procedure the correct
number of degrees of freedom has been generated.

The application of this program to the Lagrangian of Eq. 4.187 leads, after a
lengthy calculation, to the following relations among the coupling constants [66]:

g2 ¼ Ag1; g3 ¼ �
1þ 2Aþ 3A2

2
g1: ð4:197Þ
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In other words, what seem to be independent interaction terms from the point of
view of constructing the most general Lagrangian [34], turn out to be related once
the self-consistency conditions are imposed.

The Lagrangian of Eq. 4.187 with the couplings of Eq. 4.197 is invariant under
the set of transformations of Eq. 4.174 for n ¼ 4. However, this invariance is an
outcome of, rather than an input to the constraint analysis. Demanding the
invariance under the point transformation alone is not sufficient to obtain the
relations of Eq. 4.197.

The effective Lagrangian of Eq. 4.187 is also invariant under the following
local transformations

Wl;iðxÞ 7!Wl;iðxÞ þ sialðxÞ; ð4:198Þ

where al is an arbitrary vector-spinor isospinor function. This is due to the fact
that we use six isospin degrees of freedom Wl;a;iðxÞ instead of four physical isospin
degrees of freedom. The quantization of the effective Lagrangian of Eq. 4.187 with
the gauge fixing condition siWl;i ¼ 0 leads to the following free-D Feynman
propagator30

Slm
F;ij;abðpÞ ¼ n

3
2
ij;abSlm

F ðpÞ; ð4:199Þ

where

Slm
F ðpÞ ¼ �

6pþ mD

p2 � m2
D þ i0þ

glm � 1
3
clcm þ 1

3mD
plcm � clpmð Þ � 2

3m2
D

plpm


 �

þ 1

3m2
D

1þ A

1þ 2A

A

1þ 2A
mD �

1þ A

2ð1þ 2AÞ6p

 �

clcm � clpm � A

1þ 2A
plcm

� �
:

In particular, choosing A ¼ �1 results in the most convenient expression for the
free-D Feynman propagator.

The leading-order pND interaction Lagrangian can be written as

L
ð1Þ
pND ¼ g �Wl;in

3
2
ijðglm þ ~zclcmÞum;jWþ H.c.; ð4:200Þ

where we parameterized ul ¼ ul;ksk, and g and ~z are coupling constants. The
analysis of the structure of constraints yields

~z ¼ 3Aþ 1
2

: ð4:201Þ

Again, the interaction term of Eq. 4.200 with the coupling constants g and ~z
constrained by Eq. 4.201 is invariant under the point transformation of Eq. 4.174.

30 With this choice we associate a factor iSlm
F ðpÞ with an internal D line of momentum p.
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A simple estimate of the couplings g1 and g of Eqs. 4.187 and 4.200, respec-
tively, is obtained as follows. Consider the z component of the third axial-vector
current in the nonrelativistic quark model [59],

Az;3 ¼
X3

i¼1

rzðiÞ
s3ðiÞ

2
:

The evaluation of Az;3 between quark-model spin-flavor states of the nucleon and
the D yields:

p;
1
2

Az;3

�� ��p; 1
2

� �
¼ 5

6
� gA

2
;

Dþþ;
3
2

Az;3

�� ��Dþþ; 3
2

� �
¼ 3

2
¼ 9

5
gA

2
;

Dþ;
1
2

Az;3

�� ��p; 1
2

� �
¼ 2

3

ffiffiffi
2
p
¼ 4

5

ffiffiffi
2
p gA

2
:

By comparing the ratios with the corresponding matrix elements originating from
Eqs. 4.17, 4.187, and 4.200, one finds [34]

g1 ¼
9
5

gA; g ¼ 3
5

ffiffiffi
2
p

gA: ð4:202Þ

Note that Eq. 4.202 is only a model-dependent estimate for the size of these
couplings. In the spirit of EFT they have to be treated as independent LECs [34].

In summary, the lowest-order Lagrangian for the description of the pion-
nucleon-Delta system is given by

Leff ¼L2 þL
ð1Þ
pN þL

ð1Þ
pD þL

ð1Þ
pND; ð4:203Þ

where the individual Lagrangians are given in Eqs. 3.77, 4.17, 4.187, and 4.200,
respectively. This Lagrangian contains in total seven LECs: F and B from the

mesonic sector, gA and m from L
ð1Þ
pN , g1 and mD from L

ð1Þ
pD , and g from the pND

interaction Lagrangian.
Perturbative calculations including the Dð1232Þ resonance may be organized

by applying the ‘‘standard’’ power counting of Refs. [17, 64] to the renormalized
diagrams, i.e., an interaction vertex obtained from an OðqnÞ Lagrangian counts as
qn, a pion propagator as q�2, a nucleon propagator as q�1, and the integration of a
loop as q4. Here, q generically denotes a small expansion parameter such as, e.g.,
the pion mass. Note that this does not apply to the d expansion, which is discussed
below. The rules for the D propagator are more complicated. If the D propagator is
part of a loop integral it counts as q. The same is true for tree diagrams of channels
where no real resonance can be generated such as, e.g., the u-channel D-pole
diagram in pion-nucleon scattering. On the other hand, in a resonance-generating
channel, such as the s-channel D-pole diagram in pion-nucleon scattering,
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we dress the D propagator by resumming the self-energy insertions. We count the
dressed propagator as q�3, because the self energy starts at Oðq3Þ. In the so-called
small-scale expansion the mass difference d � mD � m is also counted as OðqÞ
[34]. In a different counting [51]—the so-called d expansion—one introduces a
single small parameter, d ¼ ðmD � mÞ=K, where K� 1 GeV stands for the ‘‘high-
energy scale’’ (nucleon mass or chiral-symmetry-breaking scale Kv), and regards

the ratio Mp=K as Oðd2Þ.
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Chapter 5
Applications and Outlook

5.1 Nucleon Mass and Sigma Term

In this section we will address the quark-mass expansion of the nucleon mass.
Starting with a calculation to Oðq3Þ in HBChPT, we will recover the result of
Eq. 4.93 for the nucleon mass. We will then extend the discussion to Oðq4Þ in the
EOMS scheme. Next, we will consider the nucleon mass within a framework
containing the D resonance as an explicit dynamical degree of freedom. Finally,
we will discuss some aspects of a two-loop calculation up to and including Oðq6Þ:

5.1.1 Nucleon Mass to Oðq3Þ in the Heavy-Baryon Formalism

As an application of the heavy-baryon formulation, we calculate the nucleon mass
to Oðq3Þ; the lowest order at which loop diagrams contribute. The calculation
proceeds analogously to the one in Sect. 4.5.3. We will see how the power
counting is automatically satisfied in the heavy-baryon formalism when using
dimensional regularization in combination with the modified minimal subtraction

scheme (gMS) of ChPT.1 The physical mass is given by the pole of the full heavy-
baryon propagator

GvðkpÞ ¼
Pvþ

v � kp � RðpÞ þ i0þ
¼ Pvþ

v � p� m� RðpÞ þ i0þ
; ð5:1Þ

where we have used the decomposition of the nucleon four-momentum
p ¼ mvþ kp (see Eq. 4.95).

1 The existence of a consistent power counting in HBChPT relies on specifying the
renormalization scheme. See Sect. V of Ref. [53] for a discussion of this point.

S. Scherer and M. R. Schindler, A Primer for Chiral Perturbation Theory,
Lecture Notes in Physics 830, DOI: 10.1007/978-3-642-19254-8_5,
� Springer-Verlag Berlin Heidelberg 2012
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Exercise 5.1
(a) Determine the tree contributions RtreeðpÞ to Oðq2Þ: The relevant terms of the

second-order Lagrangian are given by2

cLð2Þ
pN ¼ �N v �

D2

2m
þ c1 Tr vþ

� �
þ � � �

� �
N v: ð5:2Þ

The first term originates from the 1=m correction of Eq. 4.113. The term
proportional to c1 is the analogue of the c1 term in the Lagrangian of Eq. 4.66.
In terms of Sect. 4.5.1, we treat Eq. 5.2 as part of a basic Lagrangian. There
are no contributions to RtreeðpÞ at Oðq3Þ:

(b) Using the leading-order Lagrangian of Eq. 4.114, show that the Feynman rule
for an incoming pion with four-momentum q and Cartesian isospin index a is
given by

�gA

F
Sv � qsa; ð5:3Þ

and that for an incoming pion with q; a and outgoing pion with q0; b by

v � ðqþ q0Þ
4F2

eabcsc: ð5:4Þ

As in the case of Exercise 4.10, the second Feynman rule implies that the loop
diagram of Fig. 5.1b vanishes.

(c) Calculate the loop diagram of Fig. 5.1a. Note that, for convenience, we have
chosen a slightly different momentum assignment. Show that the self-energy
contribution is given by3

�iRloopðpÞ ¼ �i
3g2

A

F2
Sl

v Sm
vil4�n

Z
dnq

ð2pÞn
qlqm

ðq2 �M2 þ i0þÞ½v � ðkp þ qÞ þ i0þ� :

ð5:5Þ

2 The corrections of first order in 1=m in Eq. 4.113 contain a piece of the type

1
2m

�N v ðv � DÞ2 � D2
h i

N v:

Using the field redefinition [65]

N v ! 1þ iv � D
4m
� gASv � u

4m

� �
N v;

the term containing v � D can be eliminated. As in the case of the two-flavor mesonic

Lagrangian at Oðq4Þ (see Exercise 3.25), one finds equivalent parameterizations of
d
L
ð2Þ
pN (and

also of the higher-order Lagrangians) in the baryonic sector.
3 In the remaining part of this section, we adopt the common practice of leaving out the projector
Pvþ in the propagator and (possibly) in vertices with the understanding that all operators act
only in the projected subspace.
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The nucleon propagator at leading order is given in Eq. 4.115.
(d) The tensor integral can be parameterized as

il4�n

Z
dnq

ð2pÞn
qlqm

ðq2 �M2 þ i0þÞðv � qþ xþ i0þÞ
¼ vlvmC20ðx;M2Þ þ glmC21ðx;M2Þ;

where x ¼ v � kp: Contracting with vlvm and glm; show that the integrals
C20ðx;M2Þ and C21ðx;M2Þ can be determined from the equations

C20ðx;M2Þ þ C21ðx;M2Þ ¼ �xIpð0Þ þ x2JpNð0; xÞ;
C20ðx;M2Þ þ nC21ðx;M2Þ ¼ M2JpNð0; xÞ;

where

Ipð0Þ ¼ il4�n
Z

dnq

ð2pÞn
1

q2 �M2 þ i0þ
;

JpNð0; xÞ ¼ il4�n
Z

dnq

ð2pÞn
1

ðq2 �M2 þ i0þÞðv � qþ xþ i0þÞ :

Hint: glmglm ¼ n and

il4�n

Z
dnq

ð2pÞn
ql

q2 �M2 þ i0þ
¼ 0; il4�n

Z
dnq

ð2pÞn
1

v � qþ xþ i0þ
¼ 0:

(e) Using the results above, as well as Sv � v ¼ 0 and S2
v ¼ ð1� nÞ=4; verify that

the loop contribution to the self energy is given by

RloopðpÞ ¼ �3g2
A

4F2
M2 � x2
� �

JpNð0; xÞ þ xIpð0Þ
� �

: ð5:6Þ

(f) The explicit expression for Ipð0Þ is given in Eq. 4.87, and

JpNð0;xÞ¼ x
8p2

Rþ ln
M2

l2

� 	
�1

� �
þ 1

4p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2�x2
p

arccos �x
M

� �
þOðn�4Þ

for x2\M2; where R is given in Eq. 3.111. Verify that the expression for the
self energy is given by

(a) (b)

Fig. 5.1 One-loop
contributions to the nucleon
self energy
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RðpÞ ¼ RtreeðpÞ þ RloopðpÞ

¼ �
k2

p

2m
� 4c1M2 � 3g2

A

ð4pFÞ2
�

M2 � x2
� �3

2arccos �x
M

� �
:

þ x
4

3M2 � 2x2
� �

Rþ ln
M2

l2

� 	� �
� 1

2
M2 � x2
� �
 �	

: ð5:7Þ

(g) To determine the nucleon mass, we need to evaluate the self energy for p on
the mass shell, which corresponds to

p ¼ mNv:

Show that this condition corresponds to x ¼ v � kp ¼ mN � m; so that

mN ¼ mþ RðmNvÞ

¼ m� ðmN � mÞ2

2m
� 4c1M2 þ RloopðmNvÞ: ð5:8Þ

Given that RloopðmNvÞ is at least OðM2Þ; this implies that mN � m ¼ OðM2Þ:
Since our calculation is only valid to Oðq3Þ; we can neglect the second term on
the right-hand side of Eq. 5.8 and can set x ¼ 0 in the loop contribution.
Verify the final result for the nucleon mass to Oðq3Þ :

mN ¼ m� 4c1M2 � 3pg2
AM3

2ð4pFÞ2
:

The loop contribution is of Oðq3Þ as predicted by the power counting. It is
therefore not necessary to perform any additional finite subtractions. It is
exactly this feature which distinguishes the heavy-baryon formulation from the
original, manifestly Lorentz-invariant approach of Ref. [83] discussed in
Sect. 4.5.3. Both calculations make use of dimensional regularization with the
modified minimal subtraction scheme of ChPT, but only in the heavy-baryon
case does this renormalization condition lead to a consistent power counting.
The result for the nucleon mass agrees with the expression of Eq. 4.93,
obtained in the manifestly Lorentz-invariant calculation with the additional
subtraction.

5.1.2 Nucleon Mass and Sigma Term at Oðq4Þ

We now turn to a full one-loop calculation of the nucleon mass at Oðq4Þ in the
EOMS approach [76]. In addition to the loop diagrams of Fig. 4.4 and the tree-

level contribution originating from L
ð2Þ
pN ; we need to consider the diagrams shown

in Fig. 5.2. Note that Lð2Þ
pN does not generate a contribution to the pNN vertex.
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Therefore, a diagram with the topology of the first diagram of Fig. 4.4, where one
of the two vertices is replaced by an Oðq2Þ vertex, does not exist. The tree-level
contribution at Oðq4Þ reads

Rtree
4 ¼ �ê1M4; ð5:9Þ

where ê1 ¼ 16e38 þ 2e115 þ 2e116 is a linear combination of Oðq4Þ LECs [72], and
the subscript 4 denotes chiral order four. In order to facilitate comparison with
Refs. [10, 76], let us denote the loop contribution of the first diagram of Fig. 4.4
by Ra;

Ra ¼
3g2

A

4F2
il4�n

Z
dnk

ð2pÞn 6kc5
1

6p� 6k � mþ i0þ
6kc5

1
k2 �M2 þ i0þ

: ð5:10Þ

Applying Feynman rules, we obtain for the two one-loop contributions of Fig. 5.2

Rloop
4 ¼ Rb þ Rc; ð5:11Þ

where

Rb ¼ �4M2c1
3g2

A

4F2
il4�n

Z
dnk

ð2pÞn 6kc5
1

6p� 6k � mþ i0þ

� 	2

6kc5
1

k2 �M2 þ i0þ

¼ �4M2c1
oRa

om
; ð5:12Þ

Rc ¼ 3
M2

F2
2c1 � c3 �

p2

m2

c2

n

� 	
il4�n

Z
dnk

ð2pÞn
1

k2 �M2 þ i0þ
: ð5:13Þ

In general, the chiral orders assigned by the power counting will not hold until the
corresponding subtractions have been performed.

The renormalization of the loop diagrams is performed in two steps. First, we
render the diagrams finite by applying the modified minimal subtraction scheme of

ChPT ðgMSÞ: We choose l ¼ m for the ’t Hooft parameter. In a second step, we
then perform additional finite subtractions for integrals which contain nucleon
propagators with the purpose of imposing the power-counting scheme. In fact,

Fig. 5.2 Contributions to the nucleon self energy at Oðq4Þ: The number n in the interaction blobs

refers to L
ðnÞ
pN : The Lagrangian L

ð2Þ
pN does not produce a contribution to the pNN vertex
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in order to apply the gMS subtraction in practical calculations, we do not actually
need to explicitly write down the corresponding counter terms. We simply subtract
all loop diagrams and tag the coupling constants with a subscript r indicating the
gMS scheme.

The nucleon mass is determined by solving Eq. 4.80,

mN � m� RðmNÞ ¼ 0:

Using the gMS-renormalized expressions for the integrals of Eq. 4.87, we obtain

for the mass in the gMS scheme,

mN ¼ m� 4c1rM
2 þ 3g2

Ar

32p2F2
r

m 1þ 8c1rmð ÞM2 � 3g2
Ar

32pF2
r

M3

þ 3
32p2F2

r

8c1r � c2r � 4c3r �
g2

Ar

m

� 	
M4 ln

M

m

� 	

þ 3g2
Ar

32p2F2
r m

1þ 4c1rmð ÞM4 þ 3
128p2F2

r

c2r � ê1r

� 	
M4 þ O M5

� �
; ð5:14Þ

where ‘‘r’’ refers to gMS-renormalized quantities. When solving Eq. 4.80, we
expanded the results of the loop integrals and consistently omitted terms which

count as Oð�h2Þ in the loop expansion, i.e., terms proportional to ðgA=FÞ4; as well

as terms proportional to ðc1rÞ2: The third term on the right-hand side of Eq. 5.14
violates the power counting because it is of OðM2Þ: It receives contributions from
both Ra and Rb:

In order to perform the second step, namely another finite renormalization, a

given gMS-renormalized diagram is written as the sum of a subtracted diagram
which, through the application of the subtraction scheme described in Sect. 4.6.3,
satisfies the power counting, and a remainder which violates the power counting
and thus still needs to be subtracted. For the case at hand, we determine the terms
to be subtracted from Ra and Rb by first expanding the integrands and coefficients
in Eqs. 5.10 and 5.12 in powers of M2; 6p� m; and p2 � m2: In this expansion we
keep all the terms having a chiral order which is smaller than what is suggested by
the power counting for the given diagram. We then obtain

Rsubtr
r;aþb ¼

3g2
Ar

32p2F2
r

mM2 � ðp
2 � m2Þ2

4m

" #
þ 3c1rg

2
ArM

2

8p2F2
r

mð6pþ mÞ � 3
2
ðp2 � m2Þ

� �
:

ð5:15Þ

Equation 5.15 specifies which parts of the self-energy diagrams at Oðq3Þ and Oðq4Þ
need to be subtracted. We fix the corresponding counter terms so that they exactly
cancel the expression given by Eq. 5.15. Since the most general Lagrangian
contains all the structures consistent with the symmetries of the theory, it also
provides the required counter terms. Finally, the renormalized self-energy
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expression is obtained by subtracting Eq. 5.15 from the gMS-subtracted version of

Eqs. 5.10 (see Eq. 4.88) and 5.12 and replacing the gMS-renormalized couplings

with the ones of the EOMS scheme. We note that the gMS-subtracted version for Rc

needs no further subtraction because it already is of Oðq4Þ:
The correction to the nucleon mass resulting from the counter terms is calcu-

lated by substituting 6p ¼ mN in the negative of Eq. 5.15. Recall that Eq. 5.15 has
to be subtracted. We thus obtain the following expression for the contribution to
the mass,

Dmc:t: ¼ �
3g2

Ar

32p2F2
r

mð1þ 8c1rmÞM2; ð5:16Þ

where the subscript c.t. refers to counter term. Comparing with Eq. 5.14, we see
that the subtraction term of Eq. 5.15 indeed cancels the power-counting-violating
contributions in Eq. 5.14. Finally, we express the physical mass of the nucleon up
to and including order q4 as [128, 162]4

mN ¼ mþ k1M2 þ k2M3 þ k3M4 ln
M

m

� 	
þ k4M4 þ OðM5Þ; ð5:17Þ

where the coefficients ki in the EOMS scheme read [76]

k1 ¼ �4c1; k2 ¼ �
3g2

A

32pF2; k3 ¼ �
3

32p2F2m
g2

A � 8c1mþ c2mþ 4c3m
� �

;

k4 ¼
3gA

2

32p2F2m
ð1þ 4c1mÞ þ 3

128p2F2
c2 � ê1: ð5:18Þ

A comparison with the results using the infrared regularization [10] shows that
the lowest-order correction (k1 term) and those terms which are nonanalytic in the
quark mass m̂ (k2 and k3 terms) are identical. On the other hand, the analytic k4

term (�M4) is different. This is not surprising; although both renormalization
schemes satisfy the power counting specified in Sect. 4.5.2, the use of different
renormalization conditions is compensated by different values of the renormalized
parameters.

For an estimate of the various contributions of Eq. 5.17 to the nucleon mass,
we make use of the numerical values of Eq. 4.65 for gA, etc., and the parameter
set of Eq. 4.67 for the ci: Note that using the physical values for gA and Fp

instead of their chiral limit values is consistent up to the order considered here,
as gA ¼ gA½1þ OðM2Þ� and Fp ¼ F½1þ OðM2Þ�: As has been discussed, e.g., in
Ref. [10], a fully consistent description would also require to determine the low-
energy coupling constant c1 from a complete Oðq4Þ calculation of, say, pN

4 In our convention, k3 is larger by a factor of two than in Refs. [128, 162], because we use
lnðM=mÞ instead of lnðM2=m2Þ:
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scattering. One obtains for the mass of nucleon in the chiral limit (at fixed
ms 6¼ 0):

m ¼ mN � Dm

¼ ð938:3� 74:8þ 15:3þ 4:7þ 1:6� 2:3� 4ÞMeV

¼ ð882:8� 4ÞMeV; ð5:19Þ

with Dm ¼ ð55:5� 4ÞMeV: Here, we have made use of an estimate for
ê1M4 ¼ ð2:3� 4ÞMeV obtained from the r term (see below). Note that errors due
to higher-order corrections are not taken into account.

Sigma terms provide a sensitive measure of explicit chiral symmetry
breaking in QCD because ‘‘they are corrections to a null result in the chiral
limit rather than small corrections to a non-trivial result’’ [150] (see, e.g.,
Refs. [93, 159] for a review). In the three-flavor sector, the so-called sigma
commutator is defined as

rabðxÞ � ½QAaðx0Þ; ½QAbðx0Þ;HsbðxÞ��; ð5:20Þ

where QAc ¼ QRc � QLc denotes one of the eight axial-charge operators of Eq. 3.9
and

Hsb ¼ �qMq ¼ m̂ð�uuþ �ddÞ þ ms�ss

is the chiral-symmetry-breaking mass term of the QCD Hamiltonian in the isospin-
symmetrical limit. Using equal-time anticommutation relations (see Eqs. 1.103
and 3.20), Eq. 5.20 can be written as [132]

rabðxÞ ¼ �qðxÞ ka

2
;

kb

2
;M


 �
 �
qðxÞ; ð5:21Þ

yielding for the flavor-diagonal pieces,

r11 ¼ r22 ¼ r33 ¼ m̂ð�uuþ �ddÞ;

r44 ¼ r55 ¼
m̂þ ms

2
ð�uuþ �ssÞ;

r66 ¼ r77 ¼
m̂þ ms

2
ð�dd þ �ssÞ; ð5:22Þ

r88 ¼
1
3
½m̂ð�uuþ �ddÞ þ 4ms�ss�;

r38 ¼ r83 ¼
m̂ffiffiffi

3
p ð�uu� �ddÞ:

Exercise 5.2 Verify Eqs. 5.21 and 5.22.
In the following, we restrict ourselves to the two-flavor case. In terms of the

SU(2)L�SU(2)R-chiral-symmetry-breaking mass term of the QCD Hamiltonian,

Hsb ¼ m̂ð�uuþ �ddÞ; ð5:23Þ
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the pion-nucleon sigma term is defined as the proton matrix element

r ¼ 1
2mp
hpðp; sÞjHsbð0Þjpðp; sÞi ð5:24Þ

at zero momentum transfer.5 The sigma term may either be obtained by explicit
calculation or through the application of the Hellmann-Feynman theorem.

Exercise 5.3 Consider a Hermitian operator HðkÞ depending smoothly on a real
parameter k: Let jaðkÞi denote a normalized eigenstate with eigenvalue EðkÞ;

HðkÞjaðkÞi ¼EðkÞjaðkÞi;
haðkÞjaðkÞi ¼ 1:

Verify the Hellmann-Feynman theorem,

oEðkÞ
ok
¼ aðkÞ oHðkÞ

ok

����

����aðkÞ
� �

: ð5:25Þ

In the present context, we multiply Eq. 5.25 by k and perform the substitutions

k! m̂;

jaðkÞi ! jNðm̂Þi;
EðkÞ ! mNðm̂Þ;
oH

ok
! oHQCD

om̂
¼ �uuþ �dd:

Note that M2 ¼ 2Bm̂ and thus [83]

r ¼ M2omN

oM2
: ð5:26Þ

The quark-mass expansion of the r term reads

r ¼ r1M2 þ r2M3 þ r3M4 ln
M

m

� 	
þ r4M4 þ OðM5Þ; ð5:27Þ

with

r1 ¼ �4c1; r2 ¼ �
9g2

A

64pF2
; r3 ¼ �

3
16p2F2m

g2
A � 8c1mþ c2mþ 4c3m

� �
;

r4 ¼
3

8p2F2m

3g2
A

8
þ c1mð1þ 2g2

AÞ �
c3m

2

� �
� 2ê1: ð5:28Þ

5 In the linear sigma model with explicit symmetry breaking (see Sect. 2.4), the double com-
mutator r11ðxÞ is proportional to the sigma field. This is the origin of the name sigma term.
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Exercise 5.4 Using the coefficients ki of Eq. 5.18, verify Eq. 5.28 by applying the
Hellmann-Feynman theorem of Eq. 5.26.

We obtain (with ê1 ¼ 0 in Eq. 5.28)

r ¼ ð74:8� 22:9� 9:4� 2:0ÞMeV ¼ 40:5 MeV: ð5:29Þ

The result of Eq. 5.29 has to be compared with, e.g., the dispersive analysis
r ¼ ð45� 8ÞMeV of Ref. [84] which would imply, neglecting higher-order terms,
�2ê1M4 	 ð4:5� 8Þ MeV. Note that c1 has been estimated in terms of an Oðq2Þ
tree-level calculation of pN scattering, whereas a fully consistent description
would require determining c1 from a complete Oðq4Þ calculation.

5.1.3 Nucleon Mass Including the Delta Resonance

In this section we discuss the result for the nucleon mass to order q3 within the
EFT of Sect. 4.7 including the Dð1232Þ resonance as an explicit degree of
freedom. We will make use of the small-scale expansion, treating both the pion
mass M and the mass difference d ¼ mD � m as OðqÞ: We will fix the renor-
malization condition such that d denotes the mass difference in the chiral limit
between the pole mass of the D and the nucleon mass. However, as will be
seen in Eq. 5.34, we do not identify the parameter m with the nucleon mass in
the chiral limit.

The relevant Feynman diagrams for the self energy are shown in Fig. 5.3. At
Oðq2Þ; we obtain a constant tree-level contribution �4~c1M2 to the self energy,
where ~c1 refers to the coupling constant in the theory explicitly including D
degrees of freedom. The EOMS-renormalized one-loop contribution resulting from

Rloop
N of Fig. 5.3 is given by the same expression as in Sect. 4.5.3,

Rloop
N ð6p ¼ mNÞ ¼ �

3g2
AM3

32pF2
: ð5:30Þ

Finally, the EOMS-renormalized one-loop contribution of the D resonance

resulting from Rloop
D of Fig. 5.3 reads [98]

Fig. 5.3 Contributions to the nucleon self energy to Oðq3Þ: The number n in the interaction blobs

refers to L
ðnÞ
pN and L

ðnÞ
pND: The D is represented by a double line
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Rloop
D ð6p ¼ mNÞ

¼ g2

288p2F2

"
35d3 þ 6dM2 1þ 25~c1mð Þ þ 96 d2 �M2

� �3=2
ln

d�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 �M2
p

M

 !#

� g2

6p2F2
2d3 � 3M2d
� �

ln
M

m

� 	
: ð5:31Þ

Combining the tree-level result at Oðq2Þ with the Oðq3Þ one-loop contributions
results in the following expression for the nucleon mass:

mN ¼ m� 4~c1M2 � 3g2
AM3

32pF2
þ g2

288p2F2

"
35d3 þ 6dM2 1þ 25~c1mð Þ

þ 96 d2 �M2
� �3=2

ln
d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 �M2
p

M

 !#

� g2

6p2F2
2d3 � 3M2d
� �

ln
M

m

� 	
þ O q4

� �
: ð5:32Þ

The nonanalytic part of Eq. 5.32 agrees with a covariant calculation in the
framework of infrared regularization [21]. The analytic terms differ because of
different renormalization conditions and a different choice for the interaction
terms.

By explicitly including the spin-3/2 degrees of freedom, terms of higher order in
the chiral expansion have been resummed. In order to obtain a numerical value for
these terms, let us expand Eq. 5.32 in powers of M:

Exercise 5.5 Consider M 
 d and introduce x ¼ M=d: Verify

d2 �M2
� �3

2ln
d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 �M2
p

M

 !
¼ d3 ln

x

2

� �
� 3

2
x2 ln

x

2

� �
þ x2

4
þ O x4

� �� �
:

ð5:33Þ

Using the result of Eq. 5.33, we match the terms of orders M0 and M2 in
Eq. 5.32 to the corresponding quantities of the EFT without explicit spin-3/2
degrees of freedom (see Eq. 4.93). Taking into account that there are no tree-level
D contributions to c1 [10], we obtain

m
� ¼ mþ g2d3

3p2F2
ln

m

2d

� �
þ 35g2d3

288p2F2
; ð5:34Þ

c1 ¼ ~c1 � ð1þ 5~c1mÞ 5g2d
192p2F2

þ g2d
8p2F2

ln
m

2d

� �
; ð5:35Þ
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where, for the purpose of this section, m
�

denotes the nucleon mass in the chiral
limit and c1 refers to the theory without spin-3/2 degrees of freedom. Using
Eqs. 5.34 and 5.35, the nucleon mass of Eq. 5.32 can be rewritten as

mN ¼ m
� �4c1M2 � 3g2

AM3

32pF2
þ ~mN ; ð5:36Þ

where ~mN is of order M4 and contains an infinite number of terms if expanded in
powers of M=d:

In order to obtain an estimate for ~mN ; we make use of g ¼ 1:127 as obtained
from a fit to the D! pN decay width [98],6 and take the numerical values

gA ¼ 1:267; Fp ¼ 92:4 MeV; mN ¼ mp ¼ 938:3 MeV;

Mp ¼ Mpþ ¼ 139:6 MeV; mD ¼ 1210 MeV; d ¼ mD � mN :
ð5:37Þ

Substituting the above values in the expression for ~mN results in

~mN ¼ �5:7 MeV: ð5:38Þ

We recall that the analysis of the nucleon mass up to and including order M4 of
Eq. 5.19 yields ð882:8þ 74:8� 15:3ÞMeV ¼ 942:3 MeV for the first three terms
of Eq. 5.36. In other words, the explicit inclusion of the spin-3/2 degrees of
freedom does not have a significant impact on the nucleon mass at the physical
pion mass.

Applying the Hellmann-Feynman theorem in the form of Eq. 5.26 to the
nucleon mass, we obtain for the pion-nucleon sigma term to order q3;

r ¼� 4~c1M2 � 9g2
AM3

64pF2
þ 5g2ð1þ 5~c1mÞdM2

48p2F2

� g2ðd2 �M2Þ
1
2M2

2p2F2
ln

d�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 �M2
p

M

 !
þ g2dM2

2p2F2
ln

M

m

� 	
: ð5:39Þ

Again, expanding Eq. 5.39 in powers of M and using Eq. 5.35, we rewrite r as

r ¼ �4c1M2 � 9g2
AM3

64pF2
þ ~r; ð5:40Þ

where ~r is of order M4 and contains an infinite number of terms if expanded in
powers of M=d: With the numerical values of Eq. 5.37 we obtain from Eq. 5.39

~r ¼ �10:2 MeV; ð5:41Þ

while the first two terms of Eq. 5.40 yield ð74:8� 22:9ÞMeV ¼ 51:9 MeV. These
numbers have to be compared with the empirical values of the sigma term

6 The quark-model estimate of Eq. 4.202 yields g ¼ 1:075:
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extracted from data on pion-nucleon scattering: 40 MeV [38], ð45� 5ÞMeV [84],
and ð64� 7ÞMeV [151]. Equation 5.41 indicates that the explicit inclusion of the
spin-3/2 degrees of freedom plays a more important role for the sigma term than
for the nucleon mass. However, one has to keep in mind that the sigma term only
starts at order M2 and thus, on a relative scale, is automatically more sensitive to
higher-order corrections.

5.1.4 Nucleon Mass to Oðq6Þ

In the previous sections we discussed the nucleon mass up to and including Oðq4Þ:
Using estimates for various low-energy couplings, we found good convergence at
the physical pion mass. However, the convergence of the chiral expansion of a
physical quantity is also of interest when unphysical values of the parameter M are
considered. Lattice QCD presents a numerical approach in which correlation
functions are calculated from the QCD Lagrangian by discretizing space-time
[47, 87, 99, 160, 184]. One of the factors that determine the amount of resources
required to perform these calculations is the size of the quark masses, with small
quark masses corresponding to higher calculational costs. While lattice QCD has
made tremendous progress towards calculations performed at the physical quark
masses, in general calculations have been performed at a series of unphysical
values. Observables at the physical quark masses are then extrapolated. Since
chiral perturbation theory corresponds to an expansion in the quark, or equiva-
lently the pion, mass, it is a crucial tool in performing these extrapolations. The
range of pion masses that can be used for reliable extrapolations is determined by
the convergence properties of ChPT [174].

So far only a few calculations in the baryon sector have been performed beyond
Oðq4Þ: These include the calculation of the nucleon mass in the heavy-baryon
formalism to fifth order [136], and a determination of the leading nonanalytic
contributions to the axial-vector coupling constant gA at the two-loop level using
so-called renormalization group techniques [22]. In the following we will discuss
some aspects of the chiral expansion of the nucleon mass up to and including
Oðq6Þ in the reformulated infrared regularization scheme, based on the work of
Refs. [170, 171]. According to the power counting, only tree-level and one-loop
diagrams have to be considered in a calculation up to Oðq4Þ; while starting at
Oðq5Þ; one also has to take into account two-loop diagrams. As the calculation of
all diagrams is too involved to be presented here in detail, we will focus on a few
relevant aspects and explore some implications.

Before discussing details specific to infrared regularization and our power
counting, we give a brief description of the renormalization of two-loop diagrams
in general. The discussion follows Ref. [43]. In order to keep track of the number
of loop integrations, we make explicit the dependence on �h; where each power of �h
corresponds to one loop integration. At the two-loop level, one has to distinguish
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between overall divergences, which occur when both loop momenta become large,
and so-called subdivergences, in which only one loop momentum is large while
the other remains finite. As an example, consider the diagram in Fig. 5.4a. If one
loop momentum is kept fixed, the integration of the other momentum corresponds
to a one-loop subdiagram as shown in Fig. 5.4b. This subdiagram can contain a
divergence, which has to be subtracted with a counter term of order �h (Fig. 5.4c).
Since we are working at the two-loop level, i.e. Oð�h2Þ; there are so-called counter-
term diagrams, in which one vertex corresponds to a counter term, see Fig. 5.4d.
Taking into account the sum of a two-loop diagram and all its corresponding
counter-term diagrams ensures that any remaining divergence is local and can thus
be absorbed into counter terms in the Lagrangian.

In the calculation of the nucleon mass in baryon ChPT we have to ensure that,
in addition to subtracting all divergences, the resulting expressions satisfy the
power counting and the relevant Ward identities. To demonstrate the subtleties
involved, consider the example of a two-loop integral H that can be written as the
product of two one-loop integrals H1 and H2;

7

H ¼ H1H2: ð5:42Þ

The chiral order of the two-loop integral is simply the sum of the chiral orders of
the two one-loop integrals. Each of the one-loop integrals can be separated into an
infrared-singular and an infrared-regular part, and we obtain

H ¼ I1I2 þ I1R2 þ R1I2 þ R1R2: ð5:43Þ

As discussed, we need to add the contribution of counter-term diagrams. The sub-
traction terms for the one-loop integral H1 are given by its infrared-regular part R1.
The unrenormalized counter-term integral is thus

�R1H2; ð5:44Þ

with an analogous expression for the other counter-term integral. Previously, when
going to the limit n! 4; it was only necessary to discuss terms of order
1=e and e0; where e ¼ 4� n: However, if the integral H2 contains divergences,
these can be multiplied by terms � e in the subtraction term R1; resulting in finite
contributions. It turns out to be crucial for the preservation of chiral symmetry to

(a) (b) (c) (d)

Fig. 5.4 Two-loop diagram with corresponding subdiagram and counter-term diagram

7 Note that not all two-loop integrals can be decomposed in this way. However, this special case
is sufficient for our considerations.
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include in the subtraction terms not only divergent and finite terms, but also all
terms of positive power in e: A detailed discussion can be found in Ref. [171]. The
properly renormalized expression for the two-loop integral Hir has the particularly
simple form

Hir ¼ ~I1~I2; ð5:45Þ

where the~ indicates that all additional divergences in the infrared-singular parts
of the one-loop integrals have been dropped (see Sect. 4.6.2).

The chiral expansion of the nucleon mass up to Oðq6Þ is given by

mN ¼ mþ k1M2 þ k2M3 þ k3M4 ln
M

l

� 	
þ k4M4 þ k5M5 ln

M

l

� 	
þ k6M5

þ k7M6 ln2 M

l

� 	
þ k8M6 ln

M

l

� 	
þ k9M6: ð5:46Þ

The lengthy expressions for all of the coefficients ki are given in Ref. [171]. While
we refrain from displaying them here, we want to discuss a few aspects and
implications. The coefficients k5 and k6 are given by

k5 ¼
3g2

A

1024p3F4
16g2

A � 3
� �

;

k6 ¼
3g2

A

256p3F4
g2

A þ
p2F2

m2
� 8p2 3lr

3 � 2lr4
� �

� 32p2F2

gA
2d16 � d18ð Þ

� �
:

Note that while k5 receives contributions from a number of diagrams with various
low-energy couplings, it only depends on the parameters of the lowest-order

Lagrangian, i.e. gA and F: The term k5M5 ln M
l

� �
is the leading chiral logarithm at

two-loop order, and its value is constrained by renormalization group equations
and thus only depends on the lowest-order constants [39]. The coupling k6 on the
other hand depends on the mesonic LECs l3; l4 of the Lagrangian at Oðq4Þ; and the
baryonic LECs d16; d18 of the Lagrangian at Oðq3Þ: Also note that the coefficient k5

has to be the same in all renormalization schemes.
How do these higher-order contributions affect the convergence of the chiral

expansion? Unfortunately, most of the coefficients cannot be evaluated numeri-
cally as the values of various LECs are not known. However, as seen above, k5

only depends on the axial-vector coupling constant gA and the pion-decay constant
F: While their values should be taken in the chiral limit, in order to get an estimate
for higher-order contributions, we choose to evaluate them at their physical values
gA ¼ 1:2694 and Fp ¼ 92:42 MeV. Setting l ¼ mN ; where mN ¼ ðmp þ mnÞ=2 ¼
938:92 MeV, we obtain k5M5 lnðM=mNÞ ¼ �4:8 MeV at the physical pion mass
M ¼ Mpþ ¼ 139:57 MeV. This corresponds to approximately 31% of the leading
nonanalytic contribution at one-loop order, k2M3: As mentioned above, the con-
vergence at unphysical values of the pion mass is also of great interest. Figure 5.5
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shows the pion-mass dependence of the term k5M5 lnðM=mNÞ (solid line) in
comparison with the term k2M3 (dashed line) for M\400 MeV. Chiral extrapo-
lations are considered to be applicable in the shown pion mass range [54, 141]. We
see that already at M 	 360 MeV the fifth-order term k5M5 lnðM=mNÞ becomes as
large as k2M3: This comparison does not present a strict study of the convergence
properties of the chiral expansion, as not all contributions at a specific chiral order
are considered. For example, we have not taken into account the contributions
from k6M5; which might cancel parts of the k5 term. However, these results
indicate the importance of higher-order terms at larger pion masses, and they are in
agreement with the convergence estimates determined with other methods
[54, 141].

5.2 Nucleon Electromagnetic Form Factors to Oðq4Þ

As mentioned in Sect. 1.4.2, the matrix element of the electromagnetic current
operator,

JlðxÞ ¼ 2
3

�uðxÞcluðxÞ � 1
3

�dðxÞcldðxÞ;

evaluated between single-nucleon states is related to the nucleon electromagnetic
form factors. Imposing the relevant symmetries such as translational invariance,
Lorentz covariance, the discrete symmetries, and current conservation, the nucleon
matrix element of the electromagnetic current operator can be parameterized in
terms of two form factors,

hNðp0; s0ÞjJlð0ÞjNðp; sÞi ¼ �uðp0; s0Þ FN
1 ðQ2Þcl þ i

rlmqm

2mp
FN

2 ðQ2Þ
� �

uðp; sÞ; ð5:47Þ

Fig. 5.5 Pion-mass
dependence of the term

k5M5 ln M
l

� �
(solid line) for

M\400 MeV: The dashed
line shows the term k2M3

for comparison

230 5 Applications and Outlook



where q ¼ p0 � p;Q2 ¼ �q2; and N ¼ p; n:8 In principle, a third form factor
FN

3 ðQ2Þ proportional to ql exists which, however, vanishes for on-shell nucleons
due to current conservation as well as time-reversal invariance. The Dirac and
Pauli form factors FN

1 and FN
2 are normalized such that at Q2 ¼ 0 they reduce to

the charge and anomalous magnetic moment [in units of e and the nuclear mag-
neton e=ð2mpÞ], respectively,

Fp
1ð0Þ ¼ 1; Fn

1ð0Þ ¼ 0; Fp
2ð0Þ ¼ 1:793; Fn

2ð0Þ ¼ �1:913:

In the actual calculation, it is more convenient to work in the isospin basis (s for
isoscalar and v for isovector)

FðsÞi ¼ Fp
i þ Fn

i ; FðvÞi ¼ Fp
i � Fn

i ; i ¼ 1; 2; ð5:48Þ

so that the electromagnetic form factors may be combined in a 2� 2 matrix as
follows,

Fi ¼
1
2

FðsÞi 1þ 1
2

FðvÞi s3; i ¼ 1; 2:

Experimental results are commonly presented in terms of the electric and magnetic
Sachs form factors GEðQ2Þ and GMðQ2Þ; which are related to the Dirac and Pauli
form factors via

GN
E ðQ2Þ ¼ FN

1 ðQ2Þ � Q2

4m2
p

FN
2 ðQ2Þ; GN

MðQ2Þ ¼ FN
1 ðQ2Þ þ FN

2 ðQ2Þ; N ¼ p; n:

In the nonrelativistic limit, the Fourier transforms of the Sachs form factors are often
interpreted as the distribution of charge and magnetization inside the nucleon. For a
covariant interpretation in terms of the transverse charge density see Refs. [43, 143].

As they are experimentally well-studied, the description of the electromagnetic
form factors provides a stringent test for any theory or model of the strong interac-
tions. As baryon ChPT is a low-energy approximation of QCD in the one-nucleon
sector, one would expect ChPT calculations to show good agreement with data.
These have been performed in the early relativistic approach [83], the heavy-baryon
approach [15, 71], the small-scale expansion [18], the infrared regularization [119],
and the EOMS scheme [79]. These calculations have in common that they describe
the form factors for momentum transfers up to around Q2 ¼ 0:1 GeV2 (see Fig. 5.6),
which corresponds to a small expansion parameter of q� 350 MeV; in agreement
with the breakdown of the chiral expansion of the nucleon mass. While the complete
calculation of the form factors even up to only Oðq3Þ; the first order at which loop

8 Since we discuss the form factors in the space-like region, here we adopt the convention of
taking Q2 ¼ �q2 as the argument of the form factors as is common practice in the context of
electron scattering.
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diagrams enter, is somewhat involved, we will discuss a few features of the calcu-
lation in a manifestly covariant renormalization scheme in the following exercise.

Exercise 5.6 Diagrams contributing to the electromagnetic form factors to Oðq4Þ
are shown in Fig. 5.7. There are, in fact, additional diagrams with an insertion of

the vertex proportional to c1 from L
ð2Þ
pN in the nucleon propagator. These can be

included in the calculation of the shown diagrams by using m2 ¼ m� 4c1M2 as
the mass in the nucleon propagator instead of the lowest-order mass m (see
Sect. 10 of Ref. [10]). Evaluating the diagrams, we obtain the invariant amplitude
M; which is related to the matrix element of Eq. 5.47 by

M ¼ �ieelhNðp0; s0ÞjJlð0ÞjNðp; sÞi; ð5:49Þ

where e is the polarization four-vector of the virtual photon. Note that a calculation
of diagrams to OðqDÞ determines the Dirac form factor to OðqD�1Þ and the Pauli
form factor to OðqD�2Þ; as both the polarization four-vector e and the four-
momentum transfer q count as small quantities, and the C matrices cl and
rlm asOðq0Þ (see Eq. 4.19).

To consider a coupling to an external electromagnetic four-vector potential (see
Eq. 1.165) we set

vl ¼ rl ¼ ll ¼ �eAl
s3

2
; vðsÞl ¼ �e

1
2
Al;

in the Lagrangians.

(a) Using the Lagrangians of Eqs. 4.17 and 4.66, as well as the relevant terms of
the third-order Lagrangian,9

L
ð3Þ
pN ¼ � � � þ

i

2m
d6

�W Dl; fþlm

h i
DmWþ H.c.þ 2i

m
d7

�W olvðsÞlm

� �
DmWþ H.c.þ � � � ;

Fig. 5.6 The Sachs form factors of the nucleon in manifestly Lorentz-invariant chiral
perturbation theory at Oðq4Þ: Full lines: results in the extended on-mass-shell scheme; dashed
lines: results in infrared regularization. The experimental data are taken from Ref. [75]

9 The Lagrangian corresponds to the one of Ref. [72] with the replacements
~F
þ
lm ! fþlm and TrðFþlmÞ ! 4vðsÞlm :
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show the following Feynman rules:

Fig. 5.7 Diagrams
contributing to the nucleon
electromagnetic form factors
to Oðq4Þ: Nucleons are
denoted by solid lines, pions
by dashed lines, and the wavy
line stands for a coupling to
an external electromagnetic
four-vector potential

− ieεμγ μ 1
2

( + τ3) ,

eεμ σ μν qν
1
2

(2c6τ3 + c7 ) ,

ieεμ q2Pμ − qμ q · P
1

2m
d6τ3 +

1
m

d7 ,
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where Pl ¼ p0l þ pl:
Hint: The field-strength tensors are given by

vðsÞlm ¼ olvðsÞm � omv
ðsÞ
l ; fþlm ¼ ufLlmu

þ þ uþfRlmu;

with fRlm and fLlm defined as the two-flavor versions of Eqs. 3.66 and 3.67,
respectively.

(b) Show that the form-factor contributions from tree-level diagrams to Oðq3Þ are
given by10

F1ðQ2Þ ¼ 1
2

1þ s3ð Þ � q2 d6s3 þ 2d71ð Þ;

F2ðQ2Þ ¼ 2mNc6s3 þ mNc71þ q2 d6s3 þ 2d71ð Þ:
ð5:50Þ

Hint: Use pl ¼ glmpm and clcm ¼ glm � irlm to show that11

�uðp0ÞPluðpÞ ¼ �uðp0Þ 2mNcl � irlmqmð ÞuðpÞ:

Also verify that q � P ¼ 0 for nucleons on the mass shell. In Eq. 5.50, we have
replaced a factor mN=m by 1 because the difference is of higher order in the
contribution to the form factors.

(c) As an example of a loop diagram, we consider diagram (7a) of Fig. 5.7. Verify
the Feynman rule

ieεμ
A

2F
γ μγ5ε3abτb.

(d) Show that the invariant amplitude M of diagram (7a) is given by

M ¼ �ieel�uðp0Þ g2
A

2F2
s3c5il4�n

Z
dnk

ð2pÞn 6kSFðp0 � kÞDFðkÞclc5uðpÞ;

where the nucleon and pion Feynman propagators are given by

SFðpÞ ¼
1

6p� mþ i0þ
¼ 6pþ m

p2 � m2 þ i0þ
;

DFðkÞ ¼
1

k2 �M2 þ i0þ
:

(e) In order to avoid tensor integrals of higher rank, verify that

10 Since we work in the isospin-symmetric limit we set mp ¼ mn ¼ mN :
11 In the following, spin and isospin quantum numbers as well as isospinors are suppressed.
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6k ¼ �S�1
F ðp0 � kÞ þ ð6p0 � mÞ;

and use this relation to show that the invariant amplitude can be written as

M ¼� ieel�uðp0Þ g2
A

2F2
s3il4�n

Z
dnk

ð2pÞn

(
1

k2 �M2 þ i0þ

� m2
N � m2

½ðp0 � kÞ2 � m2 þ i0þ�ðk2 �M2 þ i0þÞ

þ ðmN þ mÞ 6k
½ðp0 � kÞ2 � m2 þ i0þ�ðk2 �M2 þ i0þÞ

)
cluðpÞ:

Hints: Make use of the Dirac equation, �uðp0Þ6p0 ¼ mN�uðp0Þ: fcl; c5g ¼ 0;
c2

5 ¼ 1:
(f) Using the integrals of Exercise 4.10, show that

M ¼ �ieel�uðp0Þ g2
A

2F2
s3



Ip � m2

N � m2
� �

INp

þmN þ m

2mN
IN � Ip þ m2

N � m2 þM2
� �

INp
� ��

cluðpÞ;

where

INp ¼ INpð�p0; 0Þjp02¼m2
N
:

The integrals Ip; IN ; and INp are given in Eq. 4.87. The unrenormalized con-

tribution of diagram (7a) to the isovector form factor FðvÞ1 is then given by

FðvÞ1 ¼
g2

A

F2
Ip� m2

N �m2
� �

INpþ
mN þm

2mN
IN � Ipþ m2

N �m2þM2
� �

INp
� �
 �

:

In order to obtain the results in infrared regularization, one has to replace all
integrals by their infrared-singular parts. Replacing the physical nucleon mass
with its chiral expansion, we see that in a calculation of the form factors to
Oðq3Þ; the term proportional to m2

N � m2 is of higher order and can be
neglected, while it has to be taken into account for calculations of Oðq4Þ and
higher. Setting the ’t Hooft parameter l ¼ m; in the EOMS scheme no addi-

tional subtraction beyond gMS is necessary, because the gMS-renormalized
expression in combination with the polarization vector is of Oðq3Þ: This cor-
responds to the order assigned to the renormalized diagram by the power
counting.
The results for the remaining diagrams are given in Refs. [79, 119].12 Once all
diagrams are evaluated and the wavefunction renormalization constant is taken

12 Note that different notations for the loop integrals are used in the literature.
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into account, both isospin components of the Dirac form factor F1 produce the
correct values at Q2 ¼ 0; namely, the isoscalar and isovector charges of þ1:

Figure 5.6 shows that a calculation at the one-loop level using nucleon and pion
degrees of freedom only is not sufficient to describe the form factors for
Q2� 0:1 GeV2 and that higher-order contributions must play an important role.
Moreover, up to and including Oðq4Þ; the most general effective Lagrangian
provides sufficiently many independent parameters such that the empirical values
of the anomalous magnetic moments and the charge and magnetic radii are fitted
rather than predicted. We will now discuss how introducing additional dynamical
degrees of freedom may improve the description of the electromagnetic form
factors. We will focus on the inclusion of the vector mesons q;x; and /; because
the importance of vector mesons for the interactions between photons and hadrons
was established already a long time ago. In the original vector-meson-dominance
picture (see Ref. [163]) the coupling of a virtual photon to the matrix element of
the isovector current operator between hadronic states is dominated by a cq0

transition, propagation of the q0; and a subsequent (strong) transition induced by
the interaction with the q0:

In ChPT, the contributions from vector mesons, as well as other heavy particles,
are included implicitly in the values of the LECs. Symbolically, this can be
understood from the expansion of a vector-meson propagator,

1

q2 �M2
V

¼ � 1

M2
V

1þ q2

M2
V

þ q2

M2
V

� 	2

þOðq6Þ
" #

;

where MV is the vector-meson mass, in combination with the relevant vector-
meson vertices. The contributions from the expanded propagator are included
order by order in the ChPT couplings. It was shown in Ref. [119] that the inclusion
of vector mesons as explicit degrees of freedom in an EFT results in the resum-
mation of a subset of higher-order contributions that turned out to be important for
the description of the nucleon electromagnetic form factors. However, no diagrams
with internal vector-meson lines were considered because a generalization of
ChPT which fully includes the effects of vector mesons as intermediate states in
loops was not yet available. The EOMS scheme [76], the reformulated version of
the infrared regularization of Ref. [168], and the extension of infrared regulari-
zation of Refs. [36, 37] all provide a framework to systematically include vir-
tual vector mesons in the domain of applicability of baryon chiral perturbation
theory [78]. This means that there is a power counting that predicts the relative
size of diagrams, even for those including internal vector-meson lines.

In Ref. [169] the electromagnetic form factors were calculated with q;x; and /
mesons as explicit degrees of freedom. While originally vector mesons were
described in terms of antisymmetric tensor fields [62, 81], Ref. [169] employs the
vector-field representation, which was shown to be equivalent in Ref. [63] pro-
vided certain conditions hold. In this formalism, the q meson is represented by
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ql ¼ ql
i si; and the x and / mesons by xl and /l; respectively. The coupling of

vector mesons to pions and external fields is at least of Oðq3Þ [63],

L
ð3Þ
pV ¼ �fq TrðqlmfþlmÞ � fxxlmf ðsÞlm � f//lmf ðsÞlm þ � � � ; ð5:51Þ

where the vector-meson field-strength tensors are given by

qlm ¼ rlqm �rmql; rlqm ¼ olqm þ Cl; qm½ �;

with Cl the chiral connection of Eq. 4.13, and

xlm ¼ olxm � omxl; /lm ¼ ol/m � om/l:

The lowest-order Lagrangian for the coupling to the nucleon is given by

L
ð0Þ
VN ¼

1
2

X

V¼q;x;/

gV
�WclVlW; ð5:52Þ

and the OðqÞ Lagrangian reads

L
ð1Þ
VN ¼

1
4

X

V¼q;x;/

GV
�WrlmVlmW: ð5:53Þ

The coupling constants fV ; gV ; and GV ; with V ¼ fq;x;/g; are not constrained by
chiral symmetry and have to be determined by comparison with data.

The inclusion of additional degrees of freedom also requires additional power-

counting rules, which for the vector mesons state that vertices from L
ð3Þ
pV count as

Oðq3Þ and vertices from L
ðiÞ
VN as OðqiÞ; respectively, while the vector-meson

propagators count as Oðq0Þ:
Calculations of the form factors in both the EOMS scheme and in infrared

regularization [169] result in an improved description of the data even for higher
values of Q2; as expected on phenomenological grounds (see Fig. 5.8). The

Fig. 5.8 The Sachs form factors of the nucleon in manifestly Lorentz-invariant chiral
perturbation theory at Oðq4Þ including q;x; and / mesons as explicit degrees of freedom. Full
lines: results in the extended on-mass-shell scheme; dashed lines: results in infrared
regularization. The experimental data are taken from Ref. [75]
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parameters of the vector-meson Lagrangian of Eq. 5.51 for the coupling to
external fields have been taken from Ref. [63], and those of Eqs. 5.52 and 5.53 for
the coupling of vector mesons to the nucleon from the dispersion relations of Refs.
[101, 142]. The small difference between the two renormalization schemes is due
to the different treatment of regular higher-order terms of loop integrals. Numer-
ically, the results are similar to those of Ref. [119], which indicates that contri-
butions from diagrams with internal vector-meson lines are small. In fact, in
infrared renormalization diagrams that do not contain internal pion lines vanish,
which is the case for all vector-meson loop diagrams to Oðq4Þ; shown in Fig. 5.9.
One could therefore interpret these results as providing a firmer theoretical basis to
the vector-meson-dominance model, in which only tree-level couplings are con-
sidered. It should be noted that, in a strict chiral expansion in terms of small
external momenta q and quark masses mq at a fixed ratio mq=q2; up to and
including Oðq4Þ the results with and without explicit vector mesons are completely
equivalent. Contributions from vector mesons as explicit degrees of freedom are
compensated by different values of the LECs common to the theories with and
without vector mesons. On the other hand, the inclusion of vector-meson degrees
of freedom in the present framework results in a reordering of terms which, in an
ordinary chiral expansion, would contribute at higher orders beyond Oðq4Þ: It is
these terms which change the form factor results favorably for larger values of Q2:

Fig. 5.9 Feynman diagrams
including vector mesons that
contribute to the
electromagnetic form factors
of the nucleon up to and
including Oðq4Þ: External-leg
corrections are not shown.
Solid, wiggly, and double
lines refer to nucleons,
photons, and vector mesons,
respectively. The numbers in
the interaction blobs denote
the order of the Lagrangian
from which they are obtained.
The direct coupling of the
photon to the nucleon is

obtained from L
ð1Þ
pN and L

ð2Þ
pN
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Note that this re-organization proceeds according to well-defined rules so that a
controlled, order-by-order calculation of corrections is made possible.

5.3 Advanced Applications and Outlook

5.3.1 Chiral Extrapolations

As mentioned in Sect. 5.1.4, chiral perturbation theory is of interest to lattice QCD
calculations since it predicts the quark-mass dependence of physical observables,
while lattice QCD calculations are routinely performed at unphysical quark masses
and results have to be extrapolated to the physical point. In return, lattice QCD in
principle provides a way to determine the low-energy constants of ChPT from the
underlying theory. However, ChPT as described in the previous sections is the
effective field theory of continuum QCD in an infinite volume, while lattice cal-
culations discretize space-time with a finite lattice spacing a and are restricted to
some finite volume V : In addition, the symmetries of the discretized version of
QCD are different from those in the continuum. This is most easily seen for the
case of rotational symmetry, which translates into a hypercubic symmetry on the
lattice. In addition, the implementation of chiral symmetry in lattice formulations
of QCD is a complex and well-studied problem. Therefore, ChPT should in
principle only be used for extrapolations in the quark masses after the lattice QCD
results have been extrapolated to the continuum and infinite volume limits.
A different approach is to formulate effective field theories that amount to mod-
ifications of ChPT to systematically take into account the effects of symmetry
breakings, finite lattice spacings, and finite volumes. These have been studied for a
variety of lattice actions, including the partially-quenched and so-called mixed-
action approaches, in which different masses and, in addition, different discreti-
zations, respectively, are employed for valence and sea quarks. Introductions to
applications of ChPT to lattice QCD can be found, e.g., in Refs. [5, 94, 174] and
references therein.

5.3.2 Pion Photo- and Electroproduction

Besides pion-nucleon scattering discussed in Sect. 4.3.2, electromagnetic pro-
duction of pions on the nucleon is one of the most prominent examples of the
application of baryon ChPT. A particular advantage of this type of reactions is the
fact that very precise experimental data are available close to production threshold
(see Ref. [61] and references therein). The special interest in neutral pion photo-
production at threshold arose from the fact that experimental data [12, 135]
pointed to a large deviation from predictions for the s-wave electric dipole
amplitude E0þ based on current algebra and PCAC [48]. In Ref. [13] an
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explanation for this discrepancy was given: pion loops, which are beyond the
current-algebra framework, generate infrared singularities in the scattering
amplitude which then modify the predicted low-energy expansion of E0þ at next-
to-leading order ½Oðq3Þ�: For an overview of numerous subsequent activities, see
Ref. [24]. The so-called Adler-Gilman relation [3] provides a chiral Ward identity
establishing a connection between charged pion electroproduction at threshold and
the isovector axial-vector current evaluated between single-nucleon states (see,
e.g., Refs. [77, 164] for more details). Via this relation, the axial form factor has
been investigated in terms of pion electroproduction experiments [129]. A sys-
tematic difference between the values for the axial mass MA extracted from such
experiments and neutrino scattering experiments was explained in heavy-baryon
chiral perturbation theory [16]. It was shown that at Oðq3Þ pion loop contributions
modify the momentum dependence of the electric dipole amplitude from which the
axial mass is extracted. These contributions result in a change of the axial mass of
DMA ¼ 0:056 GeV; bringing the neutrino scattering and pion electroproduction
results for the axial mass into agreement (see Ref. [20] for further details).

5.3.3 Compton Scattering and Polarizabilities

Based on the requirement of gauge invariance, Lorentz invariance, crossing
symmetry, and the discrete symmetries, the famous low-energy theorem of Low
[130] and Gell-Mann and Goldberger [91] uniquely specifies the low-energy
Compton scattering amplitude up to and including terms linear in the photon
momentum. The coefficients of this expansion are expressed in terms of global
properties of the nucleon: its mass, charge, and magnetic moment. It is only
terms of second order which contain new information on the structure of the
nucleon specific to Compton scattering. For a general target, these effects can be
parameterized in terms of two constants, the electric and magnetic polarizabil-
ities a and b; respectively. The predictions of HBChPT at Oðq3Þ [15], generating
the leading 1=Mp singularity, are surprisingly close to the empirical values (see,
e.g., Refs. [61, 108, 173] for an overview of the experimental status). These
predictions contain no unknown LECs, i.e., they are given in terms of the pion
mass, the axial-vector coupling constant, and the pion-decay constant. Higher-
order calculations have been performed in the heavy-baryon framework [6], the
e expansion including the D resonance [103], and a covariant calculation
including the D resonance [125]. For a discussion of how to extract the neutron
polarizabilities see, e.g., Ref. [154] and references therein. Generalizations of the
static polarizabilities a and b in terms of dynamical polarizabilities are discussed
in Ref. [95].

Including the spin of the nucleon introduces, at third order in the photon
momentum, four so-called spin polarizabilities c1; c2; c3; and c4 into the Compton
scattering amplitude [158]. In a heavy-baryon calculation at Oðq3Þ [17],

240 5 Applications and Outlook



the nucleon spin polarizabilities are isoscalar, i.e., the same for proton and neutron,
and behave as 1=M2

p:
13 As for the spin-independent polarizabilities a and b; at

Oðq3Þ the nucleon spin polarizabilities are entirely given in terms of pion-nucleon
loop diagrams and are thus expressed in terms of Mp; gA; and Fp: Full one-loop
calculations to Oðq4Þ have been performed in Refs. [90, 181]. No new LECs,
except for the anomalous magnetic moments of the nucleon, enter at this order, but
the degeneracy between proton and neutron polarizabilities is lifted. Unfortu-
nately, the next-to-leading-order contributions turn out to be very large, calling the
convergence of the expansion into question [181]. Predictions for the nucleon spin
polarizabilities including the Dð1232Þ excitation have been discussed in
Refs. [103, 105, 149]. For a comparison with experimental results we refer the
reader to Refs. [61, 108, 173]. The status of dispersion-theoretic analyses can be
found in Ref. [60].

5.3.4 Virtual Compton Scattering

In virtual Compton scattering (VCS) one or even both photons are allowed to be
virtual. The corresponding amplitude for the proton may be tested in reactions
such as e�p! e�pc; cp! peþe� or e�p! e�peþe�:14 The possibilities to
investigate the structure of the target increase substantially if virtual photons are
used since (a) photon energy and momentum can be varied independently and (b)
longitudinal components of the transition current are accessible. For the nucleon,
the model-independent properties of the low-energy VCS amplitude have been
identified in Refs. [96, 165]. In Ref. [96] the model-dependent part beyond the
low-energy theorem was analyzed in terms of a multipole expansion. Keeping only
terms linear in the energy of the final photon, and imposing the constraints due to
charge-conjugation invariance [58, 59], the corresponding amplitude may be
parameterized in terms of six generalized polarizabilities (GPs), which are func-
tions of the three-momentum transfer of the virtual photon in the VCS process (for
an overview, see Ref. [97]). Predictions for the GPs of the nucleon have been
obtained in HBChPT at Oðq3Þ [102, 104] and Oðq4Þ [111, 112], as well as the
small-scale expansion at Oðq3Þ [106]. While the electromagnetic polarizabilities
a and b of real Compton scattering characterize the global response of hadrons to
soft external electric and magnetic fields, the use of a virtual photon in the initial
state and a real low-energy photon in the final state allows for a local resolution of
the induced electric polarization and magnetization. In Ref. [131] it was shown
that three generalized dipole polarizabilities are required in order to fully

13 The p0-exchange graph driven by the WZW term of Sect. 3.5.3 results in an isovector
contribution which is usually subtracted.
14 In principle, the VCS amplitude c
p! cp can be investigated in the reaction pe! pec
[179].
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reconstruct local polarizations induced by soft external fields in a hadron. These
spatial distributions were determined at large distances r� 1=Mp for pions, kaons,
and octet baryons by use of ChPT. For an overview of the experimental status of
generalized polarizabilities, see Refs. [52, 61, 74, 108].

5.3.5 Isospin-Symmetry Breaking

In these lecture notes we always assumed isospin symmetry, i.e. mu ¼ md:
Moreover, the electromagnetic interaction, breaking isospin symmetry, was always
treated in terms of external fields, i.e., without loop corrections involving virtual
photons. Besides the mass differences within isospin multiplets of a given
strangeness (see, e.g., Figs. 3.3 and 3.4), there are various dynamical manifesta-
tions of isospin-symmetry breaking. For example, the decay of an g into three
pions can only proceed via isospin-symmetry-breaking effects [82]. Cusp effects
such as in neutral pion photoproduction on the proton close to threshold [12, 19,
70, 172] or K ! 3p decays [6, 33, 41, 42] are generated by the nucleon and pion
mass differences. The inclusion of virtual photons in mesonic and baryonic chiral
perturbation theory was discussed in Refs. [180, 145] and [144], respectively. An
additional inclusion of virtual leptons allows for a full treatment of isospin-sym-
metry-breaking effects in semileptonic decays of pions and kaons [117]. In the
baryonic sector, the general two-flavor pion-nucleon Lagrangian including both
virtual photons and leptons was constructed in Ref. [177]. There have been
numerous investigations concerning isospin-symmetry breaking in both mesonic
and baryonic sectors and we refer the interested reader to Ref. [161] for a recent
overview. Finally, one is often interested in separating electromagnetic and strong
contributions to a physical quantity. However, as discussed in Ref. [85], the
splitting of the Hamiltonian of QCDþ c into a strong and an electromagnetic piece
is ambiguous due to the ultraviolet divergences generated by photon loops.
A systematic method for the ‘‘purification of physical matrix elements from
electromagnetic effects’’ has been proposed in Ref. [85].

5.3.6 Three-Flavor Calculations

In the mesonic three-flavor sector many calculations have been performed at the
two-loop level and fitted to experimental results (see Ref. [29] for a comprehen-
sive overview and Ref. [30] for an update). In comparison to the two-flavor sector
including pions only, the number of physical observables is considerably larger in
the three-flavor case and, due to the presence of different masses in the loops,
calculational effort and difficulty increase. Since ms � mu;md ; the convergence is
expected to be slower and higher-order terms are expected to be more important.
Three-flavor ChPT seems to work fairly well in most cases but there also appear to
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be exceptions such as the a parameter of the Dalitz plot for g! 3p0 [30]. In the
baryonic three-flavor sector, the convergence properties are more controversial
(see Refs. [17, 24] for a review). For example, the results for the individual
contributions to the masses of the baryon octet differ strongly depending on which
renormalization condition is applied and which approximation is chosen for
keeping or neglecting higher-order terms in a given framework [34, 57, 67, 122].
The slow convergence is a combination of various circumstances: in the baryonic
sector the chiral order increases in steps of OðqÞ as opposed to Oðq2Þ in the
mesonic case; the ratio of the kaon mass to the chiral-symmetry-breaking scale,
MK=ð4pF0Þ 	 0:42; is rather large raising some doubt on the validity of a per-
turbative treatment at low orders; in some channels resonances such as the
Kð1405Þ and Rð1385Þ lie below the N �K threshold. For calculations of other
observables such as magnetic moments or electromagnetic form factors see, e.g.,
Refs. [92, 100, 120, 138]. Alternative methods of discussing properties of hype-
rons include two-flavor chiral perturbation theory [178] and chiral unitary
approaches (see below).

5.3.7 Chiral Unitary Approaches

The extension of chiral perturbation theory to higher energies as described in
Sects. 4.7 and 5.2 consists of the explicit inclusion of particular additional degrees
of freedom in the Lagrangian. This method relies on a perturbative expansion of
physical observables, and the domain of applicability is governed by the existence
of an underlying scale such as the mass difference to the lightest state not included
in the Lagrangian. A different approach to study the impact of chiral symmetry on
phenomena of the strong interaction at higher energies is based on constraints
provided by the unitarity of the S-matrix, see, e.g., Refs. [109, 110, 139, 148]. At
low energies, chiral perturbation theory is used to describe meson-meson and
meson-baryon interactions. These results are then non-perturbatively extended to
higher energies while implementing exact unitarity and possibly further constraints
by causality and electromagnetic gauge invariance. These methods have been
applied to meson-meson and meson-baryon scattering in the SU(2) and SU(3)
cases as well as meson photo- and electroproduction (see, e.g., Refs. [35, 80, 118,
133, 147] and references therein).

5.3.8 Complex-Mass Scheme

In Sect. 5.2 we saw how the inclusion of virtual vector mesons generates an
improved description of the electromagnetic form factors, for which ordinary
chiral perturbation theory does not produce sufficient curvature. So far the inclu-
sion of virtual vector mesons has been restricted to low-energy processes in which
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the vector mesons cannot be generated explicitly. One would also like to inves-
tigate the properties of hadronic resonances such as their masses and widths
[107, 184] as well as their electromagnetic properties. Since the main decay of the
q meson involves two pions with vanishing masses in the chiral limit, loop dia-
grams develop large imaginary parts for energies of the order of the q-meson mass.
These power-counting-violating contributions, being imaginary, cannot be absor-
bed in the redefinition of the parameters of the Lagrangian as long as the usual
renormalization procedure is used.

An extension of chiral effective field theory to the momentum region near the
complex pole corresponding to the vector mesons was proposed in Ref. [55], in
which the power-counting problem was addressed by applying the complex-mass
scheme (CMS) [1, 2, 49, 50, 176] to the effective field theory. The CMS originates
from the Standard Model where it was developed to derive properties of W ; Z0; and
Higgs bosons obtained from resonant processes. In the CMS, complex gauge-boson
masses are used in tree-level and loop calculations, necessitating the introduction of
complex counter terms in the Lagrangian. In the framework of EFT, the method has
been applied to the quark-mass expansion of the pole mass and the width of the
q meson, which are of particular interest in the context of lattice extrapolations
[123, 124], as well as the chiral structure of the Roper resonance [56].

5.3.9 Chiral Effective Theory for Two- and Few-Nucleon Systems

The extension of the methods described in the previous chapters to systems of two and
more nucleons was first suggested by Weinberg in Refs. [182, 183]. Interactions
between two nucleons arise from the Lagrangians of the pion and one-nucleon sectors
via one- and multiple-pion exchanges, supplemented by NN contact interactions. The
existence of nuclear bound states such as the deuteron implies that loop contributions
are not necessarily suppressed in the two- and few-nucleon sectors, as one cannot
obtain bound states by considering only a finite number of scattering diagrams.
Weinberg therefore suggested to apply the power counting to an effective potential,
which is defined as the sum of all diagrams that do not contain purely nucleonic
intermediate states. The potential is then iterated with n-nucleon intermediate states
to generate an infinite number of diagrams. In the two-nucleon case, the effective
potential consists of all two-nucleon-irreducible diagrams, and observables can be
calculated using the Lippmann-Schwinger or Schrödinger equations.

It has been argued that while this approach might produce phenomenologically
satisfactory results, there are issues whether and how the theory can be properly
renormalized [113]. An alternative was proposed in which pions are treated per-
turbatively [114, 115]. However, it was shown that the resulting expansion has
problematic convergence properties [73, 88],15 and the correct implementation of a

15 See Ref. [9] for a different approach to include pions perturbatively.
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chiral EFT program for two and more nucleons is still being debated (see, e.g.,
Refs. [8, 31, 69, 89, 146, 152] and references therein).

In addition to the two-nucleon sector, three- and four-nucleon interactions have
been studied in the chiral effective-field-theory approach, and a number of few-
nucleon observables have been calculated based on these interactions. For a recent
review and an extensive list of the relevant literature see Ref. [68]. A pedagogical
introduction is given in Ref. [153].

If one only considers energies well below M2
p=m; it is possible to construct a

different EFT in which pions are integrated out and the only dynamical degrees of
freedom are nucleons interacting via contact terms. This pionless EFT reproduces
the results of the effective range expansion, while also allowing for the consistent
coupling to electromagnetic and weak external currents (see, e.g., Refs. [7, 14,
157] and references therein). Calculations in light nuclei up to A ¼ 6 have been
performed within the framework of pionless EFT [116, 175].

Chiral perturbation theory has been a very active field in the last 25 years.
Readers who wish to supplement this monograph with additional literature or who
are interested in the present status of applications are referred to lecture notes and
review articles [17, 23, 24, 28, 29, 32, 40, 44, 51, 64, 66, 86, 121, 126, 127, 134,
137, 154–156, 166, 167] as well as conference proceedings [4, 25–27, 45, 140].
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Appendix A
Pauli and Dirac Matrices

A.1 Pauli Matrices

The Hermitian, traceless Pauli matrices si ði ¼ 1; 2; 3Þ1 are the generators of the
group SU(2). They are given by

s1 ¼
0 1
1 0

� �
; s2 ¼

0 �i
i 0

� �
; s3 ¼

1 0
0 �1

� �
; ðA:1Þ

and satisfy the commutation relations

½si; sj� ¼ 2ieijksk; ðA:2Þ

where eijk is the completely antisymmetric tensor. Furthermore,

s2
i ¼ 1: ðA:3Þ

The anticommutator of two Pauli matrices is given by

fsi; sjg ¼ 2dij1; ðA:4Þ

and therefore
sisj ¼ ieijksk þ dij1: ðA:5Þ

Two useful relations are given by

1
3
sisi ¼ 1; sisjsi ¼ �sj; ðA:6Þ

where we have summed over repeated indices. From Eq. A.5 we obtain for the
trace of the product of two Pauli matrices

TrðsisjÞ ¼ 2dij: ðA:7Þ
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1 We adopt the convention to use the notation si for Pauli matrices in isospin space, while ri
denotes Pauli matrices in spin space.



A.2 Dirac Matrices

The Dirac matrices satisfy the relation

clcm þ cmcl ¼ 2glm1: ðA:8Þ

There are several different representations of the Dirac matrices, see, e.g., Ref. [1].
Independent of the chosen representation, further important properties of the Dirac
matrices are given by

ðc0Þ2 ¼ 1; ðciÞ2 ¼ �1; ðc0Þy ¼ c0; ðciÞy ¼ �ci: ðA:9Þ

The chirality matrix c5 is defined as

c5 ¼ c5 � ic0c1c2c3; ðA:10Þ

and

c5cl þ clc5 ¼ 0; ðc5Þ2 ¼ 1; ðc5Þy ¼ c5: ðA:11Þ

It is common to define a quantity rlm as

rlm � i

2
ðclcm � cmclÞ: ðA:12Þ

The generalization of the Dirac matrices to n dimensions as needed in dimensional
regularization results in

clcacl ¼ ð2� nÞca;

clcacbcl ¼ 4gab1þ ðn� 4Þcacb;

clcacbcdcl ¼ �2cdcbca þ ð4� nÞcacbcd:

ðA:13Þ

A number of further useful relations can be found, e.g., in Ref. [1].

Reference

1. Borodulin, V.I., Rogalev, R.N., Slabospitsky, S.R.: CORE: COmpendium of RElations.
arXiv:hep-ph/9507456
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Appendix B
Functionals and Local Functional Derivatives

Here we collect a few properties of functionals and local functional derivatives
which are used in the main text (for a thorough discussion, see Ref. [1]). Local
functional derivatives are natural generalizations of classical partial derivatives to
infinite dimensions. For the purpose of illustration, let F denote the set of all
functions j : Rn ! K (K ¼ R or C). If necessary, we may require additional
restrictions such as continuous functions j, smooth functions, integrable functions,
and so on. A real (complex) functional is a map j 7! Z½ j � from F to R (C), which
assigns a real (complex) number Z½ j � to each function j. A typical example is
given by an integral of the type

F½j� ¼
Z

dnx gðjðxÞÞ;

with g an integrable function. We choose the convention of writing the arguments
of functionals inside square brackets. Moreover, let j be a function of two sets of
variables, collectively denoted by x and y. Then F½ jðyÞ� denotes a functional which
depends on the values of j for all x at fixed y. Finally, a functional may depend on
several, independent functions ji.

In the following we consider a definition of partial functional derivatives based
on the Dirac delta function,

dy :
R

n ! R;
x 7! dyðxÞ ¼ dnðx� yÞ:

�

In terms of the Dirac delta function the partial functional derivative is defined
as

dF½ f �
df ðyÞ � lim

e!0

F½ f þ edy� � F½ f �
e

: ðB:1Þ
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Note the analogy to the partial derivative of an ordinary function,

o f ðxÞ
o xi

� lim
e!0

f ðxþ eeiÞ � f ðxÞ
e

:

As discussed in Ref. [1], experience shows that the definition of Eq. B.1 leads to
the same results as a rigorous mathematical approach.

Partial functional derivatives share basic properties with ordinary partial
derivatives, namely,

d
df ðxÞ a1F1½f � þ a2F2½f �ð Þ ¼ a1

dF1½f �
df ðxÞ þ a2

dF2½f �
df ðxÞ ðlinearityÞ;

d
df ðxÞ ðF1½f �F2½f �Þ ¼

dF1½f �
df ðxÞ F2½f � þ F1½f �

dF2½f �
df ðxÞ ðproduct ruleÞ;

d
df ðxÞF½gðf Þ� ¼ g0ðf ðxÞÞ dF

dhðxÞ ½h ¼ gðf Þ� ðchain ruleÞ:

An important rule for the local functional derivative of a function is

df ðyÞ
df ðxÞ ¼ dnðy� xÞ: ðB:2Þ

Exercise B.1. Verify Eq. B.2.
Hint: Define f ðyÞ as the functional

f ðyÞ ¼ Fy½f � ¼
Z

dnzdnðy� zÞf ðzÞ

and apply the definition of the local functional derivative.
Analogously we have

dgðf ðyÞÞ
df ðxÞ ¼ dnðy� xÞg0ðf ðyÞÞ

and

dkgðf ðyÞÞ
df ðxkÞ. . .df ðx1Þ

¼ dnðy� xkÞ. . .dnðy� x1ÞgðkÞðf ðyÞÞ:

One of the prime applications of functionals and partial functional derivatives is
the generating functional of Green functions. As a simple, pedagogical illustration
let us consider the Green functions

Gnðx1; . . .; xnÞ ¼ h0jT ½/ðx1Þ. . ./ðxnÞ�j0i

of a real scalar field operator / whose dynamics is determined by a Lagrangian L.
In very much the same way as the element an of the series ða0; a1; a2; . . .Þ may be
obtained from the generating function
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f ðxÞ ¼ a0 þ a1xþ 1
2

a2x2 þ 1
3!

a3x3 þ � � �

by calculating the derivative

dnf

dxn
ðx ¼ 0Þ ¼ an;

the generating functional for the Green functions Gn is given by

expðiZ½j�Þ ¼ h0jT exp i

Z
d4xLextðxÞ

� �
j0i

¼ 1þ i

Z
d4xjðxÞh0j/ðxÞj0i

þ
X1

k¼2

ik

k!

Z
d4x1. . .d4xkjðx1Þ. . .jðxkÞh0jT½/ðx1Þ. . ./ðxkÞ�j0i;

where

Lext ¼ jðxÞ/ðxÞ:

Remarks
1. Many textbooks use the nomenclature Z½j� for our expðiZ½j�Þ and W ½j� for our Z½j�.
We follow the convention and nomenclature of Gasser and Leutwyler.

2. Note that j represents a function and can thus be taken out of the matrix element,
e.g.,

h0jT ½jðx1Þ/ðx1Þjðx2Þ/ðx2Þ�j0i
¼ h0j½jðx1Þ/ðx1Þjðx2Þ/ðx2ÞHðx0

1 � x0
2Þ þ jðx2Þ/ðx2Þjðx1Þ/ðx1ÞHðx0

2 � x0
1Þ�j0i

¼ jðx1Þjðx2ÞHðx0
1 � x0

2Þh0j/ðx1Þ/ðx2Þj0i
þ jðx1Þjðx2ÞHðx0

2 � x0
1Þh0j/ðx2Þ/ðx1Þj0i

¼ jðx1Þjðx2Þh0jT ½/ðx1Þ/ðx2Þ�j0i:

3. The underlying dynamics is hidden in the fact that both the ground state and
Green functions depend on the dynamics in terms of the equation of motion.

As an example, let us discuss how the Green function G2ðx1; x2Þ results from
evaluating the second partial functional derivative,

G2ðx1; x2Þ ¼ h0jT ½/ðx1Þ/ðx2Þ�j0i ¼ ð�iÞ2 d2 expðiZ½j�Þ
djðx1Þdjðx2Þ

����
j¼0

:

In order to obtain a nonzero result, the number of and, in the case of several
different (combinations of) fields, type of partial functional derivatives must match
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the number and type of fields in the Green function of interest. In the present
context this means that

1; i

Z
d4xjðxÞh0j/ðxÞj0i

contain too few terms and

ik

k!

Z
d4x1. . .d4xkjðx1Þ. . .jðxkÞh0jT½/ðx1Þ. . ./ðxkÞ�j0i; k� 3;

too many terms, because j is set equal to 0 at the end. Therefore, the Green
function G2ðx1; x2Þ is obtained by the second partial functional derivative of the
generating functional.

Reference

1. Zeidler, E.: Quantum Field Theory I: Basics in Mathematics and Physics. Springer, Berlin
(2006)

256 Appendix B: Functionals and Local Functional Derivatives



Solutions to Exercises

In the following we provide solutions to all exercises. We strongly encourage the
readers to solve the problems on their own and to only use these solutions to check
their own work. There are often several ways to solve an exercise, and our
calculations simply represent one possible solution. While we sometimes omit
intermediate steps, our hope is that readers who have worked through the exercises
can easily follow the solutions outlined here. In certain cases we have deliberately
not chosen the shortest available explanation to allow readers with a wide range of
backgrounds to follow the solutions given here.

Problems of Chapter 1

1.1

Tr ½ka; kb�kcð Þ ¼ 2ifabdTr kdkcð Þ ¼ 4ifabdddc ¼ 4ifabc ) fabc ¼
1
4i

Trð½ka; kb�kcÞ:

1.2 fabc ¼ �fbac is obvious, because ½ka; kb� ¼ �½kb; ka�. Using the cyclic property
of the trace, the remaining relations follow from

Trð½ka; kb�kcÞ ¼ Trðkakbkc � kbkakcÞ
¼ Trðkbkcka � kckbkaÞ ¼ Trð½kb; kc�kaÞ
¼ Trðkckakb � kakckbÞ ¼ Trð½kc; ka�kbÞ:

1.3

Tr fka; kbgkcð Þ ¼ 4
3
dab Trð1kcÞ|fflfflfflffl{zfflfflfflffl}

¼0

þ2dabdTrðkdkcÞ ¼ 4dabc

) dabc ¼
1
4

Trðfka; kbgkcÞ:
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The d symbols are totally symmetric because

TrðfA;BgCÞ ¼ TrðfB;AgCÞ
¼ TrðABC þ BACÞ ¼ TrðBCAþ CBAÞ
¼ TrðfB;CgAÞ
¼ TrðCABþ ACBÞ ¼ TrðfC;AgBÞ:

1.4

TrðkakbkcÞ ¼ Tr
2
3
dab1þ habdkd

� �
kc

� �
¼ 2

3
dab TrðkcÞ|fflffl{zfflffl}
¼ 0

þhabd TrðkdkcÞ|fflfflfflfflffl{zfflfflfflfflffl}
¼ 2ddc

¼ 2habc;

TrðkakbkckdÞ ¼ Tr kakb
2
3
dcd1þ hcdeke

� �� �

¼ 2
3
dcd TrðkakbÞ|fflfflfflfflffl{zfflfflfflfflffl}
¼ 2dab

þ hcde|{z}
¼ hecd

TrðkakbkeÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
¼ 2habe

¼ 4
3
dabdcd þ 2habehecd;

TrðkakbkckdkeÞ ¼ Tr kakbkc
2
3
dde1þ hdef kf

� �� �

¼ 4
3

habcdde þ hdef
4
3

dabdcf þ 2habghgcf

� �

¼ 4
3

habcdde þ
4
3
dabhcde þ 2habf hfcghgde:

1.5

Dlqf 7!D0lq0f ¼ ol þ ig3 UAlUy þ i

g3
olUUy

� �� �
Uqf

¼ olUqf þ Uolqf þ ig3UAl UyU|ffl{zffl}
¼ 1

qf þ ig3
i

g3
olU UyU|ffl{zffl}

¼ 1

qf

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ �olUqf

¼ U ol þ ig3Al
	 


qf ¼ UDlqf :
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1.6

Glm ¼ olAm � omAl þ ig3½Al;Am�

7! ol UAmU
y þ i

g3
omUUy

� �
� om UAlUy þ i

g3
olUUy

� �

þ ig3 UAlUy þ i

g3
olUUy;UAmU

y þ i

g3
omUUy

� �

¼ olUAmU
y

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
ð1Þ

þUolAmU
y

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
ð2Þ

þUAmolUy|fflfflfflfflfflffl{zfflfflfflfflfflffl}
ð3Þ

þ i

g3
olomUUy

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
ð4Þ

þ i

g3
omUolUy

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
ð5Þ

� omUAlUy|fflfflfflfflfflffl{zfflfflfflfflfflffl}
ð6Þ

�UomAlUy|fflfflfflfflfflffl{zfflfflfflfflfflffl}
ð7Þ

�UAlomU
y

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
ð8Þ

� i

g3
omolUUy

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
ð9Þ

� i

g3
olUomU

y

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
ð10Þ

þ ig3½UAlUy;UAmU
y�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð11Þ

� ½UAlUy; omUUy�|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
ð12Þ

� ½olUUy;UAmU
y�|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð13Þ

� i

g3
½olUUy; omUUy�

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ð14Þ

:

Make use of:

ð4Þ � ð9Þ ¼ 0;

�ð12Þ ¼ �UAl UyomUUy|fflfflfflfflffl{zfflfflfflfflffl}
¼ �omU

y

þ omUUyUAlUy

¼ ð8Þ þ ð6Þ;
�ð13Þ ¼ ½UAmU

y; olUUy� ¼ �UAmolUy � olUAmU
y

¼ �ð3Þ � ð1Þ;

�ð14Þ ¼ � i

g3
½olUUy; omUUy�

¼ � i

g3
olUUyomUUy þ i

g3
omUUyolUUy

¼ i

g3
olUomU

y � i

g3
omUolUy

¼ ð10Þ � ð5Þ:

Solutions to Exercises 259



We thus have

� � � ¼ ð2Þ � ð7Þ þ ð11Þ ¼ U olAm � omAl þ ig3½Al;Am�
	 


Uy ¼ UGlmU
y:

1.7

PR ¼
1
2
ð1þ c5Þ ¼

1
2
ð1þ cy5Þ ¼ PyR;

PL ¼
1
2
ð1� c5Þ ¼

1
2
ð1� cy5Þ ¼ PyL;

PR þ PL ¼
1
2
ð1þ c5Þ þ

1
2
ð1� c5Þ ¼ 1;

P2
R ¼

1
4
ð1þ c5Þð1þ c5Þ ¼

1
4
ð1þ 2c5 þ c2

5Þ ¼
1
2
ð1þ c5Þ ¼ PR;

P2
L ¼

1
4
ð1� c5Þð1� c5Þ ¼

1
4
ð1� 2c5 þ c2

5Þ ¼
1
2
ð1� c5Þ ¼ PL;

PRPL ¼
1
4
ð1þ c5Þð1� c5Þ ¼

1
4
ð1� c2

5Þ
|fflfflfflfflffl{zfflfflfflfflffl}
¼ PLPR

¼ 0:

1.8

PRuþ ¼
1
2

12�2 12�2

12�2 12�2

� � ffiffiffiffi
E
p vþ

vþ

� �
¼

ffiffiffiffi
E
p vþ

vþ

� �
¼ uþ;

PLuþ ¼
1
2

12�2 �12�2

�12�2 12�2

� � ffiffiffiffi
E
p vþ

vþ

� �
¼ 0;

PRu� ¼
1
2

12�2 12�2

12�2 12�2

� � ffiffiffiffi
E
p v�

�v�

� �
¼ 0;

PLu� ¼
1
2

12�2 �12�2

�12�2 12�2

� � ffiffiffiffi
E
p v�

�v�

� �
¼ u�:

1.9 We start from C ¼ ðPR þ PLÞCðPR þ PLÞ and make use of fC; c5g ¼ 0 for
C 2 C1 and ½C; c5� ¼ 0 for C 2 C2 to obtain

C 2 C1 : PRCPR ¼ CPLPR ¼ 0; PLCPL ¼ CPRPL ¼ 0;

C 2 C2 : PRCPL ¼ CPRPL ¼ 0; PLCPR ¼ CPLPR ¼ 0:

Sandwich between �q and q using qR ¼ PRq; qL ¼ PLq; �qR ¼ �qPL, and �qL ¼ �qPR.

1.10

QaðtÞ ¼
Z

d3xJ0
aðt; x~Þ:

For a time-independent infinite volume

dQaðtÞ
dt

¼
Z

d3x
oJ0

aðt; x~Þ
ot

:
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Assuming that the current density J~aðt; x~Þ vanishes faster than 1=r2 for
r ¼ jx~j ! 1, we make use of the divergence theorem as

Z
d3xr~ � J~a ¼

Z
dF~ � J~a ¼ lim

R!1
R2
Z

dX êr � J~a ¼ 0:

� � � ¼
Z

d3x
oJ0

aðt; x~Þ
ot

þr~ � J~aðt; x~Þ
� �

¼
Z

d3xolJl
a ðt; x~Þ ¼

Z
d3x

odL
oea

¼ 0 for dL ¼ 0:

1.11 (a)

dL ¼ oL

oUi
dUi þ

oL

oolUi
oldUi

¼ �m2U1½�eðxÞ�U2 � m2U2eðxÞU1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ 0

� kðU2
1 þ U2

2ÞfU1½�eðxÞ�U2 þ U2eðxÞU1g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ 0

þ olU1ol½�eðxÞU2� þ olU2ol½eðxÞU1�
¼ oleðxÞð�olU1U2 þ U1o

lU2Þ:

(b)

Jl ¼ odL
oole

¼ U1o
lU2 � olU1U2;

olJl ¼ odL
oe
¼ 0:

1.12

½QaðtÞ;Ukðt; y~Þ�

¼ �ita;ij

Z
d3x½Piðt; x~ÞUjðt; x~Þ;Ukðt; y~Þ�

¼ �ita;ij

Z
d3x
�
Piðt; x~Þ ½Ujðt; x~Þ;Ukðt; y~Þ�|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼ 0

þ ½Piðt; x~Þ;Ukðt; y~Þ�|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ �id3ðx~� y~Þdik

Ujðt; x~Þ



¼ �ta;kjUjðt; y~Þ:
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1.13

½QaðtÞ;QbðtÞ� ¼ �
Z

d3xd3y½Piðt; x~Þta;ijUjðt; x~Þ;Pkðt; y~Þtb;klUlðt; y~Þ�

ð1:52Þ
¼ � ta;ijtb;kl

Z
d3xd3y

�
Piðt; x~Þ½Ujðt; x~Þ;Pkðt; y~Þ�Ulðt; y~Þ

þPkðt; y~Þ½Piðt; x~Þ;Ulðt; y~Þ�Ujðt; x~Þ



ð1:52Þ
¼ � ta;ijtb;kl

Z
d3xd3y

�
Piðt; x~Þid3ðx~� y~ÞdjkUlðt; y~Þ

þPkðt; y~Þ½�id3ðx~� y~Þ�dilUjðt; x~Þ



¼ �ita;ijtb;kl

Z
d3x
�
Piðt; x~ÞUlðt; x~Þdjk �Pkðt; x~ÞUjðt; x~Þdil




¼ �i

Z
d3x
�
Piðt; x~Þta;ijtb;jlUlðt; x~Þ �Pkðt; x~Þtb;klta;ljUjðt; x~Þ




¼ �iðta;ijtb;jk � tb;ijta;jkÞ
Z

d3xPiðt; x~ÞUkðt; x~Þ:

1.14 (a) In the following, the ellipses refer to terms of higher order in e.

�W io=� mNð ÞW

7! �W 1þ iejðxÞ
sj

2

h i
iclol � mN

	 

1� ieiðxÞ

si

2

h i
W

n o

¼ �W 1þ iejðxÞ
sj

2

h i
1� ieiðxÞ

si

2

h i
io=� mNð ÞWþ �WcloleiðxÞ

si

2
Wþ � � �

¼ �W io=� mNð ÞWþ oleiðxÞ �Wclsi

2
Wþ � � �;

1
2

olUio
lUi �M2

pUiUi

	 


7! 1
2

ol½Ui þ eiajeaðxÞUj�ol½Ui þ eibkebðxÞUk�
�

�M2
p½Ui þ eiajeaðxÞUj�½Ui þ eibkebðxÞUk�g

¼ 1
2

olUio
lUi �M2

pUiUi

	 

þ eiajoleaðxÞUjo

lUi þ � � �;

¼ 1
2

olUio
lUi �M2

pUiUi

	 

þ eijkoleiðxÞUjo

lUk þ � � �;
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�ig �Wc5U~ � s~W

7! � ig �W 1þ iebðxÞ
sb

2

h i
c5½Ui þ eicjecðxÞUj�si 1� ieaðxÞ

sa

2

h i
W

¼ �ig �Wc5U~ � s~W

� ig �Wc5 Uisið�iÞeaðxÞ
sa

2
þ eicjecðxÞUjsi þ iebðxÞ

sb

2
Uisi

h i
Wþ � � �

¼ �ig �Wc5U~ � s~W� ig �Wc5 �
i

2
UieaðxÞðsisa � sasiÞ þ eiajeaðxÞUjsi

� �
Wþ � � �

¼ �ig �Wc5U~ � s~W� ig �Wc5 UieaðxÞeiajsj þ eiajeaðxÞUjsi

� �
Wþ � � �

¼ �ig �Wc5U~ � s~Wþ � � �:

The variation of the Lagrangian thus reads

dL ¼ oleiðxÞ �Wclsi

2
Wþ eijkUjo

lUk

� 

:

(b)
½ab; cd� ¼ abcd � cdab

¼ abcd þ acbd � acbd|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
¼ 0

�acdbþ acdb|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
¼ 0

þ cadb� cadb|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
¼ 0

�cdab

¼ abcd þ acbd|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
¼ afb; cgd

�acbd � acdb|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
¼ �acfb; dg

þ acdbþ cadb|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
¼ fa; cgdb

�cadb� cdab|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
¼ �cfa; dgb

¼ afb; cgd � acfb; dg þ fa; cgdb� cfa; dgb:

Wya;rðt;x~ÞWb;sðt;x~Þ;Wyc;tðt;y~ÞWd;uðt;y~Þ
h i

ð1:79;1:80;1:86Þ
¼ Wya;rðt;x~Þ Wb;sðt;x~Þ;Wyc;tðt;y~Þ

n o
Wd;uðt;y~Þ

�Wyc;tðt;y~Þ Wya;rðt;x~Þ;Wd;uðt;y~Þ
n o

Wb;sðt;x~Þ
ð1:78Þ
¼ Wya;rðt;x~ÞWd;uðt;y~Þd3ðx~� y~Þdbcdst�Wyc;tðt;y~ÞWb;sðt;x~Þd3ðx~� y~Þdaddru:

(c)
Aij ¼

Z
d3x1ab

si

2

� 


rs
1cd

sj

2

� 


tu
Wya;rðxÞdbcdstWd;uðxÞ �Wyc;tðxÞdaddruWb;sðxÞ
� 


¼
Z

d3xWyðxÞ si

2
sj

2
� sj

2
si

2

� 

WðxÞ

¼ ieijk

Z
d3xWyðxÞsk

2
WðxÞ:
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(d)

½ab; cd� ¼ abcd � cdab;

¼ abcd�acbd þ acbd|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
¼ 0

�acdbþ acdb|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
¼ 0

�cadbþ cadb|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
¼ 0

�cdab

¼ abcd � acbd|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
¼ a½b; c�d

þ acbd � acdb|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
¼ ac½b; d�

þ acdb� cadb|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
¼ ½a; c�db

þ cadb� cdab|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
¼ c½a; d�b

¼ a ½b; c�d þ ac½b; d� þ ½a; c�dbþ c½a; d�b:

(e)

½Ukðt;x~ÞPlðt;x~Þ;Umðt;y~ÞPnðt;y~Þ�
ð1:82;1:83;1:88Þ
¼ Ukðt;x~Þ½Plðt;x~Þ;Umðt;y~Þ�Pnðt;y~ÞþUmðt;y~Þ½Ukðt;x~Þ;Pnðt;y~Þ�Plðt;x~Þ
ð1:81Þ
¼ � iUkðt;x~ÞPnðt;y~Þd3ðx~� y~Þdlmþ iUmðt;y~ÞPlðt;x~Þd3ðx~� y~Þdkn:

(f)

Bij ¼� ieiklejmn

Z
d3x UkðxÞPnðxÞdlm � UmðxÞPlðxÞdkn½ �

¼ � i

Z
d3x UkðxÞPnðxÞðdindkj � dijdknÞ � UmðxÞPlðxÞðdljdim � dlmdijÞ
� �

¼� i

Z
d3x UjðxÞPiðxÞ � dijUkðxÞPkðxÞ � UiðxÞPjðxÞ þ dijUmðxÞPmðxÞ
� �

¼ ieijk

Z
d3xeklmUlðxÞPmðxÞ:

We made use of

eijkeklm ¼ dildjm � dimdjl:

1.15 The k matrices are suppressed as they are not relevant for the argument.

Vl ¼ �qRclqR þ �qLc
lqL

ð1:38Þ
¼ �qclq;

Al ¼ �qRclqR � �qLc
lqL ¼ �q

1
2
ð1� c5ÞclqR � �q

1
2
ð1þ c5ÞclqL

¼ �qcl 1
2
ð1þ c5ÞqR
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

¼ 1
2
ð1þ c5Þq

��qcl 1
2
ð1� c5ÞqL
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

¼ 1
2
ð1� c5Þq

¼ �qclc5q:
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1.16 Make use of P2
R ¼ PR and PLPR ¼ PRPL ¼ 0.

½QRa;QRb�

¼
Z

d3xd3y qyðt;x~ÞPR
ka

2
qðt;x~Þ;qyðt;y~ÞPR

kb

2
qðt;y~Þ

� �

¼
Z

d3xd3yd3ðx~� y~Þ qyðt;x~ÞPR
ka

2
kb

2
qðt;y~Þ�qyðt;y~ÞPR

kb

2
ka

2
qðt;x~Þ

� �

¼
Z

d3xqyðt;x~ÞPR
ka

2
;
kb

2

� �
qðt;x~Þ

¼ ifabc

Z
d3xqyðt;x~ÞPR

kc

2
qðt;x~Þ

¼ ifabcQRc;

½QLa;QRb�

¼
Z

d3x d3y qyðt;x~ÞPL
ka

2
qðt;x~Þ;qyðt;y~ÞPR

kb

2
qðt;y~Þ

� �

¼
Z

d3x d3yd3ðx~� y~Þ
 

qyðt;x~ÞPLPR|ffl{zffl}
¼ 0

ka

2
kb

2
qðt;y~Þ�qyðt;y~ÞPRPL|ffl{zffl}

¼ 0

kb

2
ka

2
qðt;x~Þ

!

¼0;

½QL;Ra;QV �

¼
Z

d3xd3y qyðt;x~ÞPL;R
ka

2
qðt;x~Þ;qyðt;y~Þqðt;y~Þ

� �

¼
Z

d3xd3yd3ðx~� y~Þ qyðt;x~ÞPL;R
ka

2
qðt;y~Þ�qyðt;y~ÞPL;R

ka

2
qðt;x~Þ

� �

¼0:

1.17 Since M is diagonal, we only need to consider k0, k3, and k8:

M ¼m0k0 þ m3k3 þ m8k8;

m0 ¼
1
2

Trðk0MÞ ¼
1
2

ffiffiffi
2
3

r
ðmu þ md þ msÞ ¼

mu þ md þ msffiffiffi
6
p ;

m3 ¼
1
2

Trðk3MÞ ¼
mu � md

2
;

m8 ¼
1
2

Trðk8MÞ ¼
1
2

1ffiffiffi
3
p ðmu þ md � 2msÞ ¼

muþmd
2 � msffiffiffi

3
p :
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1:18

T ½UðxÞJlðyÞUyðzÞ� ¼
UðxÞJlðyÞUyðzÞHðx0 � y0ÞHðy0 � z0Þ þ UðxÞUyðzÞJlðyÞHðx0 � z0ÞHðz0 � y0Þ
þ JlðyÞUðxÞUyðzÞHðy0 � x0ÞHðx0 � z0Þ þ UyðzÞUðxÞJlðyÞHðz0 � x0ÞHðx0 � y0Þ
þ JlðyÞUyðzÞUðxÞHðy0 � z0ÞHðz0 � x0Þ þ UyðzÞJlðyÞUðxÞHðz0 � y0ÞHðy0 � x0Þ:

oy
lT ½UðxÞJlðyÞUyðzÞ� ¼ T ½UðxÞ oy

lJlðyÞ
|fflfflfflffl{zfflfflfflffl}
¼ 0

UyðzÞ�

� UðxÞJ0ðyÞUyðzÞdðx0 � y0ÞHðy0 � z0Þ þ UðxÞJ0ðyÞUyðzÞHðx0 � y0Þdðy0 � z0Þ
� UðxÞUyðzÞJ0ðyÞHðx0 � z0Þdðz0 � y0Þ þ J0ðyÞUðxÞUyðzÞdðy0 � x0ÞHðx0 � z0Þ
� UyðzÞUðxÞJ0ðyÞHðz0 � x0Þdðx0 � y0Þ þ J0ðyÞUyðzÞUðxÞdðy0 � z0ÞHðz0 � x0Þ
� UyðzÞJ0ðyÞUðxÞdðz0 � y0ÞHðy0 � x0Þ þ UyðzÞJ0ðyÞUðxÞHðz0 � y0Þdðy0 � z0Þ

¼ ½�UðxÞJ0ðyÞdðx0 � y0ÞHðy0 � z0Þ þ J0ðyÞUðxÞdðy0 � x0ÞHðx0 � z0Þ�UyðzÞ
þ UðxÞ½J0ðyÞUyðzÞHðx0 � y0Þdðy0 � z0Þ � UyðzÞJ0ðyÞHðx0 � z0Þdðz0 � y0Þ�
þ UyðzÞ½�UðxÞJ0ðyÞHðz0 � y0Þdðx0 � y0Þ þ J0ðyÞUðxÞHðz0 � y0Þdðy0 � z0Þ�
þ ½J0ðyÞUyðzÞdðy0 � z0ÞHðz0 � x0Þ � UyðzÞJ0ðyÞdðz0 � y0ÞHðy0 � x0Þ�UðxÞ

¼ d4ðy� xÞUðxÞUyðzÞHðx0 � z0Þ � d4ðy� zÞUðxÞUyðzÞHðx0 � z0Þ
þ d4ðy� xÞUyðzÞUðxÞHðz0 � x0Þ � d4ðy� zÞUyðzÞUðxÞHðz0 � x0Þ

¼ d4ðy� xÞT ½UðxÞUyðzÞ� � d4ðy� zÞT ½UðxÞUyðzÞ�:

) oy
lGlðx; y; zÞ ¼ ½d4ðy� xÞ � d4ðy� zÞ�h0jT ½UðxÞUyðzÞ�j0i:

1.19 (a) Make use of Eq. 1.38:

�qclq ¼�qRclqR þ �qLc
lqL;

�qclc5q ¼�qRcl c5qR|ffl{zffl}
¼ qR

þ �qLc
l c5qL|{z}
¼ �qL

¼ �qRclqR � �qLc
lqL:

Thus

�qcl vl þ
1
3

vðsÞl þ c5al

� �
q ¼ �qRcl vl þ al þ

1
3

vðsÞl

� �
qR

þ �qLc
l vl � al þ

1
3

vðsÞl

� �
qL

¼ �qRcl rl þ
1
3

vðsÞl

� �
qR þ �qLc

l ll þ
1
3

vðsÞl

� �
qL:
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(b) Make use of Eq. 1.38:

�qq ¼ �qRqL þ �qLqR;

�qc5q ¼ �qR c5qL|{z}
¼ �qL

þ �qL c5qR|ffl{zffl}
¼ qR

¼ ��qRqL þ �qLqR:

Thus

�qðs� ic5pÞq ¼ �qLðs� ipÞqR þ �qRðsþ ipÞqL:

1.20 Using

qL 7! 1� i
eLisi

2

� 

qL; qR 7! 1� i

eRisi

2

� 

qR;

one obtains

dLext ¼ i�qRcl eRisi

2
; vl

h i
qR þ i�qLc

l eLisi

2
; vl

h i
qL

þ i�qRclc5
eRisi

2
; al

h i
qR þ i�qLc

lc5
eLisi

2
; al

h i
qL

� i�qR
eRisi

2
sqL þ i�qLs

eRisi

2
qR � i�qL

eLisi

2
sqR þ i�qRs

eLisi

2
qL

� �qRc5
eRisi

2
pqL þ �qLc5p

eRisi

2
qR � �qLc5

eLisi

2
pqR þ �qRc5p

eLisi

2
qL;

olRl
i ¼

odLext

oeRi

¼ i�qRcl si

2
; vl

h i
qR þ i�qRclc5

si

2
; al

h i
qR

� i�qR
si

2
sqL þ i�qLs

si

2
qR � �qRc5

si

2
pqL þ �qLc5p

si

2
qR;

olLl
i ¼

odLext

oeLi

¼ i�qLc
l si

2
; vl

h i
qL þ i�qLc

lc5
si

2
; al

h i
qL

� i�qL
si

2
sqR þ i�qRs

si

2
qL � �qLc5

si

2
pqR þ �qRc5p

si

2
qL:

For the divergence of the vector current make use of Eq. 1.38:

olVl
i ¼ olRl

i þ olLl
i

¼ i�qcl si

2
; vl

h i
qþ i�qclc5

si

2
; al

h i
q� i�q

si

2
; s

h i
q� �qc5

si

2
; p

h i
q:

For the divergence of the axial-vector current make use of c5qR ¼ qR and
c5qL ¼ �qL and of Eq. 1.38 to rewrite
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�qRclqR � �qLc
lqL ¼ �qclc5q;

�qRclc5qR � �qLc
lc5qL ¼ �qclq;

�qRqL � �qLqR ¼ ��qc5q;

�qRc5qL � �qLc5qR ¼ ��qq:

Thus

olAl
i ¼ olRl

i � olLl
i

¼ i�qclc5
si

2
; vl

h i
qþ i�qcl si

2
; al

h i
qþ i�qc5

si

2
; s

n o
qþ �q

si

2
; p

n o
q:

1.21 Insert

vl ¼ �eAl
s3

2
; al ¼ 0; s ¼ m̂1; p ¼ 0;

into Eqs. 1.169 and 1.170, respectively, and make use of

si

2
; vl

h i
¼ �eAl

si

2
;
s3

2

h i
¼ ieAle3ij

sj

2
;

to obtain

olVl
i ¼ �e3ijeAl�qclsj

2
q ¼ �e3ijeAlVl

j ;

olAl
i ¼ �eAle3ij�qclc5

sj

2
qþ 2m̂i�qc5

si

2
q ¼ �eAle3ijA

l
j þ m̂Pi:

Problems of Chapter 2

2.1

~V ¼ m2

2
ð�U0 þ U0Þ2 þ k

4
ð�U0 þ U0Þ4

¼ m2

2
ðU2

0 � 2U0U
0 þ U02Þ þ k

4
ðU4

0 � 4U3
0U
0 þ 6U0

2U02 � 4U0U
03 þ U04Þ:

Make use of U2
0 ¼ �m2=k and consider powers of U0:

	 const :
m2

2
U2

0 þ
k
4
U4

0 ¼ �
k
2
U4

0 þ
k
4
U4

0 ¼ �
k
4
U4

0;

	U0 :
m2

2
ð�2U0Þ þ

k
4
ð�4U3

0Þ ¼ �m2U0 � kU3
0 ¼ 
kU3

0 � kU3
0 ¼ 0;

	U02 :
m2

2
þ k

4
6U2

0 ¼
m2

2
� 3m2

2
¼ 1

2
ð�2m2Þ:
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) ~V ¼ �k
4
U4

0 þ
1
2
ð�2m2ÞU02 � kU0U

03 þ k
4

U04:

2.2 Define x ¼ UiUi� 0 and determine minimum of

VðxÞ ¼ m2

2
xþ k

4
x2:

V 0ðxÞ ¼ m2

2
þ k

2
x ¼ 0 ) x ¼ �m2

k
:

The solution is indeed a minimum, because V 00ðxÞ ¼ k
2 [ 0. As a result, constant

fields with jU~minj ¼
ffiffiffiffiffiffiffi
�m2

k

q
minimize VðU1;U2;U3Þ.

2.3 Insert U3 ¼ vþ g into the potential,

~V ¼ m2

2
U2

1 þ U2
2 þ ðgþ vÞ2

h i
þ k

4
U2

1 þ U2
2 þ ðgþ vÞ2

h i2

¼ m2

2
U2

1 þ U2
2 þ g2 þ 2gvþ v2

	 

þ k

4
U2

1 þ U2
2 þ g2 þ 2gvþ v2

	 
2

¼ m2

2
U2

1 þ U2
2 þ g2 þ 2gvþ v2

	 

þ k

4
U2

1 þ U2
2 þ g2

	 
2

þ k
4

2 U2
1 þ U2

2 þ g2
	 


2gvþ v2
	 


þ 2gvþ v2
	 
2

h i
:

Make use of v2 ¼ �m2=k and consider powers of U2
1 þ U2

2 and g:

	U2
1 þ U2

2 :
m2

2
þ k

2
v2 ¼ 0;

	 g2:
m2

2
þ k

2
v2 þ kv2 ¼ �m2;

	 g : m2vþ kv3 ¼ 0;

	 const :
m2

2
v2 þ k

4
v4 ¼ �k

4
v4:

~V ¼ 1
2
�2m2
	 


g2 þ kvg U2
1 þ U2

2 þ g2
	 


þ k
4

U2
1 þ U2

2 þ g2
	 
2�k

4
v4:

2.4 For notational convenience rename U3 ! U, Uð0Þ3 ! U0, and Uð1Þ3 ! U1. The
criterion for an extremum reads

V0ðUÞ ¼ kU3 þ m2Uþ a ¼ 0:
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Ansatz hUi ¼ U0 þ aU1 þ Oða2Þ )

k ½U0 þ aU1 þ Oða2Þ�3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ U3

0 þ 3aU2
0U1 þ Oða2Þ

þm2½U0 þ aU1 þ Oða2Þ� þ a ¼ 0:

Oða0Þ : kU3
0 þ m2U0 ¼ 0:

U0 ¼ 0 corresponds to maximum and U0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2=k

p
correspond to the two

minima without explicit symmetry breaking.

OðaÞ : 3kaU2
0U1 þ m2aU1 þ a ¼ 0;

or, using U2
0 ¼ �m2=k,

�3m2U1 þ m2U1 þ 1 ¼ 0 ) U1 ¼
1

2m2
:

For both values of U0 corresponding to the two minima without explicit symmetry
breaking we find

hUi ¼ �
ffiffiffiffiffiffiffiffiffiffi
�m2

k

r
þ a

2m2
þ Oða2Þ:

We determine the values of the potential by explicit calculation:

VðhUiÞ ¼V U0 þ aU1 þ Oða2Þ
	 


¼VðU0Þ þ aU1 V
0ðU0Þ|fflfflfflffl{zfflfflfflffl}
¼ OðaÞ

þOða2Þ

¼VðU0Þ þ Oða2Þ
¼V0ðU0Þ þ aU0 þ Oða2Þ

¼ �1
4
�m2ð Þ2

k
�

ffiffiffiffiffiffiffiffiffiffi
�m2

k

r
aþ Oða2Þ:

Problems of Chapter 3

3.1 (a) The Feynman rule for a vertex is obtained by evaluating iLint between
states. Plane waves, normalization factors, and (possibly) spinors are dropped at
the end. The rule may also be applied to momenta which do not satisfy mass-
shell conditions.
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hujiLintðxÞju;/i ¼ u �i
k
2
/ðxÞu2ðxÞ

����

����u;/
� �

) �ik;

since two possibilities to contract u fields.
(b)

MðaÞ ¼ �ik
i

ðp1 þ p2Þ2 �M2 þ i0þ
ð�ikÞ ¼ �k2 i

s�M2 þ i0þ
;

MðbÞ ¼ �ik
i

ðp1 � p3Þ2 �M2 þ i0þ
ð�ikÞ ¼ �k2 i

t �M2 þ i0þ
;

MðcÞ ¼ �ik
i

ðp1 � p4Þ2 �M2 þ i0þ
ð�ikÞ ¼ �k2 i

u�M2 þ i0þ
:

(c) For fs; jtj; jujg � M2 we can expand

i

fs; t; ug �M2 þ i0þ
¼ � i

M2

1

1� fs;t;ugM2 � i0þ
¼ � i

M2
1þ O

fs; t; ug
M2

� �� �
:

(d) Feynman rule:

huuji~ku4ðxÞjuui ) ið4!Þ~k ¼ ið4!Þ k2

8M2
¼ 3ik2

M2
;

from which one can read off Meff .

3.2

½QVa;QVb� ¼ ½QRa þ QLa;QRb þ QLb�
¼ ½QRa;QRb� þ ½QRa;QLb� þ ½QLa;QRb� þ ½QLa;QLb�
¼ ifabcQRc þ 0þ 0þ ifabcQLc

¼ ifabcðQRc þ QLcÞ
¼ ifabcQVc:

3.3

½QVa;QAb� ¼ ½QRa þ QLa;QRb � QLb�
¼ ½QRa;QRb� � ½QRa;QLb� þ ½QLa;QRb� � ½QLa;QLb�
¼ ifabcQRc þ 0þ 0� ifabcQLc

¼ ifabcðQRc � QLcÞ
¼ ifabcQAc;
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½QAa;QAb� ¼ ½QRa � QLa;QRb � QLb�
¼ ½QRa;QRb� � ½QRa;QLb� � ½QLa;QRb� þ ½QLa;QLb�
¼ ifabcQRc þ 0þ 0þ ifabcQLc

¼ ifabcðQRc þ QLcÞ
¼ ifabcQVc:

3.4 Note: c5PR ¼ PR and c5PL ¼ �PL.

Sa ¼ �qkaq ¼ �qRkaqL þ �qLkaqR

7! �qRUyRkaULqL þ �qLUyLkaURqR;

Pa ¼ i�qc5kaq ¼ i�qRc5kaqL þ i�qLc5kaqR

¼ �i�qRkaqL þ i�qLkaqR

7! � i�qRUyRkaULqL þ i�qLUyLkaURqR:

3.5

/ ¼
X8

a¼1

/aka ¼

/3 þ 1ffiffi
3
p /8 /1 � i/2 /4 � i/5

/1 þ i/2 �/3 þ 1ffiffi
3
p /8 /6 � i/7

/4 þ i/5 /6 þ i/7 � 2ffiffi
3
p /8

0

BB@

1

CCA

�

p0 þ 1ffiffi
3
p g

ffiffiffi
2
p

pþ
ffiffiffi
2
p

Kþ
ffiffiffi
2
p

p� �p0 þ 1ffiffi
3
p g

ffiffiffi
2
p

K0

ffiffiffi
2
p

K�
ffiffiffi
2
p

�K0 � 2ffiffi
3
p g

0

BB@

1

CCA;

i.e.

p0 ¼ /3; g ¼ /8;

pþ ¼ 1ffiffiffi
2
p ð/1 � i/2Þ; p� ¼ 1ffiffiffi

2
p ð/1 þ i/2Þ;

Kþ ¼ 1ffiffiffi
2
p ð/4 � i/5Þ; K�¼ 1ffiffiffi

2
p ð/4 þ i/5Þ;

K0 ¼ 1ffiffiffi
2
p ð/6 � i/7Þ; �K0 ¼ 1ffiffiffi

2
p ð/6 þ i/7Þ:

3.6

TrðolUUyÞ

¼Tr i
ol/
F0
þ iol/i/þ i/iol/

2F2
0

þ iol/ði/Þ2þ i/iol/i/þði/Þ2iol/

3!F3
0

þ���
 !

Uy
" #

¼Tr i
ol/
F0

Uyþ iol/i/þ i/iol/
2F2

0

Uyþ iol/ði/Þ2þ i/iol/i/þði/Þ2iol/

3!F3
0

Uyþ���
" #
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¼� Tr i
ol/
F0

Uy þ i
ol/
F0

i
/
F0

Uy þ i
ol/
F0

1
2
ði/Þ2

F2
0

Uyþ���
" #

¼Tr i
ol/
F0

1þ i
/
F0
þ1

2
ði/Þ2

F2
0

þ���
 !

Uy
" #

¼Tr i
ol/
F0

UUy
� �

¼Tr i
ol/
F0

� �

¼ iol/a

F0
TrðKaÞ

¼0:

�: ½/;Uy�¼0 and cyclic property of trace.

3.7 (a)

Ls:b: ¼
F2

0B0

2
Tr MUy þ UMy	 


¼ F2
0B0

2
Tr MðUy þ UÞ
� �

;

where

Uy ¼ 1� i
/
F0
� /2

2F2
0

þ i
/3

6F3
0

þ /4

24F4
0

þ � � � ;

U ¼ 1þ i
/
F0
� /2

2F2
0

� i
/3

6F3
0

þ /4

24F4
0

þ � � � ;

Uy þ U ¼ 2 1� /2

2F2
0

þ /4

24F4
0

þ � � �
� �

:

With / ¼ /aka:

o

o/a
/2 ¼ ka/þ /ka

and analogously for /4 term.
(b)

1

F2
0

ðka/þ /kaÞ ¼
1

F2
0

ka /0 þ
1

F2
0

/2 þ � � �
� �

þ /0 þ
1

F2
0

/2 þ � � �
� �

ka

� �

¼ 1
F2

0

ðka/0 þ /0kaÞ þ
1

F4
0

ðka/2 þ /2kaÞ þ O
1

F6
0

� �
;

1
F4

0

ðka/
3 þ /ka/

2 þ /2ka/þ /3kaÞ ¼
1

F4
0

ðka/
3
0 þ /0ka/

2
0 þ /2

0ka/0 þ /3
0kaÞ

þ O
1

F6
0

� �
:
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(c)

Tr Mðka/0 þ /0kaÞ½ � ¼ Tr Mðkakb þ kbkaÞ½ �/0b

¼ Tr M
4
3
1dab þ 2dabckc

� �� �
/0b

¼ 4
3
ðmu þ md þ msÞ/0a þ 4ðm3dab3 þ m8dab8Þ/0b;

where we used TrðkaÞ ¼ 0;TrðkakbÞ ¼ 2dab. Set a ¼ 1 and use d1b3 ¼ 0; d1b8 ¼
d118db1 ¼ 1ffiffi

3
p db1:

� � � ¼ 4
3
ðmu þ md þ msÞ þ

4ffiffiffi
3
p m8

� �
/01 ¼ 2ðmu þ mdÞ/01:

Since we want / to minimize Heff , we set Trð. . .Þ ¼ 0) 2ðmu þ mdÞ/01 ¼ 0.
For nonvanishing quark masses therefore /01 ¼ 0.
(d) With /0 ¼ 0

Tr M ka/2 þ /2ka �
ka/

3
0 þ /0ka/

2
0 þ /2

0ka/0 þ /3
0ka

12

� �� �

¼ Tr M ka/2 þ /2kað Þ½ �;

and calculation for /2 as above for /0.

3.8

Ls:b: ¼
F2

0B0

2
Tr MUy þ UMy	 


¼ F2
0B0

2
Tr M Uy þ U

	 
� �

¼ F2
0B0

2
Tr M 1� /2

F2
0

þ � � �
� �� �

¼ F2
0B0ðmu þ md þ msÞ

2
� B0

2
Tr M/2	 


þ � � � :

We need

Tr M/2	 

¼ muð/2Þ11 þ mdð/2Þ22 þ msð/2Þ33:

ð/2Þ11 ¼ /3 þ
1ffiffiffi
3
p /8

� �2

þð/1 � i/2Þð/1 þ i/2Þ þ ð/4 � i/5Þð/4 þ i/5Þ

¼ /2
3 þ

2ffiffiffi
3
p /3/8 þ

1
3
/2

8 þ /2
1 þ /2

2 þ /2
4 þ /2

5;

ð/2Þ22 ¼ ð/1 þ i/2Þð/1 � i/2Þ þ �/3 þ
1ffiffiffi
3
p /8

� �2

þð/6 � i/7Þð/6 þ i/7Þ

¼ /2
1 þ /2

2 þ /2
3 �

2ffiffiffi
3
p /3/8 þ

1
3
/2

8 þ /2
6 þ /2

7;

274 Solutions to Exercises



ð/2Þ33 ¼ ð/4 þ i/5Þð/4 � i/5Þ þ ð/6 þ i/7Þð/6 � i/7Þ þ
4
3
/2

8

¼ /2
4 þ /2

5 þ /2
6 þ /2

7 þ
4
3
/2

8:

Note: One could also start with /2 expressed in terms of physical fields.

� B0

2
Tr M/2	 


¼ �B0

2
ðmu þ mdÞð/2

1 þ /2
2 þ /2

3Þ þ
2ffiffiffi
3
p ðmu � mdÞ/3/8

�

þðmu þ msÞð/2
4 þ /2

5Þ þ ðmd þ msÞð/2
6 þ /2

7Þ þ
1
3
ðmu þ md þ 4msÞ/2

8

�

¼ �B0ðmu þ mdÞpþp� � 1
2

B0ðmu þ mdÞp0p0 � B0ffiffiffi
3
p ðmu � mdÞp0g

� B0ðmu þ msÞKþK� � B0ðmd þ msÞK0 �K0 � 1
2

B0
mu þ md þ 4ms

3
g2:

3.9

DlA � olA� irlAþ iAll
7! olðVRAVyLÞ � iðVRrlVyR þ iVRolVyRÞVRAVyL þ iVRAVyLðVLllVyL þ iVLolVyLÞ
¼ olVRAVyL þ VRolAVyL þ VRAolVyL
� iVRrlAVyLþVRolVyRVRAVyL|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

¼ �olVRAVyL

þiVRAllVyL � VRAolVyL

¼ VRðolA� irlAþ iAllÞVyL
¼ VRðDlAÞVyL:

3.10

Tr½ðDlDmUÞUy� ¼ Tr½ðolðDmUÞ � irlðDmUÞ þ iðDmUÞllÞUy�
¼ ol Tr½ðDmUÞUy�|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

¼ 0

�Tr½ðDmUÞolUy�

� iTr½rlðDmUÞUy� þ iTr½ðDmUÞllUy�
¼ �Tr½ðDmUÞðolUy þ iUyrl � illUyÞ�
¼ �Tr½ðDmUÞðDlUÞy�
¼ �Tr½ðomU � irmU þ iUlmÞðDlUÞy�
¼ �om Tr½UðDlUÞy�|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

¼ 0

þTrðUomðDlUÞy þ ðirmU � iUlmÞðDlUÞy�

¼ Tr½UðDmDlUÞy�:
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3.11 (a)

/ ¼

p0 þ 1ffiffi
3
p g

ffiffiffi
2
p

pþ
ffiffiffi
2
p

Kþ

ffiffiffi
2
p

p� �p0 þ 1ffiffi
3
p g

ffiffiffi
2
p

K0

ffiffiffi
2
p

K�
ffiffiffi
2
p

�K0 � 2ffiffi
3
p g

0
BBBB@

1
CCCCA

7!

p0 þ 1ffiffi
3
p g

ffiffiffi
2
p

p�
ffiffiffi
2
p

K�

ffiffiffi
2
p

pþ �p0 þ 1ffiffi
3
p g

ffiffiffi
2
p

�K0

ffiffiffi
2
p

Kþ
ffiffiffi
2
p

K0 � 2ffiffi
3
p g

0
BBBB@

1
CCCCA

¼ /T :

(b) Verify: ðATÞn ¼ ðAnÞT .

n ¼ 1 : AT ¼ AT ;
p

n! nþ 1 : ðATÞnþ1 ¼ ðATÞnAT ¼ ðAnÞTAT ¼ ðAAnÞT ¼ ðAnþ1ÞT :

U ¼ exp i
/
F0

� �
¼
X1

n¼0

1
n!

i

F0

� �n

/n

7!
X1

n¼0

1
n!

i

F0

� �n

ð/TÞn ¼
X1

n¼0

1
n!

i

F0

� �n

ð/nÞT ¼ UT :

(c) rl ¼ vl þ al 7! � vT
l þ aT

l ¼ �lTl ;

ll ¼ vl � al 7! � vT
l � aT

l ¼ �rT
l ;

v ¼ 2B0ðsþ ipÞ 7! vT ;

vy ¼ 2B0ðs� ipÞ 7! vy
T
:

(d) DlU ¼ olU � irlU þ iUll

7! olUT � ið�lTlÞUT þ iUTð�rT
l Þ

¼ olUT þ iðUllÞT � iðrlUÞT

¼ ðDlUÞT :
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(e)
Tr DlUðDlUÞy
h i

7!Tr ðDlUÞT ðDlUÞT
� �yn o

¼ Tr ðDlUÞT ðDlUÞy
h iT

� �

¼ Tr ðDlUÞyDlU
h iT
� �

¼ Tr ðDlUÞyDlU
h i

¼ Tr DlUðDlUÞy
h i

;

Tr vUy þ Uvy
	 


7!Tr vTUT y þ UTvT y
� 


¼ Tr vTUy
T þ UTvy

T
� 


¼ Tr Uyv
	 
Tþ vyU

	 
T
h i

¼ Tr Uyvþ vyU
	 


¼ Tr vUy þ Uvy
	 


:

(f)
Tr DlUðDlUÞyDmUðDmUÞy
h i

7!Tr ðDlUÞTðDlUÞT yðDmUÞTðDmUÞT y
h i

¼ Tr ðDlUÞTðDlUÞyTðDmUÞTðDmUÞyT
h i

¼ Tr ððDmUÞyDmUðDlUÞyDlUÞT
h i

¼ Tr ðDmUÞyDmUðDlUÞyDlU
h i

¼ Tr ðDlUÞyDlUðDmUÞyDmU
h i

¼ Tr �UyðDlUÞUyDlUð�UyÞðDmUÞUyDmU
� �

¼ Tr ðDlUÞUyðDlUÞUyðDmUÞUyðDmUÞUy
� �

¼ Tr DlUðDlUÞyDmUðDmUÞy
h i

:

3.12

F2
0

4
Tr DlUðDlUÞy
h i

¼ F2
0

4
Tr ðolU þ iUllÞðolUy � illUyÞ
� �

¼ � � � þ i
F2

0

4
TrðUllo

lUy � ll UyolU|fflfflffl{zfflfflffl}
¼ �olUyU

Þ þ � � �

¼ i
F2

0

2
TrðllolUyUÞ þ � � � :
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3.13 (a)

�umlðpmÞ 6pm ¼ 0; ð�Þ
fcq; c5g ¼ 0; ð��Þ

6plvlþðpl; slÞ ¼ �mlvlþðpl; slÞ: ð� � �Þ

�umlðpmÞðpm þ plÞqcqð1� c5Þvlþðpl; slÞ

¼ð�Þ �umlðpmÞplqc
qð1� c5Þvlþðpl; slÞ

¼ð��Þ �umlðpmÞð1þ c5Þplqc
qvlþðpl; slÞ

¼ð���Þ �ml�umlðpmÞð1þ c5Þvlþðpl; slÞ:

(b)
½�umlðpmÞðpm þ plÞqcqð1� c5Þvlþðpl; slÞ�
� ½�umlðpmÞðpm þ plÞrcrð1� c5Þvlþðpl; slÞ��

¼ m2
l�umlðpmÞð1þ c5Þvlþðpl; slÞ�vlþðpl; slÞð1� c5ÞumlðpmÞ

¼ m2
lTr½umlðpmÞ�umlðpmÞð1þ c5Þvlþðpl; slÞ�vlþðpl; slÞð1� c5Þ�

¼ m2
lTr ð1� c5Þ6pmð1þ c5Þð6pl� mlÞ

1þ c5 6 sl

2

� �

¼ m2
lTr 2 6pmð1þ c5Þð6pl � mlÞ

1þ c5 6 sl

2

� �

¼ m2
lTr 6pmð1þ c5Þð6pl � mlÞð1þ c5 6 slÞ
� �

¼� m2
lTr 6pmð1þ c5Þð6pl � mlc5 6 slÞ
� �

¼ m2
lTr 6pm 6pl � ml 6pmc56 slþ 6pmc5 6pl � ml 6pmc5c5 6 sl
� �

¼ m2
lTr 6pm 6pl � ml 6pm 6 sl
� �

¼ 4m2
lðpm � pl � mlpm � slÞ:

�: Only even number of gamma matrices.
Make use of four-momentum conservation:

p ¼ pl þ pm ) p2 ¼ M2
p ¼ p2

l þ 2pl � pm þ p2
m ¼ m2

l þ 2pl � pm

) pl � pm ¼
M2

p � m2
l

2
:

� � � ¼ 4m2
lM2

p
1
2

1�
m2

l

M2
p

 !
� mlpm � sl

M2
p

" #
:
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(c) Sum over muon spins:

X

�sl

1
2

1�
m2

l

M2
p

 !
� mlpm � sl

M2
p

" #
¼ 1�

m2
l

M2
p
:

The first term does not depend on the spin projections and simply yields a factor
of 2. The second term adds up to zero. This is most easily seen in the rest frame of
the muon (pm � sl is a Lorentz scalar) where the spin four-vector is given by
slR ¼ ð0; s~lRÞ:

X

�sl

pm � sl ¼ �
X

�s~lR

p~mR � s~lR ¼ 0:

Integration with respect to the unobserved neutrino yields

dC ¼ 1
8p2

G2
FV2

udF2
0m2

lMp 1�
m2

l

M2
p

 !Z
d3pl

ElEm
dðMp � El � EmÞ:

Now consider

Z
d3pl

ElEm
dðMp � El � EmÞ ¼

Z
p2

ldpldXl

ElEm
d Mp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

l þ p2
l

q
� pl

� 

:

Make use of Z
dx f ðxÞdðgðxÞÞ ¼

X

i

f ðxiÞ
jg0ðxiÞj

;

where gðxÞ is supposed to have only simple zeroes for x ¼ xi. Here,

gðxÞ ¼ Mp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

l þ x2
q

� x:

The zero is given by

x0 ¼
M2

p � m2
l

2Mp
;

with
g0ðx0Þ ¼ �

x0

Elðx0Þ
� 1:
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Z
p2

ldpldXl

ElEm
d Mp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

l þ p2
l

q
� pl

� 


¼ 4p
x2

0

Elðx0Þx0

Elðx0Þ
Elðx0Þ þ x0

¼ 4px0

Elðx0Þ þ x0
¼ 4p

M2
p � m2

l

2Mp

1
Mp
¼ 2p 1�

m2
l

M2
p

 !
:

The final result for the decay rate is given in Eq. 3.89.

3.14
(a) We need to investigate the behavior under / 7!�/ or U $ Uy:

L2 ¼
F2

4
Tr olUolUy
	 


þ F2Bm̂

2
Tr Uy þ U
	 


7!U$Uy F2

4
Tr olUyolU
	 


þ F2Bm̂

2
Tr U þ Uy
	 


¼L2:

(b)
U ¼ 1þ i

/
F
� 1

2
/2

F2
� i

6
/3

F3
þ 1

24
/4

F4
þ � � � ;

Uy ¼ 1� i
/
F
� 1

2
/2

F2
þ i

6
/3

F3
þ 1

24
/4

F4
þ � � � :

We need to collect the terms containing 4 fields. Contribution from second term:

F2B

2
Tr M

1
24

/4

F4
þ 1

24
/4

F4

� �� �
¼ B

24F2
TrðM/4Þ:

Since both olU and olUy are Oð/Þ, we only need their expansion to third order:

olU ¼ i
ol/
F
� 1

2
ol//þ /ol/

F2
� i

6
ol//2 þ /ol//þ /2ol/

F3
þ � � � ;

olUy ¼ �i
ol/
F
� 1

2
ol//þ /ol/

F2
þ i

6
ol//2 þ /ol//þ /2ol/

F3
þ � � � :

We obtain

F2

4
Tr olUolUy
	 


¼F2

4
Tr i

ol/
F
�1

2
ol//þ/ol/

F2
� i

6
ol//2þ/ol//þ/2ol/

F3
þ���

� ��

� �i
ol/
F
�1

2
ol//þ/ol/

F2
þ i

6
ol//2þ/ol//þ/2ol/

F3
þ���

� ��
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¼���þ 1
4F2

Tr �1
6
ðol/ol//2þol//ol//þol//2ol/Þ

�

þ1
4
ðol//þ/ol/Þðol//þ/ol/Þ

�1
6
ðol//2ol/þ/ol//ol/þ/2ol/ol/Þ

�
þ���:

Under the trace two distinct orderings:

� 1
6
� 1

6
þ 1

4
þ 1

4
� 1

6
� 1

6
¼ �1

6
;

� 1
6
þ 1

4
þ 1

4
� 1

6
¼ 1

6
:

¼ � � � þ 1
24F2

Trð½/; ol/�/ol/Þ þ � � � ¼ 1
48F2

Trð½/; ol/�½/; ol/�Þ þ � � � :

(c) Insert / ¼ /isi. Making use of

½/; ol/� ¼ 2ieijk/iol/jsk;

TrðsksnÞ ¼ 2dkn;

eijkelmk ¼ dildjm � dimdjl;

/2 ¼ /i/i;

we obtain

L
4/
2 ¼ �

1
6F2

eijk/iol/jelmk/lo
l/m þ

M2

24F2
/i/i/j/j

¼ 1
6F2
ð/io

l/iol/j/j � /i/iol/jo
l/jÞ þ

M2

24F2
/i/i/j/j;

where M2 ¼ 2Bm̂.
(d) The Feynman rule for Cartesian isospin indices a, b, c, and d is obtained from
‘‘iL’’. For example,

hpc; c; pd; dj/io
l/iol/j/jjpa; a; pb; bi

results in 24 combinations of combining 4 fields with 4 quanta, e.g.,
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The complete result reads

M ¼ i
1

6F2

�
2 dabdcdð�ipa � ipbÞ � ðipc þ ipdÞ½

�

þ dacdbdð�ipa þ ipcÞ � ð�ipb þ ipdÞ
þdaddbcð�ipa þ ipdÞ � ð�ipb þ ipcÞ�
� 4 dabdcd ð�ipaÞ � ð�ipbÞ þ ðipcÞ � ðipdÞ½ �f
þ dacdbd½ð�ipaÞ � ðipcÞ þ ð�ipbÞ � ðipdÞ�

þdaddbc½ð�ipaÞ � ðipdÞ þ ð�ipbÞ � ðipcÞ�g



þ M2

24F2
8ðdabdcd þ dacdbd þ daddbcÞ

�

¼ i

3F2
dabdcd½ðpa þ pbÞ2 þ 2pa � pb þ 2pc � pd þM2�
n

þ dacdbd½ðpa � pcÞ2 � 2pa � pc � 2pb � pd þM2�
þdaddbc½ðpa � pdÞ2 � 2pa � pd � 2pb � pc þM2�

o

¼ i

3F2
dabdcdð3s� p2

a � p2
b � p2

c � p2
d þM2Þ

�

þ dacdbdð3t � p2
a � p2

c � p2
b � p2

d þM2Þ
þdaddbcð3u� p2

a � p2
d � p2

b � p2
c þM2Þ

�

¼ i dabdcd
s�M2

F2
þ dacdbd

t �M2

F2
þ daddbc

u�M2

F2

� �

� i

3F2
dabdcd þ dacdbd þ daddbcð Þ Ka þ Kb þ Kc þ Kdð Þ;

where Kk ¼ p2
k �M2.

(e)

sþ t þ u ¼ ðpa þ pbÞ2 þ ðpa � pcÞ2 þ ðpa � pdÞ2

¼ p2
a þ 2pa � pb þ p2

b þ p2
a � 2pa � pc þ p2

c þ p2
a � 2pa � pd þ p2

d

¼ 3p2
a þ p2

b þ p2
c þ p2

d þ 2pa � ðpb �pc � pd|fflfflfflfflffl{zfflfflfflfflffl}
¼ �pa � pb

Þ

¼ 3p2
a þ p2

b þ p2
c þ p2

d � 2p2
a ¼ p2

a þ p2
b þ p2

c þ p2
d:

3.15 At threshold

sthr ¼ ð2MpÞ2;

pc, c; p ∂ ∂d , d|φi
μ φi μ φ j φ j|pa, a; pb, b

⇒ δicipμ
d δid(−ipaμ)δ jaδ jb = pa · pd δabδcd .
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and thus

Aðsthr; tthr; uthrÞ ¼
3M2

p

F2
p
:

• I ¼ 0:

32pa0
0 ¼ TI¼0jthr

¼ ½3Aðs; t; uÞ þ Aðt; u; sÞ þ Aðu; s; tÞ�thr

¼ ½2Aðs; t; uÞ þ Aðs; t; uÞ þ Aðt; u; sÞ þ Aðu; s; tÞ�thr

¼ 6M2
p

F2
p
þ ½sþ t þ u� 3M2

p�thr

F2
p

¼ 7M2
p

F2
p

:

• I ¼ 2:
32pa2

0 ¼ TI¼2jthr

¼ ½Aðt; u; sÞ þ Aðu; s; tÞ�thr

¼ ½Aðt; u; sÞ þ Aðu; s; tÞ þ Aðs; t; uÞ � Aðs; t; uÞ�thr

¼ M2
p

F2
p
� 3M2

p

F2
p

¼ �2M2
p

F2
p

:

3.16 Consider

UðxÞ ¼ 1
F

rðxÞ1þ ip~ðxÞ � s~½ �; rðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 � p~2ðxÞ

q
:

The substitution p~ 7! �p~ corresponds to U $ Uy. As in the solution to Exercise
3.14 (a), L2 is invariant.

In terms of the pion fields, the Lagrangian reads

L2 ¼
F2

4
Tr
ðolr1þ iolp~ � s~Þ

F

ðolr1� iolp~ � s~Þ
F

� �

þ F2Bm̂

2
Tr

r1þ ip~ � s~
F

þ r1� ip~ � s~
F

� �

¼ 1
2
ðolrolrþ olp~ � olp~Þ þ 2Bm̂Fr:
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Making use of

olr ¼ �
p~ � olp~

r
;

yields

L2 ¼
1
2
olp~ � olp~þ 1

2
p~ � olp~p~ � olp~

F2 � p~2 þ 2Bm̂F2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� p~2

F2

s

¼ 2Bm̂F2 þ 1
2
olp~ � olp~� Bm̂p~2 þ p~ � olp~p~ � olp~

2F2
� Bm̂ðp~2Þ2

4F2
þ � � � :

Note that the dependence of L2 on the fields pi differs from that on the /i in
Exercise 3.14. Nonetheless, both versions generate identical observables. The
Feynman rule obtained from

L4p
2 ¼

p~ � olp~p~ � olp~
2F2

�M2ðp~2Þ2

8F2

reads

M ¼ i
1

2F2
fipc � ½dcddabð�ipa � ipbÞ þ dcaddbðipd � ipbÞ þ dcbdadðipd � ipaÞ�

�

þ ipd � ½dcddabð�ipa � ipbÞ þ ddadbcð�ipb þ ipcÞ þ ddbdacð�ipa þ ipcÞ�
� ipa � ½dacdbdð�ipb þ ipdÞ þ daddbcð�ipb þ ipcÞ þ dabdcdðipc þ ipdÞ�
� ipb � ½dbcdadð�ipa þ ipdÞ þ dbddacð�ipa þ ipcÞ þ dbadcdðipc þ ipdÞ�g

�M2

8F2
8ðdabdcd þ dacdbd þ daddbcÞ

�

¼ i
1

2F2
fdabdcd½pc � ðpa þ pbÞ þ pd � ðpa þ pbÞ þ pa � ðpc þ pdÞ þ pb � ðpc þ pdÞ�

�

þ dacdbd ½pc � ðpb � pdÞ þ pd � ðpa � pcÞ þ pa � ðpd � pbÞ þ pb � ðpc � pdÞ�
þ daddbc½pc � ðpa � pdÞ þ pd � ðpb � pcÞ þ pa � ðpc � pbÞ þ pb � ðpd � paÞ�g

�M2

F2
ðdabdcd þ dacdbd þ daddbcÞ

�

¼ i dabdcd
s�M2

F2
þ dacdbd

t�M2

F2
þ daddbc

u�M2

F2

� �
:

In the last step we made use of momentum conservation, pa þ pb ¼ pc þ pd, and

introduced the Mandelstam variables s ¼ ðpa þ pbÞ2, t ¼ ðpa � pcÞ2, and u ¼
ðpa � pdÞ2. Comparison with the result of Exercise 3.14 shows that the invariant
amplitudes are identical for on-shell pions.
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3.17 The first part is given by

1

48F2
0

Trð½/; ol/�½/; ol/�Þ ¼ 1

48F2
0

/aol/b/co
l/dTrð ½ka; kb�|fflfflffl{zfflfflffl}

¼ 2ifabeke

½kc; kd �|fflfflffl{zfflfflffl}
¼ 2ifcdf kf

Þ

¼ � 1

12F2
0

/aol/b/co
l/d fabefcdf Trðkekf Þ|fflfflfflffl{zfflfflfflffl}

¼ 2def

¼ � 1

6F2
0

/aol/b/co
l/d fabefcde:

For the second part we assume isospin symmetry. The mass matrix is given by

M ¼ 2m̂þ ms

3
1þ m̂� msffiffiffi

3
p k8:

We first consider

Trð/4Þ ¼ /a/b/c/dTrðkakbkckdÞ ¼ /a/b/c/d
4
3
dabdcd þ 2habehecd

� �
:

Since /a/b/c/d is completely symmetric, only the symmetric parts d of h
contribute,

� � � ¼ /a/b/c/d
4
3
dabdcd þ 2dabedecd

� �

¼ /a/b/c/d
4
3
dabdcd þ

2
3
ðdacdbd þ daddbc � dabdcd þ facefbde þ fadefbceÞ

� �
:

Again, the f terms do not contribute due to the complete symmetry of /a/b/c/d,

� � � ¼ 2
3
/a/b/c/dðdabdcd þ dacdbd þ daddbcÞ ¼ 2/a/a/b/b:

The second term reads

Trð/4k8Þ ¼ /a/b/c/dTrðkakbkckdk8Þ

¼ /a/b/c/d
4
3

habcdd8 þ
4
3
dabhcd8 þ 2habehecf hfd8

� �
:
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The complete symmetry of /a/b/c/d results in

� � � ¼ 4
3

dabc/a/b/c/8 þ
4
3

dcd8/a/a/c/d

þ 2/a/b/c/ddabeðdecf þ ifecf Þðdfd8 þ iffd8Þ:

Upon contraction with /a/b/c/d we can replace:

dabedecf dfd8 ¼
1
3
ðdacdbf þ daf dbc � dabdcf þ facefbfe þ fafefbceÞdfd8

! 1
3

dacdbd8 þ
1
3
dbcdad8 �

1
3
dabdcd8;

dabedecf ffd8 ¼
1
3
ðdacdbf þ daf dbc � dabdcf þ facefbfe þ fafefbceÞffd8

! 1
3

dacfbd8 þ
1
3
dbcfad8 �

1
3
dabfcd8 ! 0;

dabefecf dfd8 ¼ �dabefefcdfd8 ¼ ðdbfefeac þ dfaefebcÞdfd8 ! 0;

dabefecf ffd8 ¼ �dabefefcffd8 ¼ ðdbfefeac þ dfaefebcÞffd8 ! 0;

and obtain

� � � ¼ 4
3

dabc/a/b/c/8 þ
4
3

dcd8/a/a/c/d

þ 2/a/b/c/d
1
3

dacdbd8 þ
1
3
dbcdad8 �

1
3
dabdcd8

� �

¼ 4
3

/8/a/b/cdabc þ 2/a/a/b/cdbc8:

We finally obtain

B0

24F2
0

TrðM/4Þ ¼ ð2m̂þ msÞB0

36F2
0

/a/a/b/b

þ ðm̂� msÞB0

12
ffiffiffi
3
p

F2
0

2
3
/8/a/b/cdabc þ /a/a/b/cdbc8

� �
:

3.18 (a)

DlU ¼ olU � irlU þ iUll
! olU � ið�eAlQÞU þ iUð�eAlQÞ ¼ olU þ ieAl½Q;U�;

ðDlUÞy ! ðolU þ ieAl½Q;U�Þy

¼ olUy � ieAlyð½Q;U�Þy

¼ olUy � ieAl �½Qy;Uy�
	 


¼ olUy þ ieAl½Q;Uy�:
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Under U $ Uy

DlU¼ olUþ ieAl½Q;U� 7!
U 7!Uy

olUy þ ieAl½Q;Uy� ¼ ðDlUÞy;

ðDlUÞy 7!Uy 7!U
DlU:

) F2
0

4
Tr½DlUðDlUÞy� 7!U$UyF2

0

4
Tr½ðDlUÞyDlU�¼F2

0

4
Tr½DlUðDlUÞy�:

ðbÞ F2
0

4
Tr½DlUðDlUÞy�

¼F2
0

4
Tr ðolUþieAl½Q;U�ÞðolUyþieAl½Q;Uy�Þ
� �

¼F2
0

4
TrðolUolUyÞþF2

0

4
TrðolUieAl½Q;Uy�þieAl½Q;U�olUyÞ

�F2
0

4
e2AlA

lTrð½Q;U�½Q;Uy�Þ

¼ ���þieAl
F2

0

4
TrðolUQUy�olUUyQþQUolUy�UQolUyÞþ���

¼ ����ieAl
F2

0

4
Trð�QUyolUþQolUUy�Q UolUy|fflfflffl{zfflfflffl}

¼�olUUy
þQ olUyU|fflfflffl{zfflfflffl}
¼�UyolU

Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼2TrðQ½olU;Uy�Þ

þ���

¼F2
0

4
Tr½olUolUy��ieAl

F2
0

2
TrðQ½olU;Uy�Þ�e2AlA

lF2
0

4
Trð½Q;U�½Q;Uy�Þ:

(c)
½olU;Uy� ¼ i

ol/
F0
þ � � �; 1� i

/
F0
þ � � �

� �
¼ 1

F2
0

½ol/;/� þ � � �;

½Q;U�½Q;Uy� ¼ Q; 1þ i
/
F0
þ � � �

� �
Q; 1� i

/
F0
þ � � �

� �
¼ 1

F2
0

½Q;/�½Q;/� þ � � � :

) LA�2/
2 ¼ �eAl

i
2TrðQ½ol/;/�Þ;

L
2A�2/
2 ¼ �1

4e
2AlA

lTrð½Q;/�½Q;/�Þ:

(d)

½ol/;/�

¼ ol

p0 þ 1ffiffi
3
p g

ffiffiffi
2
p

pþ
ffiffiffi
2
p

Kþ
ffiffiffi
2
p

p� �p0 þ 1ffiffi
3
p g

ffiffiffi
2
p

K0

ffiffiffi
2
p

K�
ffiffiffi
2
p

�K0 � 2ffiffi
3
p g

0
BB@

1
CCA

p0 þ 1ffiffi
3
p g

ffiffiffi
2
p

pþ
ffiffiffi
2
p

Kþ
ffiffiffi
2
p

p� �p0 þ 1ffiffi
3
p g

ffiffiffi
2
p

K0

ffiffiffi
2
p

K�
ffiffiffi
2
p

�K0 � 2ffiffi
3
p g

0
BB@

1
CCA
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�ð Þolð Þ ¼
ðolp0 þ 1ffiffi

3
p olgÞðp0 þ 1ffiffi

3
p gÞ þ 2olpþp� þ 2olKþK�

. . .

. . .

0
@

. . .

2olp�pþ þ ð�olp0 þ 1ffiffi
3
p olgÞð�p0 þ 1ffiffi

3
p gÞ þ 2olK0 �K0

. . .

. . .

. . .

2olK�Kþ þ 2ol �K0K0 þ 4
3o

lgg

�
 ðp0 þ 1ffiffi

3
p gÞðolp0 þ 1ffiffi

3
p olgÞ þ 2pþolp� þ 2KþolK�

. . .

. . .

. . .
2p�olpþ þ ð�p0 þ 1ffiffi

3
p gÞð�olp0 þ 1ffiffi

3
p olgÞ þ 2K0ol �K0

. . .

. . .

. . .
2K�olKþ þ 2�K0olK0 þ 4

3golg

!

¼ 2

olpþp� � pþolp� þ olKþK� � KþolK� . . . . . .

. . . olp�pþ � p�olpþ þ olK0 �K0 � K0ol �K0 . . .

. . . . . . olK�Kþ � K�olKþ þ ol �K0K0 � �K0olK0

0
BB@

1
CCA:

) L
A�2/
2 ¼ �ieAl

2
3
ðolpþp� � pþolp� þ olKþK� � KþolK�Þ

�

� 1
3
ðolp�pþ � p�olpþ þ olK0 �K0 � K0ol �K0Þ

�1
3
ðolK�Kþ � K�olKþ þ ol �K0K0 � �K0olK0Þ

�

¼ �ieAlðolpþp� � pþolp� þ olKþK� � KþolK�Þ:

!
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½Q;/� ¼
2
3 0 0
0 �1

3 0
0 0 �1

3

0

@

1

A
p0 þ 1ffiffi

3
p g

ffiffiffi
2
p

pþ
ffiffiffi
2
p

Kþ
ffiffiffi
2
p

p� �p0 þ 1ffiffi
3
p g

ffiffiffi
2
p

K0

ffiffiffi
2
p

K�
ffiffiffi
2
p

�K0 � 2ffiffi
3
p g

0
BB@

1
CCA

�
p0 þ 1ffiffi

3
p g

ffiffiffi
2
p

pþ
ffiffiffi
2
p

Kþ
ffiffiffi
2
p

p� �p0 þ 1ffiffi
3
p g

ffiffiffi
2
p

K0

ffiffiffi
2
p

K�
ffiffiffi
2
p

�K0 � 2ffiffi
3
p g

0
BB@

1
CCA

2
3 0 0
0 �1

3 0
0 0 �1

3

0

@

1

A

¼
0

ffiffiffi
2
p

pþ
ffiffiffi
2
p

Kþ

�
ffiffiffi
2
p

p� 0 0
�

ffiffiffi
2
p

K� 0 0

0
@

1
A;

½Q;/�½Q;/� ¼
0

ffiffiffi
2
p

pþ
ffiffiffi
2
p

Kþ

�
ffiffiffi
2
p

p� 0 0

�
ffiffiffi
2
p

K� 0 0

0

B@

1

CA
0

ffiffiffi
2
p

pþ
ffiffiffi
2
p

Kþ

�
ffiffiffi
2
p

p� 0 0

�
ffiffiffi
2
p

K� 0 0

0

B@

1

CA

¼
�2pþp� � 2KþK� 0 0

0 �2p�pþ �2p�Kþ

0 �2K�pþ �2K�Kþ

0

B@

1

CA

¼� 2

pþp� þ KþK� 0 0

0 p�pþ p�Kþ

0 K�pþ K�Kþ

0

B@

1

CA:

) L2A�2/
2 ¼� 1

4
e2AlA

lð�4pþp� � 4KþK�Þ

¼ e2AlA
lðpþp� þ KþK�Þ:

(e)

M¼ ½
iee0� � ðpþ qþ p0Þ� i

ðpþ qÞ2�M2
½
iee � ðpþ pþ q|ffl{zffl}

¼ p0 þ q0

Þ�

þ ½
iee � ðp� q0 þ p0Þ� i

ðp� q0Þ2�M2
½
iee0� � ðpþ p� q0|fflffl{zfflffl}

¼ p0 � q

Þ�þ 2ie2e0� � e

¼ ie2

"
2e0� � e� e0� � ðpþ qþ p0Þe � ðpþ p0 þ q0Þ

ðpþ qÞ2|fflfflfflffl{zfflfflfflffl}
¼ s

�M2
� e � ðp� q0 þ p0Þe0� � ðpþ p0 � qÞ

ðp� q0Þ2|fflfflfflfflffl{zfflfflfflfflffl}
¼ u

�M2

#
:
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The amplitude is the same for pþ and p�.
(f) Gauge invariance

M
e!q
! ie2

"
2e0� � q� e0� � ðpþ qþ p0Þq � ðpþ p0 þ q0

zfflfflffl}|fflfflffl{
¼ pþ q

Þ
2p � qþ q2

� q � ð p� q0
zfflffl}|fflffl{
¼ p0 � q

þp0Þe0� � ðpþ p0 � qÞ
�2p0 � qþ q2

#

¼ ie2½2e0� � q� e0� � ðpþ qþ p0 � p� p0 þ qÞ� ¼ 0:

(g) Crossing symmetry

M ¼ ie2

"
2e0� � e� e0� � ðpþ qþ p0Þe � ðpþ p0 þ q0Þ

ðpþ qÞ2|fflfflfflffl{zfflfflfflffl}
¼ s

�M2

� e � ðp� q0 þ p0Þe0� � ðpþ p0 � qÞ
ðp� q0Þ2|fflfflfflfflffl{zfflfflfflfflffl}
¼ u

�M2

#

7! ie2

"
2e � e0� � e � ðp� q0 þ p0Þe0� � ðpþ p0 � qÞ

ðp� q0Þ2|fflfflfflfflffl{zfflfflfflfflffl}
¼ u

�M2

� e0� � ðpþ qþ p0Þe � ðpþ p0 þ q0Þ
ðpþ qÞ2|fflfflfflffl{zfflfflfflffl}
¼ s

�M2

#

¼M:

3.19 (a) Using
I

C
dz f ðzÞ ¼

Z

c1

dz f ðzÞ þ lim
R!1

Z

c2

dz f ðzÞ ¼
Z 1

�1
dt f ðtÞ þ lim

R!1

Z p

0
iReitdt f ðReitÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ 0

¼ 2piRes½f ðzÞ;�ða� i0þÞ�;

we obtain

Z 1

�1
dk0 f ðk0Þ ¼ 2piRes½f ðzÞ;�ða� i0þÞ�:
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Determination of the residue:

Res½f ðzÞ;�ða� i0þÞ� ¼ lim
z!�ða�i0þÞ

½zþ ða� i0þÞ� 1
½zþ ða� i0þÞ�½z� ða� i0þÞ�

¼ �1
2

1
a� i0þ

:

We thus obtain

Z 1

�1
dk0 f ðk0Þ ¼

�ipffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k~

2 þM2

q
� i0þ

:

(b)

Z
d4k

ð2pÞ4
i

k2 �M2 þ i0þ
¼
Z

d3k

ð2pÞ3
Z 1

�1
dk0

1
2p

i

k2
0 � k~

2 þM2 � i0þ

¼ 1
2

Z
d3k

ð2pÞ3
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k~
2 þM2

q
� i0þ

:

(c)

Z
dn�1k

ð2pÞn�1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k~

2 þM2

q ¼ 2
p

n�1
2

C n�1
2

	 
 1

ð2pÞn�1

Z 1

0
dr

rn�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þM2
p

¼ 1
2n�2

p�
n�1

2
1

C n�1
2

	 

Z 1

0
dr

rn�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þM2
p :

(d)
Z 1

0
dr

rn�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þM2
p ¼ 1

M

Z 1

0
dr

rn�2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

M2 þ 1
q :

Substitution t ¼ r=M: r ¼ Mt; dr ¼ Mdt,

� � � ¼ Mn�2
Z 1

0
dt

tn�2

ffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 1
p :

Substitution t2 ¼ y: dy ¼ 2tdt; dt ¼ dy=ð2 ffiffiffi
y
p Þ,
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� � � ¼ Mn�2
Z 1

0

dy

2
ffiffiffi
y
p

y
n�2

2

ffiffiffiffiffiffiffiffiffiffiffi
yþ 1
p

¼ 1
2

Mn�2
Z 1

0
dt

t
n�3

2

ðt þ 1Þ
1
2

:

From x� 1 ¼ n�3
2 we obtain x ¼ n�1

2 , from xþ y ¼ 1
2 ¼ n�1

2 þ y we obtain
y ¼ 1� n

2, thus

� � � ¼ 1
2

Mn�2B
n� 1

2
; 1� n

2

� �

¼ 1
2

Mn�2C
n�1

2

	 

C 1� n

2

	 


C 1
2

	 

|ffl{zffl}
¼

ffiffiffi
p
p

:

(e)
Z

dnk

ð2pÞn
i

k2 �M2 þ i0þ
¼ �ip

1
2p

i
1

2n�2

1

p
n�1

2

1

C n�1
2

	 
 1
2

Mn�2C
n�1

2

	 

C 1� n

2

	 

ffiffiffi
p
p

¼ 1

ð4pÞ
n
2
Mn�2C 1� n

2

� 

:

3.20 Let c and s denote cosðh1Þ and sinðh1Þ, respectively, sc denote
sinðh1Þ cosðh2Þ etc., and ssc denote sinðh1Þ sinðh2Þ cosðh3Þ etc.:

J ¼

ol1
ol � � �

ol1
oh3

..

. ..
.

ol4
ol � � �

ol4
oh3

0

BB@

1

CCA ¼

c �ls 0 0
sc lcc �lss 0
ssc lcsc lscc �lsss
sss lcss lscs lssc

0

BB@

1

CCA:

detðJÞ

¼ lsss det

c �ls 0

sc lcc �lss

sss lcss lscs

0
B@

1
CAþ lssc det

c �ls 0

sc lcc �lss

ssc lcsc lscc

0
B@

1
CA

¼ l sinðh1Þ sinðh2Þ sinðh3Þfl sinðh1Þ sinðh2Þ

� ½l cos2ðh1Þ sinðh2Þ sinðh3Þ þ l sin2ðh1Þ sinðh2Þ sinðh3Þ�

þ l sinðh1Þ cosðh2Þ sinðh3Þ½l cos2ðh1Þ cosðh2Þ þ l sin2ðh1Þ cosðh2Þ�g
þ l sinðh1Þ sinðh2Þ cosðh3Þfl sinðh1Þ sinðh2Þ

� ½l cos2ðh1Þ sinðh2Þ cosðh3Þ þ l sin2ðh1Þ sinðh2Þ cosðh3Þ�

þ l sinðh1Þ cosðh2Þ cosðh3Þ½l cos2ðh1Þ cosðh2Þ þ l sin2ðh1Þ cosðh2Þ�g
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¼ l3 sinðh1Þ sinðh2Þ sinðh3Þ½sinðh1Þ sin2ðh2Þ sinðh3Þ þ sinðh1Þ cos2ðh2Þ sinðh3Þ�
þ l3 sinðh1Þ sinðh2Þ cosðh3Þ½sinðh1Þ sin2ðh2Þ cosðh3Þ þ sinðh1Þ cos2ðh2Þ cosðh3Þ�
¼ l3 sin2ðh1Þ sinðh2Þ sin2ðh3Þ þ l3 sin2ðh1Þ sinðh2Þ cos2ðh3Þ
¼ l3 sin2ðh1Þ sinðh2Þ:

Thus

dl1dl2dl3dl4 ¼ l3dl sin2ðh1Þ sinðh2Þdh1dh2dh3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
dX

:

Z
dX ¼

Z p

0
dh1 sin2ðh1Þ

Z 2p

0
dh2 sinðh2Þ

Z 2p

0
dh3

¼ 2p
Z p

0
dh1 sin2ðh1Þ

Z 1

�1
d cosðh3Þ

¼ 4p
Z p

0
dh1 sin2ðh1Þ ¼ 4p

1
2
h1 �

1
4

sinð2h1Þ
� �p

0

¼ 2p2:

3.21 m ¼ 1:

Z p

0
dh sinðhÞ ¼ � cosðhÞ

���
p

0
¼ 2;

ffiffiffi
p
p

Cð1Þ
C 3

2

	 
 ¼ 2;

because Cð1Þ ¼ 1 and Cð3=2Þ ¼ Cð1=2þ 1Þ ¼ 1
2Cð1=2Þ ¼

ffiffiffi
p
p

=2.
Step m! mþ 1:

Z p

0
dh sinmþ1ðhÞ ¼

Z p

0
dh sinðhÞ sinmðhÞ

¼
h
� cosðhÞ sinmðhÞ

ip
0
�
Z p

0
dh½� cosðhÞ�m sinm�1ðhÞ cosðhÞ

¼ m

Z p

0
dh cos2ðhÞ|fflfflffl{zfflfflffl}
¼ 1� sin2ðhÞ

sinm�1ðhÞ:

) ðmþ 1Þ
Z p

0
dh sinmþ1ðhÞ ¼ m

Z p

0
dh sinm�1ðhÞ:
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)
Z p

0
dh sinmþ1ðhÞ ¼ m

mþ 1

Z p

0
dh sinm�1ðhÞdh

¼ m

mþ 1

ffiffiffi
p
p

C m
2

	 


C mþ1
2

	 


¼
ffiffiffi
p
p m

2C
m
2

	 


mþ1
2 C mþ1

2

	 


¼
ffiffiffi
p
p C mþ2

2

	 


C mþ3
2

	 
;

where, in the last step, we made use of xCðxÞ ¼ Cðxþ 1Þ.
3.22 (a)

Z 1

�1
dt f ðtÞ ¼ i

Z 1

�1
dt f ðitÞ:

Thus

ðk2Þp ¼ ðk2
0 � k~

2Þp ! ½ðil1Þ2 � ðl22 þ � � � þ l2
nÞ�

p ¼ ð�1Þpl2;

1
ðk2 �M2 þ i0þÞq !

1
ð�1Þqðl2 þM2Þq ¼

ð�1Þ�q

ðl2 þM2Þq;
Z

dnk

ð2pÞn
ðk2Þp

ðk2 �M2 þ i0þÞq ¼ ið�Þp�q
Z

dnl

ð2pÞn
ðl2Þp

ðl2 þM2Þq:

(b) Perform the angular integration,

� � � ¼ ið�Þp�q 2p
n
2

C n
2

	 
 1
ð2pÞn

Z 1

0
dl

l2pþn�1

ðl2 þM2Þq

¼ ið�Þp�q 2

ð4pÞ
n
2C n

2

	 

Z 1

0
dl

l2pþn�1

ðl2 þM2Þq:

Perform the radial integration,

Z 1

0
dl

ln�1

ðl2 þM2Þa ¼
1
2
ðM2Þ

n
2�aC

n
2

	 

C a� n

2

	 


CðaÞ ;

with n! 2pþ n and a! q,

. . . ¼ ið�Þp�q 1

ð4pÞ
n
2
ðM2Þpþ

n
2�qC pþ n

2

	 

C q� p� n

2

	 


C n
2

	 

CðqÞ

:
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20 3.23 (a)

f ðzÞ ¼ az

¼ exp½lnðaÞz�
¼ expflnðaÞ½ReðzÞ þ iImðzÞ�g
¼ exp½lnðaÞReðzÞ� exp½i lnðaÞImðzÞ�
¼ exp½lnðaÞx�fcos½lnðaÞy� þ i sin½lnðaÞy�g
� uðx; yÞ þ ivðx; yÞ;

i.e.
uðx; yÞ ¼ exp½lnðaÞx� cos½lnðaÞy�;
vðx; yÞ ¼ exp½lnðaÞx� sin½lnðaÞy�:

(b)
ou=ox ¼ lnðaÞ exp½lnðaÞx� cos½lnðaÞy�;
ov=oy ¼ exp½lnðaÞx� lnðaÞ cos½lnðaÞy� ¼ ou=ox;

ou=oy ¼ exp½lnðaÞx� lnðaÞð�Þ sin½lnðaÞy�;
ov=ox ¼ lnðaÞ exp½lnðaÞx� sin½lnðaÞy� ¼ �ou=oy:

3.24 (a)

Lr
i ðlÞ ¼ Lr

i ðl0Þ þ
Ci

16p2
ln

l0

l

� �
) dLr

i ðlÞ
dl

¼ � Ci

16p2l
:

(b) Making use of

d

dl
ln

M2

l2

� �
¼ 2

d

dl
lnðMÞ � lnðlÞ½ � ¼ �2

l
;

we obtain:

dM2
p;4

dl
¼

M2
p;2

16p2lF2
0

(
M2

p;2

2
ð�2Þ �

M2
g;2

6
ð�2Þ

þ 16½ð2m̂þ msÞB0ð�2C6 þ C4Þ þ m̂B0ð�2C8 þ C5Þ�
)

¼
M2

p;2

16p2lF2
0

(
� 2B0m̂þ 2

9
ðm̂þ 2msÞB0
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þ 16

"
ð2m̂þ msÞB0 �2

11
144
þ 1

8

� �

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

¼ � 1
36

þm̂B0 �2
5

48
þ 3

8

� �

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

¼ 1
6

#)

¼
M2

p;2

16p2lF2
0

(
B0m̂ �2þ 2

9
� 8

9
þ 8

3

� �
þ B0ms

4
9
� 4

9

� �)
¼ 0:

3.25 Expanding U up to and including terms of second order in the fields yields
the same functional form for both parameterizations (this is not true for higher
orders). Therefore, terms of second order in the fields in the Lagrangian will be the
same for both parameterizations (we have seen in Exercise 3.16 that this is in
general not true for higher powers of the fields).

Let us begin with LGL
4 . Since DlU ¼ olU ¼ Oð/Þ and Dlv ¼ olv ¼ 0, the

terms potentially generating two powers of fields are l3 and l7. Consider

vUy � Uvy ¼ 2m̂BðUy � UÞ:

Uy þ U ¼ 2� /~
2

F2
þ O j/~j4

� 
" #
1;

Uy � U ¼ �2i
/~ � s~

F
1þ O j/~j2

� 
h i
:

Since TrðsiÞ ¼ 0, the l7 term does not contribute.

Tr vUy þ Uvy
	 
� �2 ¼ 2M2 2� /~

2

F2
þ O j/~j4

� 
" #( )2

¼ 16M4 1� /~
2

F2
þ O j/~j4

� 
" #
:

With respect to the constant term and the term quadratic in the fields, the l4 term
yields the same functional form for both parameterizations of U,

LGL;2/
4 ¼ �l3M4/~

2

F2
;

and an analogous expression in terms of the pi fields.

296 Solutions to Exercises



Let us now turn to LGSS
4 . In addition we need to investigate

TrðolUolUyÞTrðUy þ UÞ ¼ 8
ol/~ � ol/~

F2
þ � � � :

We obtain

LGSS;2/
4 ¼ �ðl3 þ l4ÞM4/~

2

F2
þ l4M2ol/~ � ol/~

F2
;

and an analogous expression in terms of the pi fields.

3.26 (a) The self-energy diagrams are shown in Fig. 3.14. The tree contribution to

�iRba is obtained from hp; bjiL2/
4 jp; ai:

GL:� iRtree
4;baðp2Þ ¼ 2i �l3M4dab

F2

� �
) Rtree

4;baðp2Þ ¼ 2l3M4dab

F2
;

GSS:� iRtree
4;baðp2Þ ¼ 2i �ðl3 þ l4ÞM4dab

F2

� �
þ 2i M2l4

p2dab

F2

� �

) Rtree
4;baðp2Þ ¼ 2ðl3 þ l4ÞM4dab

F2
� 2l4p2M2dab

F2
:

The loop contribution for the exponential parameterization is obtained from the
Feynman rule of Eq. 3.90 with the replacements ðpa; aÞ ! ðp; aÞ; ðpb; bÞ !
ðk; cÞ; ðpc; cÞ ! ðp; bÞ; and ðpd; dÞ ! ðk; cÞ (a summation over c is implied):

1
2

Z
d4k

ð2pÞ4
i

"
dacdbc|fflffl{zfflffl}
¼ dab

ðpþ kÞ2 �M2

F2
þ dabdcc|fflffl{zfflffl}
¼ 3dab

�M2

F2
þ dacdcb|fflffl{zfflffl}
¼ dab

ðp� kÞ2 �M2

F2

� 1
3F2
ðdacdbc þ dabdcc þ dacdcbÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼ 5dab

ð2p2 þ 2k2 � 4M2Þ
#

i

k2 �M2 þ i0þ

¼ 1
2
dab

Z
d4k

ð2pÞ4
i

3F2
½�4p2 � 4k2 þ 5M2� i

k2 �M2 þ i0þ

! idab

6F2
ð�4p2 þM2ÞIðM2; l2; nÞ;

as in Eq. 3.134. In other words

Rloop
4;baðp2Þ ¼ dab �

M2

6F2
IðM2; l2; nÞ þ 2

3
p2

F2
IðM2; l2; nÞ

� �
:
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An analogous calculation with the Feynman rule of Exercise 3.16 for the square-
root parameterization yields

1
2

Z
d4k

ð2pÞ4
i

"
dacdbc|fflffl{zfflffl}
¼ dab

ðpþ kÞ2 �M2

F2
þ dabdcc|fflffl{zfflffl}
¼ 3dab

�M2

F2
þ dacdcb|fflffl{zfflffl}
¼ dab

ðp� kÞ2 �M2

F2

#

� i

k2 �M2 þ i0þ

¼ 1
2
dab

Z
d4k

ð2pÞ4
i

F2
½2p2 þ 2k2 � 5M2� i

k2 �M2 þ i0þ

! idab

2F2
ð2p2 � 3M2ÞIðM2; l2; nÞ:

In this representation

Rloop
4;baðp2Þ ¼ dab

3M2

2F2
IðM2; l2; nÞ � p2

F2
IðM2; l2; nÞ

� �
:

(b) For determination of M2
p;4 use

l3M2 ¼ lr
3 þ c3

R

32p2

� �
M2 ¼ c3

32p2
�l3 þ ln

M2

l2

� �� �
þ c3

R

32p2

� �
M2:

Insert c3 ¼ �1
2 and reexpress in terms of integral I � IðM2; l2; nÞ,

� � � ¼ �
�l3M2

64p2
� 1

4
I:

Make use of

M2
p;4 ¼ M2ð1þ BÞ þ A

for
a. GL, exponential:

� � � ¼ M2 1þ 2
3

I

F2

� �
� 1

6
M2

F2
I þ 2l3

M4

F2

¼ M2 �
�l3

32p2F2
M4 þ 2

3
� 1

6
� 1

2

� �

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
¼ 0

M2

F2
I;
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b. GL, square-root:

� � � ¼ M2 1� I

F2

� �
þ 3

2
M2

F2
I þ 2l3

M4

F2

¼ M2 �
�l3

32p2F2
M4 þ �1þ 3

2
� 1

2

� �

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
¼ 0

M2

F2
I;

c. GSS, exponential:

� � � ¼ M2 1þ 2
3

I

F2
� 2l4

M2

F2

� �
� 1

6
M2

F2
I þ 2ðl3 þ l4Þ

M4

F2

¼ M2 �
�l3

32p2F2
M4;

d. GSS, square-root:

� � � ¼ M2 1� I

F2
� 2l4

M2

F2

� �
þ 3

2
M2

F2
I þ 2ðl3 þ l4Þ

M4

F2

¼ M2 �
�l3

32p2F2
M4:

The result for the pion mass is indeed independent of the Lagrangian and
parameterization used.

3.27 (a)

U0LiðyÞ ¼ U0yðyÞoU0ðyÞ
oyi

¼ UyðyÞ½1� iaDðxÞ� o
oyi
f½1þ iaDðxÞ�UðyÞg

¼ ULiðyÞ þ UyðyÞ½�iaDðxÞ�oUðyÞ
oyi

þ UyðyÞ o

oyi
½iaDðxÞ�

� �
UðyÞ

þ UyðyÞiaDðxÞoUðyÞ
oyi

þ OðD2Þ

¼ ULiðyÞ þ UyðyÞ o

oyi
½iaDðxÞ�

� �
UðyÞ þ OðD2Þ:

)
dS0

ano ¼ S0
ano½U0� � S0

ano½U�

¼ � in

240p2

Z 1

0
da
Z

d4xeijklmTr Uy
oðiaDÞ

oyi
UULjULkULlULm

�

þ ULiU
yoðiaDÞ

oyj
UULkULlULm þULiULjU

yoðiaDÞ
oyk

UULlULm

þULiULjULkUy
oðiaDÞ

oyl
UULm þULiULjULkULlU

yoðiaDÞ
oym

U

�
:
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Both eijklm and the trace are even under cyclic permutations of the indices
{i; j; k; l;m}. Thus

dS0
ano ¼

n

48p2

Z 1

0
da
Z

d4xeijklmTr Uy
oðaDÞ
oyi

UULjULkULlULm

� �
:

(b) Make use of integration by parts:

dS0
ano ¼

n

48p2

Z 1

0
da
Z

d4xeijklm o

oyi
Tr UyðaDÞUULjULkULlULm

� �

� n

48p2

Z 1

0
da
Z

d4xeijklmTr
oUy

oyi
ðaDÞUULjULkULlULm

� �

� n

48p2

Z 1

0
da
Z

d4xeijklmTr UyðaDÞoU

oyi
ULjULkULlULm

� �

� n

48p2

Z 1

0
da
Z

d4xeijklmTr UyðaDÞU oðULjULkULlULmÞ
oyi

� �
: (B.3)

Consider the individual contributions to the first term of Eq. B.3:
(i) i ¼ 4:

n

48p2

Z 1

0
da
Z

d4xe4jklm o

oa
Tr UyðaDÞUULjULkULlULm

� �

¼ n

48p2

Z
d4x e4jklm

|ffl{zffl}
¼ ejklm4

Tr UyDUULjULkULlULm

� �

¼ n

48p2

Z
d4xelmqrTr DUULlULmULqULrUy

� �

¼ n

48p2

Z
d4xelmqrTr

�
D UUy|ffl{zffl}
¼ 1

olUUyomUUyoqUUyorUUy|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ UolUyUomU

yUoqUyUorUy

�

¼ n

48p2

Z
d4xelmqrTrðDURlURmURqURrÞ: (B.4)

(ii) i ¼ 0:

n

48p2

Z 1

0
da
Z

d4xe0jklm o

oy0
Tr UyðaDÞUULjULkULlULm

� �
¼ 0;

because of the boundary conditions Dðx~; t1Þ ¼ Dðx~; t2Þ ¼ 0.
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(iii) i ¼ 1; 2; 3:

n

48p2

Z 1

0
da
Z

d4x
X3

i¼1

eijklm o

oyi
Tr UyðaDÞUULjULkULlULm

� �
¼ 0;

because of the divergence theorem.
Consider the integrands of the second and third term of Eq. B.3:

aeijklmTr D UULjULkULlULm
oUy

oyi
þ oU

oyi
ULjULkULlULmUy

� �� �

¼ aeijklmTr
�
D
	

UUy|ffl{zffl}
¼ 1

ojUUyokUUyolUUyomUoiU
y

þ oiUUyojUUyokUUy olUUyomUUy|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
¼ �olUomUy


�

¼ 0;

using an even permutation of the indices from (j; k; l;m; i) to (i; j; k; l;m) in the first
term.

Finally, the last term of Eq. B.3 vanishes due to permutation symmetry of the
trace term. Consider, e.g.,

oiULj ¼ oiU
yojU þ UyoiojU:

Using UUy ¼ 1, the first term can be rewritten as �ULiULj. The second term does
not contribute, because the two derivatives are contracted with the epsilon tensor.
We obtain

eijklmTr UyðaDÞUoðULjULkULlULmÞ
oyi

� �

¼ �aeijklmTr UyDUðULiULjULkULlULm þULjULiULkULlULm

�

þULjULkULiULlULm þULjULkULlULiULmÞ
�

¼ 0;

because the first two terms as well as the final two terms cancel each other. The
final result for dS0

ano is therefore given by Eq. B.4.

3.28

U ¼ 1þ i
/
F0
þ � � � ; / ¼

p0 0 0
0 �p0 0
0 0 0

0
@

1
A:
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Evaluate the trace:

Tr 2Q2 UolUy � UyolU
	 


� QUyQolU þ QUQolUy
� �

¼ Tr 2Q2 �i
ol/
F0
� i

ol/
F0

� �
� Q2 i

ol/
F0

� �
þ Q2 �ol/

F0

� �� �
þ � � �

¼ �6i

F0
Tr Q2ol/
	 


þ � � �

¼ �6i

F0

1
2Nc
þ 1

2

� �2

olp
0 þ 1

2Nc
� 1

2

� �2

�olp
0

	 

" #

þ � � �

¼ �6iolp0

NcF0
þ � � �:

Insert into Lagrangian, make use of integration by parts, introduce electromagnetic
field-strength tensor, and rename indices:

Lp0cc ¼ i
ne2

48p2
elmqromAqAr �

6iolp0

NcF0

� �

¼ n

Nc

e2

8p2
elmqromAqAr

olp0

F0

¼ total derivative� n

Nc

e2

8p2
elmqromAqolAr

p0

F0

¼ � n

Nc

e2

32p2
elmqrFmqFlr

p0

F0

¼ � n

Nc

e2

32p2
elmqrFlmFqr

p0

F0
:

We dropped a total derivative and made use of elmqrolomAq ¼ 0.

3.29 Let us define

Mlm ¼ �i
a

pF0

n

Nc
elmqrq1qq2r; a ¼ e2

4p
;

where q1 and q2 are the four-momenta of the two photons.

X2

k1;k2¼1

jMj2 ¼ MlmM
lm� ¼ a2

p2F2
0

n2

N2
c

elmabqa
1qb

2e
lmqrq1qq2r

¼ a2

p2F2
0

n2

N2
c

2 ðq1 � q2Þ2 � q2
1q2

2

h i
¼ 2a2

p2F2
0

n2

N2
c

q1 � q2ð Þ2;

because q2
1 ¼ q2

2 ¼ 0. The decay rate is given by

C ¼ 1
2Mp0

2a2

p2F2
0

n2

N2
c

Z
d3q1

2x1ð2pÞ3
d3q2

2x2ð2pÞ3
ð2pÞ4d4ðp� q1 � q2Þ

1
2

q1 � q2ð Þ2:
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The factor 1=2 takes account of two (identical) photons in the final state.

� � � ¼ a2

8p4F2
0Mp0

n2

N2
c

Z
d3q1

2x1
d4q2dðq2

2ÞHðx2Þd4ðp� q1 � q2Þ q1 � q2ð Þ2

¼ a2

8p4F2
0Mp0

n2

N2
c

Z
d3q1

2x1
d ðp� q1Þ2
h i

H Mp0 � x1ð Þ q1 � ðp� q1Þ½ �2

¼ a2

8p4F2
0Mp0

n2

N2
c

1
2

Z
dX1

Z 1

0
dx1x1

1
2Mp0

d x1 �
Mp0

2

� �
x2

1M2
p0H Mp0 � x1ð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ p

8
M4

p0

¼
a2M3

p0

64p3F2
0

n2

N2
c

:

Problems of Chapter 4

4.1

X8

a¼1

Bakaffiffiffi
2
p ¼

B3ffiffi
2
p þ B8ffiffi

6
p B1�iB2ffiffi

2
p B4�iB5ffiffi

2
p

B1þiB2ffiffi
2
p �B3ffiffi

2
p þ B8ffiffi

6
p B6�iB7ffiffi

2
p

B4þiB5ffiffi
2
p B6þiB7ffiffi

2
p �

ffiffi
2
3

q
B8

0
BB@

1
CCA ¼

R0ffiffi
2
p þ Kffiffi

6
p Rþ p

R� �R0ffiffi
2
p þ Kffiffi

6
p n

N� N0 �2Kffiffi
6
p

0
BB@

1
CCA:

Rþ ¼ B1 � iB2ffiffiffi
2
p ; R0 ¼ B3; R� ¼ B1 þ iB2ffiffiffi

2
p ;

p ¼ B4 � iB5ffiffiffi
2
p ; n ¼ B6 � iB7ffiffiffi

2
p ;

N0 ¼ B6 þ iB7ffiffiffi
2
p N� ¼ B4 þ iB5ffiffiffi

2
p ;

K ¼ B8:

4.2

KðL1;R1;R2ULy2ÞKðL2;R2;UÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1R2ULy2Ly1

q �1

R1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ULy2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ULy2

q �1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ 1

R2

ffiffiffiffi
U
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR1R2ÞUðL1L2Þy

q �1

ðR1R2Þ
ffiffiffiffi
U
p

¼ K½ðL1L2Þ; ðR1R2Þ;U�:
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4.3

ul ¼ i uyðol � irlÞu� uðol � illÞuy
� �

;

where

u 7! u0 ¼ VRuKy ¼ KuVyL; uy 7! u0y ¼ KuyVyR ¼ VLuyKy;
rl 7! r0l ¼ VRrlVyR þ iVRolVyR; ll 7! l0l ¼ VLllVyL þ iVLolVyL:

u0l ¼ i u0yðol � ir0lÞu0 � u0ðol � il0lÞu0y
h i

¼ i KuyVyRðol � iVRrlVyR þ VRolVyRÞVRuKy
h

� KuVyLðol � iVLllVyL þ VLolVyLÞVLuyKy
i
:

Consider last term in second line:

KuyðolVyRÞVRuKy ¼ Kuy olðVyRVRuKyÞ � VyRolðVRuKyÞ
h i

¼ Kuy olðuKyÞ � VyRolðVRuKyÞ
h i

¼ KuyoluKy þ KolKy � KuyVyRolðVRuKyÞ;

where we have used V yRVR ¼ 1 and uyu ¼ 1. Analogously for the last term in third
line )

u0l ¼ iK uyðol � irlÞu
� �

Ky þ iKolKy � iK uðol � illÞuy
� �

Ky � iKolKy ¼ KulKy:

4.4

uyolu ¼ 1� i
/
2F
� /2

8F2
þ � � �

� �
i
ol/
2F
� ol//þ /ol/

8F2
þ � � �

� �

¼ i
ol/
2F
þ /ol/

4F2
� ol//þ /ol/

8F2
þ � � �

¼ i
ol/
2F
þ /ol/� ol//

8F2
þ � � � ;

uoluy ¼ 1þ i
/
2F
� /2

8F2
þ � � �

� �
�i

ol/
2F
� ol//þ /ol/

8F2
þ � � �

� �

¼ �i
ol/
2F
þ /ol/

4F2
� ol//þ /ol/

8F2
þ � � �

¼ �i
ol/
2F
þ /ol/� ol//

8F2
þ � � � ;
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Cl ¼
1
2

uyoluþ uoluy
	 


¼ 1
2

i
ol/
2F
þ /ol/� ol//

8F2
þ � � � � i

ol/
2F
þ /ol/� ol//

8F2
þ � � �

� �

¼ 1
8F2

/ol/� ol//
	 


þ � � �

¼ 1
8F2

/aol/b sasb � sbsað Þ þ � � �

¼ 1
8F2

/aol/b sa; sb½ � þ � � �

¼ i

4F2
eabc/aol/bsc þ � � � ;

ul ¼ i uyolu� uoluy
	 


¼ i i
ol/
2F
þ /ol/� ol//

8F2
þ � � � þ i

ol/
2F
� /ol/� ol//

8F2
þ � � �

� �

¼ �ol/
F
þ � � � :

)
L
ð1Þ
pNN ¼ �

gA

2F
�Wclc5ol/asaW;

L
ð1Þ
ppNN ¼ �

1
4F2

eabc
�Wcl/aol/bscW:

4.5 Note that

�WiD=W ¼ �Wio=Wþ i

2
�Wclðuyoluþ uoluyÞWþ 1

2
�Wclðuyrluþ ulluyÞWþ �WclWvðsÞl ;

gA

2
�Wclc5ulW ¼ i

gA

2
�Wclc5ðuyolu� uoluyÞWþ gA

2
�Wclc5ðuyrlu� ulluyÞW;

Tr½DlUðDlUÞy� ¼ Tr½ðolU � irlU þ iUllÞðolU � irlU þ iUllÞy�
¼ Tr½ðolU � irlU þ iUllÞðolUy þ iUyrl � illUyÞ�
¼ TrðolUolUyÞ þ 2iTrðolUUyrlÞ þ 2iTrðolUyUllÞ
� 2TrðrlUllUyÞ þ TrðrlrlÞ þ TrðllllÞ:

(a) Electromagnetic interaction:

rl ¼ ll ¼ �eAl
s3

2
; vðsÞl ¼ �

e

2
Al:

uyrluþ ulluy ¼ �eAls3 þ � � � ;

uyolu� uoluy ¼ i
ol/asa

F
þ � � � ;
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uyrlu� ulluy

¼ �e

2
Alðuys3u� us3uyÞ ¼ �e

2
Alðs3 þ ½uy; s3�u� s3 � u½s3; u

y�Þ

¼ �e

2
Alð½uy; s3�uþ u½uy; s3�Þ ¼ �

e

2
Alf½uy; s3�; ug

¼ �e

2
Al 1� i

/~ � s~
2F
þ � � � ; s3

" #
; 1þ � � �

( )
¼ �e

2
Al �i

/asa

F
; s3

� �
þ � � �

¼ i
e

2
Al2iea3b

/a

F
sb þ � � � ¼ �

e

F
Ale3absa/b þ � � � ;

TrðolUUyrlÞ þ TrðolUyUllÞ

¼ �e

2
AlTrðolUUys3 þ olUyUs3Þ ¼ �

e

2
AlTr olU½Uy; s3�

	 


¼ �e

2
AlTr i

ol/asa

F
þ � � �

� �
1� i

/bsb

F
þ � � � ; s3

� �� �

¼ � e

2F2
Alol/a/bTrðsa½sb; s3�Þ þ � � � ¼ �

ie

F2
eb3cA

lol/a/bTrðsascÞ þ � � �

¼ �2
ie

F2
e3abA

lol/a/b þ � � � :

LcNN ¼ �e �Wcl1þ s3

2
WAl;

LpNN ¼ �
gA

2F
�Wclc5ol/asaW;

LcpNN ¼ �
egA

2F
e3ab

�Wclc5saWAl/b;

Lcpp ¼ �ee3ab/ao
l/bAl:

(b) In nucleonic Lagrangian use

u ¼ 1þ � � � ; uy ¼ 1þ � � � :

LWNN ¼
1
2

�WclllW�
gA

2
�Wclc5llW

¼ � g

2
ffiffiffi
2
p �Wclð1� gAc5ÞðWþ

l Tþ þW�
l T�ÞW

¼ � g

2
ffiffiffi
2
p Vud �pclð1� gAc5ÞnWþ

l þ �nclð1� gAc5ÞpW�
l

h i
:

)
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In mesonic Lagrangian use

olUy ¼ �i
ol/asa

F
þ � � � ; U ¼ 1þ � � � :

LWp ¼ i
F2

2
Tr �i

ol/asa

F
ll

� �

¼ F

2
� gffiffiffi

2
p

� �
Vudo

l/aTr sa
s1 þ is2

2
Wþ

l þ
s1 � is2

2
W�

l

� �� �

¼ � gffiffiffi
2
p Vud

F

2
ðol/1 þ iol/2ÞWþ

l þ ðol/1 � iol/2ÞW�
l

h i

¼ �gVud
F

2
olp�Wþ

l þ olpþW�
l

� 

:

(c) In nucleonic Lagrangian use

u ¼ 1þ � � � ; uy ¼ 1þ � � � :

Make use of

1
2
ðrl þ llÞ þ vðsÞl

¼ 1
2

e tanðhWÞZl
s3

2
� g

cosðhWÞ
Zl

s3

2
þ e tanðhWÞZl

s3

2

� �
þ e tanðhWÞ

2
Zl

¼ e tanðhWÞZl
1þ s3

2
� 1

2
g

cosðhWÞ
Zl

s3

2

¼ g

cosðhWÞ
sin2ðhWÞZl

1þ s3

2
� 1

2
Zl

s3

2

� �

¼ g

2 cosðhWÞ
Zl sin2ðhWÞ þ sin2ðhWÞ �

1
2

� �
s3

� �
;

rl � ll ¼
g

cosðhW Þ
Zl

s3

2
:

LZNN¼
1
2

�WclðrlþllÞWþ �WclWvðsÞl þ
gA

2
�Wclc5ðrl�llÞW

¼ g

2cosðhWÞ
�Wcl sin2ðhWÞþ sin2ðhWÞ�

1
2

� �
s3

� �
þgA

2
c5s3

� �
WZl

¼� g

2cosðhWÞ
�pcl 1

2
1�4sin2ðhWÞ
� �

�gA

2
c5

� �
pZl

�
þ�ncl �1

2
þgA

2
c5

� �
nZl

�
:
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In mesonic Lagrangian use

olU ¼ i
ol/asa

F
þ � � � ; Uy ¼ 1þ � � � ;

olUy ¼ �i
ol/asa

F
þ � � � ; U ¼ 1þ � � � :

LZp ¼ i
F2

2
Tr i

ol/asa

F
rl � i

ol/asa

F
ll

� �

¼ �F

2
ol/aTr sa rl � llð Þ½ �

¼ � g

2 cosðhWÞ
F

2
ol/aZ

lTrðsas3Þ ¼ �
g

2 cosðhWÞ
Folp

0Zl:

4.6 Make use of

ul ¼ iðuyolu� uoluyÞ ¼ �ol/
F0
þ � � � ;

where now / ¼ /aka:

�D

2
Tr �Bclc5ful;Bg
	 


� F

2
Tr �Bclc5½ul;B�
	 


! 1
4F0

�Bbc
lc5Baol/c

�
D Trðkbfkc; kagÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

¼ 4dcab

þF Trðkb½kc; ka�Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
¼ 4ifcab

�

¼ 1
F0

�Bbc
lc5Baol/cðDdcab þ iFfcabÞ

¼ 1
F0
ðdabcDþ ifabcFÞ�Bbc

lc5Baol/c

¼L
ð1Þ
/BB:

Tr �Bicl1
2
½uyoluþ uoluy;B�

� �

¼ i

4
�Bbc

lBaTrðkb½½uy; olu�; ka�Þ

¼ i

4
�Bbc

lBaTr kb 1� i
/ckc

2F0
þ � � � ; i

ol/dkd

2F0
þ � � �

� �
; ka

� �� �

¼ i

16F2
0

�Bbc
lBa/col/dTrðkb½ ½kc; kd�|fflfflffl{zfflfflffl}

¼ 2ifcdeke

; ka�Þ þ � � �

¼ � 1
8F2

0

�Bbc
lBa/col/dfcde Trðkb½ke; ka�Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

¼ 4ifeab

þ � � �

¼ � i

2F2
0

�Bbc
lBa/col/dfcdefeab þ � � � :

)L
ð1Þ
//BB ¼ �

i

2F2
0

fabefcde�Bbc
lBa/col/d:
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4.7 (a)

iqlhBjAl
i jAi ! iql�uðp0Þ clGAðtÞ þ

ql

2mN
GPðtÞ

� �
c5

si

2
uðpÞ

¼ i�uðp0Þ q=c5GAðtÞ þ
q2

2mN
GPðtÞc5

� �
si

2
uðpÞ

¼ i�uðp0Þ ðp=0c5 þ c5p=ÞGAðtÞ þ
t

2mN
GPðtÞc5

� �
si

2
uðpÞ

¼ i�uðp0Þ 2mNGAðtÞ þ
t

2mN
GPðtÞ

� �
c5

si

2
uðpÞ;

m̂hBjPijAi !
M2

pFp

M2
p � t

GpNðtÞi�uðp0Þc5siuðpÞ;

2mNGAðtÞ þ
t

2mN
GPðtÞ ¼ 2

M2
pFp

M2
p � t

GpNðtÞ:

(b)

2mNgA �
t

2mN

4m2gA

t �M2
¼ 2mgA 1� t

t �M2

� 

þ Oðq2Þ

¼ 2mgA
M2

M2 � t
þ Oðq2Þ

¼ 2
M2F

M2 � t

m

F
gA þ Oðq2Þ;

where we have used that mN ¼ mþ Oðq2Þ, Fp ¼ F½1þ Oðq2Þ�, M2
p ¼ M2½1þ

Oðq2Þ�.

4.8 (a) First show that

sþ t þ u ¼ ðpþ qÞ2 þ ðp0 � pÞ2 þ ðp0 � qÞ2

¼ ðpþ qÞ2 þ ðp0 � pÞ2 þ ðp� q0Þ2

¼ 4m2
N þ 2M2

p þ 2p � ðq� p0 � q0Þ
¼ 4m2

N þ 2M2
p � 2p � p

¼ 2m2
N þ 2M2

p;

from which t þ u ¼ 2m2
N þ 2M2

p � s and sþ t ¼ 2m2
N þ 2M2

p � u.

2mNðm� mBÞ ¼
1
2

s� u� t þ 2M2
p

	 


¼ 1
2

2s� 2m2
N

	 


¼ s� m2
N ;
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�2mNðmþ mBÞ ¼ �
1
2

s� uþ t � 2M2
p

	 


¼ �1
2
ð�2uþ 2m2

NÞ

¼ u� m2
N :

In the center-of-mass frame, the threshold four-momenta read

pl ¼ ðmN ; 0~Þ ¼ p0l; ql ¼ ðMp; 0~Þ ¼ q0l:

m
��
thr
¼ 2mNMp

2mN
¼ Mp; mB

��
thr
¼ � M2

p

2mN
:

(b)
Tabðp; q; p0; q0Þ ¼ dabTþðp; q; p0; q0Þ � ieabcscT�ðp; q; p0; q0Þ;

Tbaðp;�q0; p0;�qÞ ¼ dbaTþðp;�q0; p0;�qÞ � iebacscT�ðp;�q0; p0;�qÞ:

Crossing symmetry dictates

Tþðp; q; p0; q0Þ ¼ Tþðp;�q0; p0;�qÞ;
T�ðp; q; p0; q0Þ ¼ �T�ðp;�q0; p0;�qÞ:

ðB:5Þ

Under q$ �q0:
m! �m; mB ! mB;

so that

T�ðp;�q0; p0;�qÞ ¼ �uðp0Þ A�ð�m; mBÞ �
1
2
ðq=þ q=0ÞB�ð�m; mBÞ

� �
uðpÞ:

Crossing behavior of Eq. 4.45 then follows from Eq. B.5.

(c)

hpp0jT jnpþi ¼
ffiffiffi
2
3

r
3
2
;
1
2

� ����þ
1ffiffiffi
3
p 1

2
;
1
2

� ����

 !
T

1ffiffiffi
3
p 3

2
;
1
2

����
�
�

ffiffiffi
2
3

r
1
2
;
1
2

����
� !

¼
ffiffiffi
2
p

3
T

3
2 �

ffiffiffi
2
p

3
T

1
2:

Analogously
hpp0jTjpp0i ¼ 2

3
T

3
2 þ 1

3
T

1
2; hnpþjTjnpþi ¼ 1

3
T

3
2 þ 2

3
T

1
2;
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and
hpp0jT jpp0i � hnpþjT jnpþi ¼ 1

3
T

3
2 � 1

3
T

1
2 ¼ 1ffiffiffi

2
p hpp0jT jnpþi:

4.9
Ms ¼ g2

pN�uðp0Þc5sb
i

p=þ q=� mþ i0þ
c5sauðpÞ;

Mu ¼ g2
pN�uðp0Þc5sa

i

p=� q=0 � mþ i0þ
c5sbuðpÞ:

4.10 (a) Only the c1 term contributes to self energy at tree level:

ihNjc14M2 �WWjNi ) 4ic1M2;

�iRtree
2 ðp=Þ ¼ 4ic1M2:

(b)
i N �gA

2F
�Wclc5ol/bsbW

���
���N;/aðkÞ

D E
) �gA

2F
k=c5sa;

i N;/bðk0Þ �
1

4F2
ecde

�Wcl/dol/escW

����

����N;/aðkÞ
� �

) 1
4F2
ðk=þ k=0Þeabcsc:

(c) Closing of the pion propagator forces the isospin indices in the Feynman rule to
be the same, i.e., eaac ¼ 0.
(d)
�iRloopðp=Þ ¼ l4�n

Z
dnk

ð2pÞn �
gA

2F
k=c5sa

� 

iSFðp� kÞiDFðkÞ

gA

2F
k=c5sa

¼ �i
3g2

A

4F2
il4�n

Z
dnk

ð2pÞn
k=c5ðp=� k=þ mÞk=c5

½ðp� kÞ2 � m2 þ i0þ�ðk2 �M2 þ i0þÞ

¼ �i
3g2

A

4F2
il4�n

Z
dnk

ð2pÞn
k=ðp=� m� k=Þk=

½ðp� kÞ2 � m2 þ i0þ�ðk2 �M2 þ i0þÞ
:

We made use of sasa ¼ 31 ¼ 3.
(e)

k=ðp=� m� k=Þk=
¼ ð2p � k � p=k=� mk=� k2Þk=
¼ 2p � kk=� ðp=þ mÞk2 � k2k=

¼ �ðp� kÞ2k=þ p2k=þ k2k=� ðp=þ mÞk2 � k2k=

¼ �ðp=þ mÞk2 þ ðp2 � m2Þk=� ðp� kÞ2 � m2
h i

k=

¼ �ðp=þ mÞðk2 �M2Þ � ðp=þ mÞM2 þ ðp2 � m2Þk=� ðp� kÞ2 � m2
h i

k=;
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where we have replaced k2 ¼ k2 �M2 þM2 in the first term of the penultimate
line. Inserting this result in Rloop we obtain the expression of Eq. 4.83.
(f) Contracting

plC ¼ il4�n
Z

dnk

ð2pÞn
kl

½ðp� kÞ2 � m2 þ i0þ�ðk2 �M2 þ i0þÞ

with pl we obtain

p2C ¼ il4�n
Z

dnk

ð2pÞn
p � k

½ðp� kÞ2 � m2 þ i0þ�ðk2 �M2 þ i0þÞ

¼ il4�n
Z

dnk

ð2pÞn
�1

2½ðp� kÞ2 � p2 � k2�
½ðp� kÞ2 � m2 þ i0þ�ðk2 �M2 þ i0þÞ

¼ �1
2

il4�n
Z

dnk

ð2pÞn
ðp� kÞ2 � m2 � ðp2 � m2Þ � ðk2 �M2Þ �M2

½ðp� kÞ2 � m2 þ i0þ�ðk2 �M2 þ i0þÞ
;

from which we can read off the expression for C.
(g) The expression for Ir

Npð�p; 0Þ contains the term � 1
16p2, which is of Oðq0Þ.

Combined with the factor M2 multiplying the integral, we see that the self energy
contains a term of Oðq2Þ. Since the power counting predicted the loop contribution

to be at least of Oðq3Þ, we see that renormalization using the gMS scheme does not
result in a consistent power counting.
(h) As mN � m	Oðq2Þ and Ip	M2	Oðq2Þ, the last line in Eq. 4.88 is at least of
Oðq4Þ and can therefore be ignored. We thus only need the expansion of Ir

Np to first
order. As the function FðXÞ is multiplied by a factor of OðqÞ, we only need its
expansion to lowest order. With p2 
 m2 we find for the dimensionless quantity
�1�X� 1. Therefore,

FðXÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X2

p
arccosð�XÞ ¼ p

2
þ OðXÞ:

Since p2 � m2 �M2	Oðq2Þ for on-shell momenta, we can neglect the term
containing the logarithm in Ir

Np and obtain

Ir
Np ¼

1
16p2

�1þ pM

m
þ � � �

� �
:

The loop contribution to the self energy is therefore

Rloop
r ðmNÞ ¼ �

3g2
Ar

4F2
r

2mM2 1
16p2

�1þ pM

m
þ � � �

� �

¼ 3g2
Ar

32p2F2
r

M2m� 3g2
Ar

32pF2
r

M3 þ � � � ;

where we made use of mN � m	Oðq2Þ.
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(i) Replace c1r ¼ c1 þ dc1:

mN ¼ m� 4c1M2 � 4dc1M2 þ 3g2
Ar

32p2F2
r

M2m� 3g2
Ar

32pF2
r

M3 þ � � � :

The term violating the power counting is absorbed by the choice

dc1 ¼
3g2

Ar

128p2F2
r

m:

4.11

P2
v� ¼

1
2
ð1� v=Þ1

2
ð1� v=Þ ¼ 1

4
ð1� 2v=þ v=v=|{z}

¼ v21 ¼ 1

Þ ¼ 1
2
ð1� v=Þ ¼ Pv�;

Pv�Pv
 ¼
1
2
ð1� v=Þ1

2
ð1
 v=Þ ¼ 1

4
ð1� v=v=Þ ¼ 0;

v=eþimv�xPv�W ¼ eþimv�xv=
1
2
ð1� v=ÞW ¼ eþimv�x1

2
ðv=� 1ÞW ¼ �eþimv�xPv�W:

4.12 (a) First use integration by parts to rewrite

�WolW ¼ �ol
�WW

to obtain

�ol
oL

ð1Þ
pN

ool
�W
¼ �olð�iclWÞ ¼ io=W;

oL
ð1Þ
pN

o �W
¼ i C=� iv=ðsÞ

� 

� mþ gA

2
clc5ul

h i
W:

EOM follows as

i o=þ C=� iv=ðsÞ
� 


� mþ gA

2
clc5ul

h i
W ¼ iD=� mþ gA

2
clc5ul

� 

W ¼ 0:

(b) It is sufficient to consider the partial-derivative part acting on the nucleon
field:

io=W ¼ io= e�imv�xðNv þHvÞ
� �

¼ e�imv�x mv=ðNv þHvÞ þ io=ðNv þHvÞ½ �
¼ e�imv�x ðio=þ mÞNv þ ðio=� mÞHv½ �:

(c) From algebra
v=A= ¼ 2v � A� A=v=;
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from which we see that

Pv�A= ¼ 1
2
ð1� v=ÞA= ¼ �v � Aþ A=Pv
:

Then

Pv�A=Pv� ¼ �v � APv� þ A=Pv
Pv�

¼ �v � APv�;

Pv�A=Pv
 ¼ A=Pv
Pv
 � v � APv


¼ A=Pv
 � v � APv
:

Now use 1 ¼ v=v= and

Pv� ¼
1
2
ð1� v=Þ ¼ 1

2
ðv=v=� v=Þ ¼ v=

1
2
ðv=� 1Þ ¼ �v=Pv�

to obtain

Pv�A=Pv
 ¼ ð�v � Aþ A=Pv
ÞPv


¼ �v � APv
 þ A=Pv


¼ �v � Av= v= Pv
|fflffl{zfflffl}
¼
Pv


þA=Pv


¼ �v � Av=Pv
 þ A=Pv


¼ ðA= � v � Av=ÞPv


¼ A=?Pv
:

Use
c5Pv� ¼ c5

1
2
ð1� v=Þ ¼ 1

2
ð1
 v=Þc5 ¼ Pv
c5

to rewrite the terms containing B=c5 in terms of the relations above, e.g.,

Pv�B=c5Pv� ¼ Pv�B=Pv
c5 ¼ B=?Pv
c5 ¼ B=?c5Pv�

and analogously for other expressions.
(d) Project the EOM with Pv� and use

Nv ¼ PvþNv; Hv ¼ Pv�Hv;
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e.g.,
PvþiD=Nv ¼ PvþiD=PvþNv;

then use the relations of Eq. 4.105,

� � � ¼ iv � DPvþNv ¼ iv � DNv:

(e) Formally solve Eq. 4.107 for Hv,

Hv ¼ 2mþ iv � D� gA

2
u=?c5

� 
�1
iD=? �

gA

2
v � uc5

� 

Nv:

Insert result into Eq. 4.106.

4.13

v � Sv ¼ vl
i

2
c5r

lmvm ¼ �
1
4
c5ðv=v=� v=v=Þ ¼ 0:

fSl
v ; S

m
vg ¼

1
4
fc5ðclv=� vlÞ; c5ðcmv=� vmÞg

¼ 1
4
fðclv=� vlÞ; ðcmv=� vmÞg

¼ 1
4
fclv=; cmv=g � fclv=; vmg � fvl; cmv=g þ fvl; vmgð Þ

¼ 1
4
fclv=; cmv=g � 2clv=vm � 2cmv=vl þ 2vlvmð Þ:

Consider

fclv=; cmv=g ¼ clv=cmv=þ cmv=clv=
¼ clv=2vm � clv=v=cm þ cmv=2vl � cmv=v=cl

¼ 2clv=vm þ 2cmv=vl � fcl; cmg
¼ 2clv=vm þ 2cmv=vl � 2glm:

fSl
v ; S

m
vg ¼ � � � ¼

1
2
ðvlvm � glmÞ:

Evaluate left-hand side of commutator,

½Sl
v ; S

m
v� ¼

1
4
½c5ðclv=� vlÞ; c5ðcmv=� vmÞ�

¼ 1
4
½clv=� vl; cmv=� vm�

¼ 1
4
½clv=; cmv=�

¼ 1
4

clv=cmv=� cmv=clv=ð Þ

Solutions to Exercises 315



¼ 1
4

clv= �v=cm þ 2vmð Þ � cmv= �v=cl þ 2vlð Þ½ �

¼ 1
4
ð�clcm þ cmcl þ 2vmclv=� 2vlcmv=Þ:

Rewrite the right-hand side using

c5r
rs ¼ � i

2
ersabrab;

elmq
re

rsab ¼ det

gls gla glb

gms gma gmb

gqs gqa gqb

0
B@

1
CA:

ielmq
rvqSr

v ¼ ielmq
rvq

i

2
c5r

rsvs

¼ i

4
elmq

re
rsabvqrabvs

¼ �1
8

vq½ca; cb�vs gls gmagqb � gqagmb
	 


� � � �
� �

¼ �1
8

vl½cm; v=� � ½v=; cm�vl � ½cl; v=�vm þ ½cl; cm� þ ½v=; cl�vm � ½cm; cl�ð Þ

¼ �1
4

vl½cm; v=� þ ½v=; cl�vm þ ½cl; cm�ð Þ

¼ �1
4

vlð2cmv=� 2vmÞ þ ð2vl � 2clv=Þvm þ ½cl; cm�ð Þ

¼ �1
4

2vlcmv=� 2vmclv=þ ½cl; cm�ð Þ:

4.14 First note that

�Nv ¼Ny
v c0

¼ Wye�imv�x1
2
ð1þ v=Þyc0

¼ e�imv�xWy
1
2
ð1þ c0v=c0Þc0

¼ e�imv�xWyc0
1
2
ð1þ v=Þ ¼ e�imv�x �WPvþ:

From Pvþv= ¼ Pvþ it then follows that

�Nv ¼ �Nvv=:

�Nvc5Nv ¼ �Nv c5v=Nv ¼ � �Nv v=c5Nv ¼ � �Nv c5Nv ) �Nv c5Nv ¼ 0:
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�Nvc
lNv ¼ �Nvc

lv=Nv ¼ 2vl �NvNv � �Nvv=clNv ¼ 2vl �NvNv � �Nvc
lNv

) �Nv clNv ¼ vl �NvNv:

Use clc5 v= ¼ �c5c
lv= ¼ 2Sl

v � vlc5;

�Nv clc5Nv ¼ �Nvc
lc5v=Nv ¼ 2 �Nv Sl

vNv � vl �Nvc5Nv ¼ 2 �Nv Sl
vNv:

Use
rlm ¼ � i

2
elmqrc5rqr ¼

1
4
elmqrc5½cq; cr� ¼

1
2
elmqrc5cqcr

to reduce the problem to the previous one:

�Nvr
lmNv ¼

1
2
elmqr �Nvc5cqcrNv

¼ 1
2
elmqr �Nvc5cqcrv=Nv

¼ 1
2
elmqr � �Nvc5cqv=crNv þ 2vr

�Nvc5cqNv

	 


¼ 1
2
elmqr �Nvc5v=cqcrNv � 2vq

�Nvc5crNv þ 2vr
�Nvc5cqNv

	 


¼ 1
2
elmqr � �Nvv=c5cqcrNv � 4vq

�Nvc5crNv

	 


¼ 1
2
elmqr � �Nvc5cqcrNv þ 4vq

�Nvcrc5Nv

	 


¼ � �Nvr
lmNv þ 2elmq

rvq
�Nvc

rc5Nv

) �Nvr
lmNv ¼ elmq

rvq
�Nvc

rc5Nv ¼ 2elmq
rvq

�NvSr
vNv:

�Nvr
lmc5Nv ¼

i

2
�Nvðclcm � cmclÞc5Nv

¼ i

2
�Nvv=ðclcm � cmclÞc5Nv

¼ i

2
�Nv �clv=cm þ 2vlcm þ cmv=cl � 2vmclð Þc5Nv

¼ i

2
�Nv clcmv=� 2clvm þ 2vlcm � cmclv=þ 2cmvl � 2vmclð Þc5Nv

¼ � i

2
�Nvðclcm � cmclÞc5v=Nv

þ 2iðvl �Nvc
mc5Nv � vm �Nvc

lc5NvÞ
¼ � �Nvr

lmc5Nv þ 4iðvl �Nv Sm
vNv � vm �Nv Sl

vNvÞ
) �Nvr

lmc5Nv ¼ 2iðvl �Nv Sm
v Nv � vm �Nv Sl

vNvÞ:
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4.15 (a) Using the Feynman parameterization, the denominator is given by

ðk2 � 2p � k þ ðp2 � m2Þ þ i0þÞzþ ðk2 �M2 þ i0þÞð1� zÞ
� �2

¼ k2 � 2p � kzþ ðp2 � m2Þz�M2ð1� zÞ þ i0þ
� �2

! ðk þ zpÞ2 � 2p � ðk þ zpÞzþ ðp2 � m2 þM2Þz�M2 þ i0þ
h i2

¼ k2 þ 2p � kzþ z2p2 � 2p � kz� 2z2p2 þ ðp2 � m2 þM2Þz�M2 þ i0þ
� �2

¼ k2 � z2p2 þ zðp2 � m2 þM2Þ �M2 þ i0þ
� �2

¼ k2 � AðzÞ þ i0þ
� �2

:

(b) Use the given equation with the exponents p ¼ 0 and q ¼ 2. The integral is
then given by

Hðp2;m2;M2; nÞ ¼ �i

Z 1

0
dz

i

ð4pÞ
n
2

C n
2

	 

C 2� n

2

	 


C n
2

	 

Cð2Þ

AðzÞ � i0þ½ �
n
2�2

¼ 1

ð4pÞ
n
2
C 2� n

2

� 
Z 1

0
dz AðzÞ � i0þ½ �

n
2�2
:

(c) At threshold p2
thr ¼ ðmþMÞ2 )

AðzÞ ¼ z2ðmþMÞ2 � z ðmþMÞ2 � m2 þM2
h i

þM2

¼ z2ðmþMÞ2 � 2zðmþMÞM þM2 ¼ zðmþMÞ �M½ �2:

For 0� z� 1;AðzÞ is never negative, therefore can drop small imaginary part.

Integrand is zero for z0 ¼ M
mþM, and splitting of integral allows to rewrite ½AðzÞ�

n
2�2

as

Z 1

0
dz AðzÞ½ �

n
2�2 ¼

Z z0

0
dz M � zðmþMÞ½ �n�4þ

Z 1

z0

dz zðmþMÞ �M½ �n�4

¼ � 1
ðn� 3ÞðmþMÞ½M � zðmþMÞ�n�3��z0

0

þ 1
ðn� 3ÞðmþMÞ½zðmþMÞ �M�n�3��1

z0

¼ 1
ðn� 3ÞðmþMÞ Mn�3 þ mn�3

	 


for n [ 3.
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(d) Expansion in small quantities corresponds to expansion of 1=ðmþMÞ in M:

1
mþM

¼ 1
m

1

1þ M
m

¼ 1
m

1�M

m
þM2

m2
þ � � �

� �
;

i.e., only nonnegative integer powers of M are generated. Therefore the infrared-
singular part has an expansion

	Mn�3 1�M

m
þM2

m2
þ � � �

� �
¼ Mn�3 �Mn�2

m
þMn�1

m2
þ � � � ;

while for the infrared-regular part

	mn�3 1�M

m
þM2

m2
þ � � �

� �
¼ mn�3 �Mmn�4 þM2mn�5 þ � � � :

4.16 (a)

Xthr ¼
ðmþMÞ2 � m2 �M2

2mM
¼ m2 þ 2mM þM2 � m2 �M2

2mM
¼ 1;

DthrðxÞ ¼ 1� 2Xthrxþ x2 þ 2axðXthrx� 1Þ þ a2x2

¼ 1� 2xþ x2 þ 2axðx� 1Þ þ a2x2 ¼ ðx� 1Þ2 þ 2axðx� 1Þ þ a2x2

¼ ½ðx� 1Þ þ ax�2 ¼ ½ð1þ aÞx� 1�2;

Ithr ¼ jðm; nÞan�3
Z 1

0
dx DthrðxÞ � i0þ½ �

n
2�2

¼ jðm; nÞan�3
Z 1

0
dx ð1þ aÞx� 1½ �2�i0þ
n on

2�2
:

Integral potentially divergent for large x, where integrand behaves as xn�4 )
convergent for n\3.
(b)

ð1þ aÞx� 1
ð1þ aÞðn� 4Þ

d

dx
ð1þ aÞx� 1½ �2�i0þ

n on
2�2

¼ ð1þ aÞx� 1
ð1þ aÞðn� 4Þ

n� 4
2

ð1þ aÞx� 1½ �2�i0þ
n on

2�3
2½ð1þ aÞx� 1�ð1þ aÞ

¼ ð1þ aÞx� 1½ �2 ð1þ aÞx� 1½ �2�i0þ
n on

2�3

¼ ð1þ aÞx� 1½ �2�i0þ
n on

2�2
:
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Z 1

0
dx ð1þ aÞx� 1½ �2�i0þ
n on

2�2

¼
Z 1

0
dx
ð1þ aÞx� 1
ð1þ aÞðn� 4Þ

d

dx
ð1þ aÞx� 1½ �2�i0þ

n on
2�2

¼ ð1þ aÞx� 1
ð1þ aÞðn� 4Þ ð1þ aÞx� 1½ �2�i0þ

n on
2�2

� �1

0

�
Z 1

0
dx ð1þ aÞx� 1½ �2�i0þ
n on

2�2 d

dx

ð1þ aÞx� 1
ð1þ aÞðn� 4Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼ 1
n� 4

:

(c) The second expression on the right is proportional to the original integral.
Bringing it to the left we obtain

n� 3
n� 4

Z 1

0
dx ð1þ aÞx� 1½ �2�i0þ
n on

2�2

¼ ð1þ aÞx� 1
ð1þ aÞðn� 4Þ ð1þ aÞx� 1½ �2�i0þ

n on
2�2

� �1

0

:

The expression on the right vanishes at the upper limit for n\3, and at the lower
limit yields 1=½ð1þ aÞðn� 4Þ�, so that

Z 1

0
dx ð1þ aÞx� 1½ �2�i0þ
n on

2�2
¼ 1
ðn� 3Þð1þ aÞ:

With a ¼ M=m and jðm; nÞ given in Eq. 4.125

Ithr ¼ jðm; nÞan�3 1
ðn� 3Þð1þ aÞ ¼

C 2� n
2

	 


ð4pÞ
n
2ðn� 3Þ

Mn�3

mþM
:

(d)

CthrðzÞ ¼ z2 � 2azð1� zÞ þ a2ð1� zÞ2 ¼ ½z� að1� zÞ�2 ¼ ½zð1þ aÞ � a�2;

Rthr ¼ �jðm; nÞ
Z 1

1
dz½CthrðzÞ � i0þ�

n
2�2

¼ �jðm; nÞ
Z 1

1
dz ½zð1þ aÞ � a�2 � i0þ
n on

2�2

¼ �jðm; nÞ 1
mn�4

Z 1

1
dz½zðmþMÞ �M�n�4

¼ �jðm; nÞ 1
mn�4

1
ðn� 3ÞðmþMÞ½zðmþMÞ �M�n�3
� �1

1
n\3

¼
C 2� n

2

	 


ð4pÞ
n
2ðn� 3Þ

mn�3

mþM
:
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4.17 (a)

F 1; 2� n

2
; 4� n;�D

� 

¼ 1þ

2� n
2

4� n
ð�DÞ þ

2ð2� n
2Þð3� n

2Þ
ð4� nÞð5� nÞ

D2

2
þ � � �

¼ 1� D
2
þ 6� n

5� n

D2

4
þ � � � :

e ¼ 4� n ) 6� n ¼ 2þ e
5� n ¼ 1þ e

�

� � � ¼ 1� D
2
þ 2þ e

1þ e
D2

4
þ � � �

(b)

� � � ¼ 1� D
2
þ ð2þ eÞð1� eÞD

2

4
þ � � �

¼ 1� D
2
þ ð2� eÞD

2

4
þ � � �:

(c)
C 2� n

2

	 


n� 3
¼

C 3� n
2

	 


2� n
2

1
n� 3

¼
C 1þ e

2

	 


e
2

1
1� e

¼ 2
e
þ 2þ C0ð1Þ þ OðeÞ:

(d)

�D
2
þ ð2� eÞD

2

4

� �
2
e
þ 2þ C0ð1Þ þ � � �

� �

¼ �D
1
e
þ 1þ C0ð1Þ

2

� �
þ D2 1

e
þ 1

2
þ C0ð1Þ

2

� �
þ � � � :

(e)
ð�DÞn�3 ¼ ð�DÞð�DÞ�e ¼ ð�DÞe�e lnð�DÞ

¼ ð�DÞ 1� e lnð�DÞ þ � � �½ �
¼ �Dþ eD lnð�DÞ þ � � � :
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(f)
F

n

2
� 1; n� 2; n� 2;�D

� 

¼ 1þ n

2
� 1

� 

ð�DÞ þ � � �

¼ 1� 1� e
2

� 

Dþ � � � :

C
n

2
� 1

� 

C 3� nð Þ ¼ C 1� e

2

� 

C �1þ eð Þ

¼ C 1� e
2

� 
 C eð Þ
�1þ e

¼ �C 1� e
2

� 
C 1þ eð Þ
eð1� eÞ

¼ �1
e
ð1þ eþ � � �Þ 1� e

2
C0ð1Þ þ � � �

h i
1þ eC0ð1Þ þ � � �½ �

¼ �1
e
� 1þ C0ð1Þ

2

� �
þ � � � :

ð�DÞn�3C
n

2
� 1

� 

Cð3� nÞF n

2
� 1; n� 2; n� 2;�D

� 


¼ ð�DÞ 1� e lnð�DÞ þ � � �½ � �1
e
� 1þ C0ð1Þ

2

� �
þ � � �

� �
1� 1� e

2

� 

Dþ � � �

h i

¼ D
1
e
þ 1þ C0ð1Þ

2

� �
� D lnð�DÞ � D2 1

e
þ 1

2
þ C0ð1Þ

2

� �
þ D2 lnð�DÞ þ � � � :

Comparison with (d) shows that terms proportional to D and D2 precisely cancel.

4.18 (a) Equation of motion for A ¼ �1:

oL3
2

o �Wl
� oq

oL3
2

ooq
�Wl
¼ KlmðAÞWm

A¼�1

¼ � ðio=� mDÞWl þ iðclom þ olcmÞWm � iclo=cmWm � mDclcmWm ¼ 0:

(b) Use clc
l ¼ 4,

cl � � � ¼ �iclo=W
l þ mDclW

l þ iclc
lomWm

þ io=cmWm � iclc
lo=cmWm � mDclc

lcmWm

¼ �iclo=W
l � 3mDclW

l þ 4iolW
l � 3io=clW

l

¼ �2iolW
l þ io=clW

l þ 4iolW
l � 3io=clW

l � 3mDclW
l

¼ 2iolW
l � 2io=clW

l � 3mDclW
l ¼ 0 ðB:6Þ
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for solutions of the EOM.
(c)

ol � � � ¼ �ðio=� mDÞolW
l þ iðo=olW

l þhclW
lÞ � ihclW

l � mDo=clW
l

¼ mDolW
l � mDo=clW

l ¼ 0 ðB:7Þ

for solutions of the EOM. For mD 6¼ 0,

olW
l ¼ o=clW

l

for solutions of the EOM.
(d) Insert into Eq. B.6 )

�3mDclW
l ¼ 0

and thus ðmD 6¼ 0Þ

clW
l ¼ 0 ðB:8Þ

for solutions of the EOM.
(e) Insert Eq. B.8 into Eq. B.7 )

olW
l ¼ 0 ðB:9Þ

for solutions of the EOM.
(f) Insert Eqs. B.8 and B.9 into EOM )

ðio=� mDÞWl ¼ 0:

4.19 In the following, we neglect terms of order e2.

DijðVÞ ¼
1
2

TrðsiVsjV
yÞ

¼ 1
2

Tr si 1� iea
sa

2

� 

sj 1þ ieb

sb

2

� 
h i

¼ 1
2

TrðsisjÞ þ i
ea

4
Tr sisjsa

	 

� i

ea

4
Tr sisasj

	 


¼ dij þ i
ea

4
Trðsa ½si; sj�|fflffl{zfflffl}

¼ 2ieijksk

Þ

¼ dij þ i
ea

4
4ieijkdak

¼ dij � ieað�ieaijÞ
¼ dij � ieatad

a;ij:
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4.20 (a)

P1
2
¼ 1

1
2

� �
1
2
;�1

2

����
�

1
1
2

� �
1
2
;�1

2

� ����þ 1
1
2

� �
1
2
;
1
2

����
�

1
1
2

� �
1
2
;
1
2

� ����

¼ �
ffiffiffi
2
3

r
j1;�1i 1

2
;
1
2

����
�
þ 1ffiffiffi

3
p j1; 0i 1

2
;�1

2

����
� !

� �
ffiffiffi
2
3

r
h1;�1j 1

2
;
1
2

� ����þ
1ffiffiffi
3
p h1; 0j 1

2
;�1

2

� ����

 !

þ � 1ffiffiffi
3
p j1; 0i 1

2
;
1
2

����
�
þ

ffiffiffi
2
3

r
j1; 1i 1

2
;�1

2

����
� !

� � 1ffiffiffi
3
p h1; 0j 1

2
;
1
2

� ����þ
ffiffiffi
2
3

r
h1; 1j 1

2
;�1

2

� ����

 !

¼ 1
3
j1; 0ih1; 0j 1

2
;
1
2

����
�

1
2
;
1
2

� ����þ
1
2
;�1

2

����
�

1
2
;�1

2

� ����
� �

�
ffiffiffi
2
p

3
ðj1; 0ih1; 1j þ j1;�1ih1; 0jÞ 1

2
;
1
2

����
�

1
2
;�1

2

� ����

�
ffiffiffi
2
p

3
ðj1; 1ih1; 0j þ j1; 0ih1;�1jÞ 1

2
;�1

2

����
�

1
2
;
1
2

� ����

þ 2
3
j1; 1ih1; 1j 1

2
;�1

2

����
�

1
2
;�1

2

� ����þ j1;�1ih1;�1j 1
2
;
1
2

����
�

1
2
;
1
2

� ����
� �

:

(b)

j1;0ih1;0j ¼
0

1

0

0
@

1
A 0 1 0ð Þ ¼

0 0 0

0 1 0

0 0 0

0
@

1
A;

j1;0ih1;1j þ j1;�1ih1;0j ¼
0

1

0

0

@

1

A 1 0 0ð Þ þ
0

0

1

0

@

1

A 0 1 0ð Þ ¼
0 0 0

1 0 0

0 1 0

0

@

1

A;

j1;1ih1;0j þ j1;0ih1;�1j ¼
1

0

0

0
@

1
A 0 1 0ð Þ þ

0

1

0

0
@

1
A 0 0 1ð Þ ¼

0 1 0

0 0 1

0 0 0

0
@

1
A;

j1;1ih1;1j ¼
1

0

0

0

@

1

A 1 0 0ð Þ ¼
1 0 0

0 0 0

0 0 0

0

@

1

A;

j1;�1ih1;�1j ¼
0

0

1

0
@

1
A 0 0 1ð Þ ¼

0 0 0

0 0 0

0 0 1

0
@

1
A:
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(c)

1
2
;
1
2

����
�

1
2
;
1
2

� ����þ
1
2
;�1

2

����
�

1
2
;�1

2

� ���� ¼
1 0

0 1

� �
¼ 1;

1
2
;
1
2

����
�

1
2
;�1

2

� ���� ¼
0 1

0 0

� �
¼ 1

2
ðs1 þ is2Þ;

1
2
;�1

2

����
�

1
2
;
1
2

� ���� ¼
0 0

1 0

� �
¼ 1

2
ðs1 � is2Þ;

1
2
;�1

2

����
�

1
2
;�1

2

� ���� ¼
0 0

0 1

� �
¼ 1

2
ð1� s3Þ;

1
2
;
1
2

����
�

1
2
;
1
2

� ���� ¼
1 0

0 0

� �
¼ 1

2
ð1þ s3Þ:

) n
1
2
sph ¼

1
3

0 0 0

0 1 0

0 0 0

0
B@

1
CA� 1

�
ffiffiffi
2
p

3

0 0 0

1 0 0

0 1 0

0
B@

1
CA�

s1 þ is2

2
�

ffiffiffi
2
p

3

0 1 0

0 0 1

0 0 0

0
B@

1
CA�

s1 � is2

2

þ 2
3

1 0 0

0 0 0

0 0 0

0
B@

1
CA�

1� s3

2
þ 2

3

0 0 0

0 0 0

0 0 1

0
B@

1
CA�

1þ s3

2

¼ 1
3

1� s3 � 1ffiffi
2
p ðs1 � is2Þ 0

� 1ffiffi
2
p ðs1 þ is2Þ 1 � 1ffiffi

2
p ðs1 � is2Þ

0 � 1ffiffi
2
p ðs1 þ is2Þ 1þ s3

0
BB@

1
CCA:

Problems of Chapter 5

5.1 (a) For contact interaction without pion fields, we can replace the covariant
derivative Dl ! ol, and

olNv ¼ oleimv�xPvþW ¼ imvlNv þ eimv�xPvþolW

! imvlNv � iplNv ¼ �ikl
pNv:

�iRtreeðpÞ ¼ i
k2

p

2m
þ i4c1M2:
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(b) Expand ul and Cl as in Exercise 4.4.

N �i
gA

F
�Nv Sl

v ol/bsbNv

���
���N;/aðqÞ

D E
) �i

gA

F
Sl

v ð�iqlÞdabsb ¼ �
gA

F
Sv � qsa:

N;/bðq0Þ �i
vl

4F2
�Nvedec/dol/escNv

����

����N;/aðqÞ
� �

) �i
vl

4F2½eabcðiq0lÞ þ ebacð�iqlÞ�sc ¼
v � ðqþ q0Þ

4F2 eabcsc:

(c)
� iRloopðpÞ

¼ l4�n

Z
dnq

ð2pÞn
gA

F
Sv � qsa

i

q2 �M2 þ i0þ
i

v � ðkp þ qÞ þ i0þ
� gA

F

� 

Sv � qsa

¼ �i
3g2

A

F2
Sl

v Sm
vil4�n

Z
dnq

ð2pÞn
qlqm

ðq2 �M2 þ i0þÞ½v � ðkp þ qÞ þ i0þ� :

(d) Contracting with vlvm, using v2 ¼ 1:

C20ðx;M2Þ þ C21ðx;M2Þ ¼ il4�n
Z

dnq

ð2pÞn
ðv � qÞðv � qÞ

ðq2 �M2 þ i0þÞðv � qþ xþ i0þÞ

¼ il4�n
Z

dnq

ð2pÞn
ðv � qþ x� xÞv � q

ðq2 �M2 þ i0þÞðv � qþ xþ i0þÞ

¼ il4�n
Z

dnq

ð2pÞn
v � q

q2 �M2 þ i0þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ 0

� xil4�n
Z

dnq

ð2pÞn
v � qþ x� x

ðq2 �M2 þ i0þÞðv � qþ xþ i0þÞ

¼ �xil4�n
Z

dnq

ð2pÞn
1

q2 �M2 þ i0þ

þ x2il4�n
Z

dnq

ð2pÞn
1

ðq2 �M2 þ i0þÞðv � qþ xþ i0þÞ
¼ �xIpð0Þ þ x2JpNð0; xÞ:

Contracting with glm, using glmglm ¼ n:

C20ðx;M2Þ þ nC21ðx;M2Þ ¼ il4�n
Z

dnq

ð2pÞn
q2

ðq2 �M2 þ i0þÞðv � qþ xþ i0þÞ

¼ il4�n

Z
dnq

ð2pÞn
q2 �M2 þM2

ðq2 �M2 þ i0þÞðv � qþ xþ i0þÞ
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¼ il4�n
Z

dnq

ð2pÞn
1

v � qþ xþ i0þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ 0

þM2il4�n
Z

dnq

ð2pÞn
1

ðq2 �M2 þ i0þÞðv � qþ xþ i0þÞ
¼ M2JpNð0; xÞ:

(e) Since Sv � v ¼ 0, only C21ðx;M2Þ contributes. Solve system of equations to
obtain

C21ðx;M2Þ ¼ 1
n� 1

ðM2 � x2ÞJpNð0; xÞ þ xIpð0Þ
� �

;

i.e., factor 1� n from Sl
v Sm

vglm ¼ S2
v cancels.

(f) Insert the expressions given for the loop integrals, extract a factor of 4p2 to give

the denominator ð4pFÞ2, and collect the remaining terms.
(g)

pl ¼ mNvl ¼ mvl þ kl
p ) kl

p ¼ ðmN � mÞvl

and with v2 ¼ 1 we obtain x ¼ v � kp ¼ mN � m. Neglecting the tree-level term

	ðmN � mÞ2 and setting x ¼ 0 in the loop contribution, we find

mN ¼ m� 4c1M2 � 3g2
A

ð4pFÞ2
M3 arccosð0Þ|fflfflfflfflffl{zfflfflfflfflffl}

¼ p
2

¼ m� 4c1M2 � 3pg2
AM3

2ð4pFÞ2
:

5.2
QAbðx0Þ ¼

Z
d3xqyðx0; x~Þc5

kb

2
qðx0; x~Þ;

HsbðxÞ ¼ �qðxÞMqðxÞ:

Make use of Eq. 1.103 with C1 ¼ c5, C2 ¼ c0, F1 ¼ kb
2 , and F2 ¼M:

C1C2 ¼ c5c0 ¼ �c0c5 ¼ �C2C1:

QAbðx0Þ;HsbðxÞ½ � ¼ �qyðxÞc0c5
kb

2
;M

� �
qðxÞ:

Make use of Eq. 1.103 with C1 ¼ c5, C2 ¼ c0c5, F1 ¼ ka
2 , and F2 ¼ kb

2 ;M
� �

:

C1C2 ¼ c5c0c5 ¼ �c0 ¼ �C2C1:
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rabðxÞ ¼ QAaðx0Þ; QAbðx0Þ;HsbðxÞ½ �½ �

¼ � QAaðx0Þ; qyðxÞc0c5
kb

2
;M

� �
qðxÞ

� �

¼ qyðxÞc0
ka

2
;

kb

2
;M

� �� �
qðxÞ

¼ �qðxÞ ka

2
;

kb

2
;M

� �� �
qðxÞ:

M ¼
m̂ 0 0

0 m̂ 0

0 0 ms

0

B@

1

CA;

fk1;Mg ¼
0 1 0

1 0 0

0 0 0

0

B@

1

CA
m̂ 0 0

0 m̂ 0

0 0 ms

0

B@

1

CAþ
m̂ 0 0

0 m̂ 0

0 0 ms

0

B@

1

CA
0 1 0

1 0 0

0 0 0

0

B@

1

CA

¼
0 m̂ 0

m̂ 0 0

0 0 0

0

B@

1

CAþ
0 m̂ 0

m̂ 0 0

0 0 0

0

B@

1

CA

¼ 2m̂k1;

fk1; k1g ¼ 2

1 0 0

0 1 0

0 0 0

0

B@

1

CA;

1
4
fk1; fk1;Mgg ¼ m̂

1 0 0

0 1 0

0 0 0

0

B@

1

CA;

fk2;Mg ¼ 2m̂k2; fk2;k2g ¼ 2

1 0 0

0 1 0

0 0 0

0
B@

1
CA;

1
4
fk2;fk2;Mgg ¼ m̂

1 0 0

0 1 0

0 0 0

0
B@

1
CA;

fk3;Mg ¼ 2m̂k3; fk3;k3g ¼ 2

1 0 0

0 1 0

0 0 0

0
B@

1
CA;

1
4
fk3;fk3;Mgg ¼ m̂

1 0 0

0 1 0

0 0 0

0
B@

1
CA;

fk4;Mg ¼ ðm̂þmsÞk4; fk4;k4g ¼ 2

1 0 0

0 0 0

0 0 1

0
B@

1
CA;
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1
4
fk4;fk4;Mgg ¼

m̂þms

2

1 0 0

0 0 0

0 0 1

0
@

1
A;

fk5;Mg ¼ ðm̂þmsÞk5; fk5;k5g ¼ 2

1 0 0

0 0 0

0 0 1

0

@

1

A;

1
4
fk5;fk5;Mgg ¼

m̂þms

2

1 0 0

0 0 0

0 0 1

0
@

1
A;

fk6;Mg ¼ ðm̂þmsÞk6; fk6;k6g ¼ 2

0 0 0

0 1 0

0 0 1

0

@

1

A;

1
4
fk6;fk6;Mgg ¼

m̂þms

2

0 0 0

0 1 0

0 0 1

0
@

1
A;

fk7;Mg ¼ ðm̂þmsÞk7; fk7;k7g ¼ 2

0 0 0

0 1 0

0 0 1

0

@

1

A;

1
4
fk7;fk7;Mgg ¼

m̂þms

2

0 0 0

0 1 0

0 0 1

0
@

1
A;

1
4
fk8;fk8;Mgg ¼ k2

8M ¼
1
3

m̂ 0 0

0 m̂ 0

0 0 4ms

0
@

1
A;

1
4
fk3;fk8;Mgg ¼ k3k8M ¼

m̂ffiffiffi
3
p k3:

5.3

oEðkÞ
ok
¼ o

ok
ðEðkÞhaðkÞjaðkÞiÞ

¼ o

ok
haðkÞjHðkÞjaðkÞi

¼ ohaðkÞj
ok

HðkÞjaðkÞi þ aðkÞ oHðkÞ
ok

����

����aðkÞ
� �

þ haðkÞjHðkÞojaðkÞi
ok

¼ EðkÞ o
ok
haðkÞjaðkÞi|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
¼ 1

þ aðkÞ oHðkÞ
ok

����

����aðkÞ
� �

¼ aðkÞ oHðkÞ
ok

����

����aðkÞ
� �

:
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5.4

mN ¼ mþ k1M2 þ k2M3 þ k3M4 ln
M

m

� �
þ k4M4 þ OðM5Þ:

Make use of

oM3

oM2
¼ oðM2Þ

3
2

oM2
¼ 3

2
ðM2Þ

1
2 ¼ 3

2
M;

o

oM2
ln

M

m

� �
¼ 1

2
o

oM2
ln

M2

m2

� �
¼ 1

2M2
:

r ¼ r1M2 þ r2M3 þ r3M4 ln
M

m

� �
þ r4M4 þ OðM5Þ

¼ M2omN

oM2

¼ M2 k1 þ
3
2

k2M þ 2k3M2 ln
M

m

� �
þ k3

2
M2 þ 2k4M2 þ OðM3Þ

� �
:

)
r1 ¼ k1; r2 ¼

3
2

k2; r3 ¼ 2k3; r4 ¼
k3

2
þ 2k4:

5.5

ðd2 �M2Þ
3
2 ¼ d3 1� x2

	 
3
2¼ d3 1� 3

2
x2 þ Oðx4Þ

� �
;

ln
d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 �M2
p

M

 !
¼ ln

d� dð1� x2Þ
1
2

M

" #

¼ ln
d� d 1� 1

2x
2 � 1

8x
4 þ Oðx6Þ

� �

M

� �

¼ ln
x

2
1þ x2

4
þ Oðx4Þ

� �� �

¼ ln
x

2

� 

þ ln 1þ x2

4
þ Oðx4Þ

� �

¼ ln
x

2

� 

þ x2

4
þ Oðx4Þ:

)

d2 �M2
	 
3

2ln
d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 �M2
p

M

 !
¼ d3 1� 3

2
x2 þ Oðx4Þ

� �
ln

x

2

� 

þ x2

4
þ Oðx4Þ

� �

¼ d3 ln
x

2

� 

� 3

2
x2 ln

x

2

� 

þ x2

4
þ O x4

	 
� �
:
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5.6 (a) From L
ð1Þ
pN :

Nðp0Þ �ie �WAlc
l1
2
ð1þ s3ÞW

����

����NðpÞ; cðe; qÞ
� �

) �ieelc
l1
2
ð1þ s3Þ:

From L
ð2Þ
pN , we only need c6 and c7 terms. With choice of external fields we find

fL=Rlm ¼ �eðolAm � omAlÞ
s3

2
þ � � � ;

fþlm ¼ �eðolAm � omAlÞs3 þ � � � ;

where the ellipsis stands for terms containing a larger number of fields.

Nðp0Þ �i
e

2
�Wrlm c6s3 þ

c7

2
1

� 

ðolAm � omAlÞW

���
���NðpÞ; cðe; qÞ

D E

) �ie
1
2
rlm c6s3 þ

c7

2
1

� 

½�iqlem � ð�iqmÞel�

¼ eelr
lmqm

1
2

2c6s3 þ c71ð Þ:

In L
ð3Þ
pN , we can set DlW ¼ olW as all other terms contain more fields. Then

i Nðp0Þ �ie

2m
�Wðd6s3 þ 2d71ÞolðolAm � omAlÞomWþ H:c:

� �����

����NðpÞ; cðe; qÞ
� �

) e

2m
ðd6s3 þ 2d71Þð�ip0m � ipmÞðq � eqm � q2emÞ

¼ ieel q2Pl � qlq � P
	 
 1

2m
d6s3 þ

1
m

d71

� �
;

where Pl ¼ p0l þ pl.
(b) Contributions from first- and second-order Lagrangian can be read off as the
Feynman rule is simply M. For third order use

�uðp0ÞPluðpÞ ¼ �uðp0Þ p0l þ plð ÞuðpÞ
¼ �uðp0Þ p0mg

ml þ glmpm
	 


uðpÞ
¼ �uðp0Þ p0mðcmcl þ irmlÞ þ ðclcm þ irlmÞpm

� �
uðpÞ

¼ �uðp0Þ p=0cl þ clp=� irlmqm
	 


uðpÞ
¼ �uðp0Þ 2mNcl � irlmqmð ÞuðpÞ

and

q � P ¼ ðp0 � pÞ � ðp0 þ pÞ ¼ p02 � p2 ¼ 0

for on-shell momenta.
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(c) Take Lagrangian LcpNN from solution to Exercise 4.5,

Nðp0Þ;/aðkÞ �ie
gA

2F
e3bc

�Wclc5sbWAl/c

���
���NðpÞ; cðe; qÞ

D E

) ieel
gA

2F
clc5e3absb:

(d) Apply Feynman rules

M ¼ �uðp0Þl4�n
Z

dnk

ð2pÞn �
gA

2F
k=c5sa

� 

iDFðkÞiSFðp0 � kÞ ieel

gA

2F
clc5e3absb

� 

uðpÞ;

and make use of k=c5 ¼ �c5k= and e3absasb ¼ 2is3.
(e)

k= ¼ �ðp=0 � k=� mÞ þ ðp=0 � mÞ
¼ �S�1

F ðp0 � kÞ þ ðp=0 � mÞ

leads to the simplification

�uðp0Þc5k=SFðp0 � kÞDFðkÞclc5uðpÞ
¼ �uðp0Þc5 �DFðkÞ þ ðp=0 � mÞSFðp0 � kÞDFðkÞ

� �
clc5uðpÞ

¼ �uðp0Þc5 �DFðkÞ � ðmN þ mÞ p=0 � k=þ m

½ðp0 � kÞ2 � m2 þ i0þ�
DFðkÞ

( )
clc5uðpÞ

¼ �uðp0Þc5 �DFðkÞ þ
ðm2

N � m2Þ þ ðmN þ mÞk=
½ðp0 � kÞ2 � m2 þ i0þ�

DFðkÞ
( )

clc5uðpÞ

¼ �uðp0Þ 1� m2
N � m2

½ðp0 � kÞ2 � m2 þ i0þ�
þ ðmN þ mÞk=
½ðp0 � kÞ2 � m2 þ i0þ�

( )
DFðkÞcluðpÞ:

(f)

M ¼� ieel�uðp0Þ g2
A

2F2
s3

�
Ip � ðm2

N � m2ÞINpð�p0; 0Þ

þ mN þ m

2m2
N

½IN � Ip þ ðm2
N � m2 þM2ÞINpð�p0; 0Þ�p=0

�
cluðpÞ

¼ � ieel�uðp0Þ g2
A

2F2
s3

�
Ip � ðm2

N � m2ÞINp

þ mN þ m

2mN
½IN � Ip þ ðm2

N � m2 þM2ÞINp�
�

cluðpÞ;

where INp ¼ INpð�p0; 0Þjp02¼m2
N
.
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Problems of Appendix B

B.1

df ðyÞ
df ðxÞ ¼ lim

e!0

Fy½f þ edx� � Fy½f �
e

¼ lim
e!0

R
dnzdnðz� yÞ½f ðzÞ þ ednðz� xÞ� �

R
dnzdnðz� yÞf ðzÞ

e

¼
Z

dnzdnðz� yÞdnðz� xÞ

¼ dnðy� xÞ:
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Index

A
Adler-Gilman relation, 240
Anomalous

action, 134, 136, 138
Ward identity, 121, 133

Anomalous magnetic moment, 170, 231, 236,
241

Anomaly, 23, 27, 36, 41, 45, 46, 121
Anticommutation relations

fermion fields, 20
Gell-Mann matrices, 3
Pauli matrices, 251

Axial-vector coupling constant, 152, 158, 159,
227, 229

Axial-vector current, 23, 85
divergence of, 26, 46

B
B0, 87–89, 92, 94, 100
Baryon mass, 154, 243
Baryon number conservation, 69

C
Cabibbo-Kobayashi-Maskawa matrix, 45, 97,

153
Canonical quantization, 16, 29, 30
Charge conjugation, 42, 43, 91, 94, 95, 158,

241
Charge operator, 17, 18, 20, 24, 25, 28, 30, 61,

70, 72, 74, 75, 222
v, 92–94
v±, 169
Chiral algebra, 24

Chiral connection, 150, 157, 163, 208, 237
Chiral extrapolation, 230, 239
Chiral limit, 9, 24, 41, 69, 71, 72, 74, 76, 80,

90, 129, 152, 168
QCD Lagrangian in, see QCD Lagrangian

in chiral limit
Chiral logarithm, 64, 129, 139, 229
Chiral symmetry, 1, 12
Chiral transformation properties (local)

baryons, 154
D, 207, 208
external fields, 44
Goldstone bosons U, 91, 150
nucleon, 150
quarks, 43

Chiral unitary approach, 243
Chiral vielbein, 151, 156, 184, 208
Chiral-symmetry-breaking scale, 9, 118, 180,

213, 243
Clebsch-Gordan coefficient, 28, 102,

205–207
Coleman theorem, 71
Commutation relations

angular momentum, 16
boson fields, 20
charge operators, 18, 24, 25
equal-time, 16, 25, 29, 30, 38, 73
Gell-Mann matrices, 3
Pauli matrices, 251

Complex-mass scheme, 243
Compton scattering

nucleon, 36, 240
pion, 104–105, 140, 141
virtual, 241

Constraints, 201, 209, 210
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C (cont.)
Convergence

of chiral expansion, 139, 141, 201,
227–230, 241, 242

of integrals, 109, 120, 185, 188, 198
Coset, 77–79
Counter term, 115–116, 122, 138, 172–173,

175, 177, 179, 191, 192, 194, 196,
220, 221, 228, 244

Covariant derivative
baryon octet, 154
D, 208
electron, 5
Goldstone boson (U), 91, 93
nucleon, 150
quark, 7
vector meson, 237

Crossing symmetry, 105, 161, 162,
164, 240

Current operator, 30, 36, 75, 155, 230, 236

D
Degenerate ground state, 49, 53
d expansion, 212, 213
D (resonance), 200, 224
Dimensional counting analysis, 198–200
Dimensional regularization, 105–115, 122,

126, 175, 192, 200, 203, 252

E
Effective field theory, 65–68, 91, 117, 120,

139, 239, 244
Effective Lagrangian, 117

baryons, 149, 154
D, 208, 211, 212
Goldstone bosons, 83, 87, 94, 121–122,

130–131, 136–137, 138
heavy-baryon, 184
nucleon, 152, 169
vector mesons, 237

Electromagnetic interaction, 5, 44, 46–47, 91,
104–105, 136–138, 152, 170,
230–236, 239–242

EOMS scheme, 192–198, 218, 220–221, 224,
231, 235, 237

Equation of motion
D, 202
Goldstone bosons, 95, 133
heavy baryon, 182
nucleon, 181

Euler’s constant, 111
Euler-Lagrange equation, see equation of

motion
Explicit symmetry breaking, 25, 63, 64, 86, 90,

123, 222
External fields, 33, 40–46, 91, 92, 94, 136

F
F0, 76, 98, 100
Fermi constant, 45, 66, 97, 153
Few-nucleon systems, 244
Feynman parameterization, 186
Feynman propagator

D, 211
Goldstone boson, 123
heavy-baryon, 184
nucleon, 163
W, 97

Field-strength tensor
fLlm, fRlm , 92, 169
flm
+ , flm

- , 169
QCD, 8
QED, 5, 47
vector-meson, 237
vlm

(s), 170
Finite subtraction, 122, 172, 179, 192, 219,

220
Finite volume, 239
Foldy-Wouthuysen transformation,

154, 180
Form factor

axial, 36, 158, 240
Dirac, 231, 232
induced pseudoscalar, 36, 158
nucleon electromagnetic, 36, 230–238
Pauli, 231, 232
pion axial-vector, 141
pion electromagnetic, 36
pion vector, 141
pion-nucleon, 156
Sachs, 231

G
Gauge invariance, 5, 8, 28, 105, 240, 243
Gauge principle, 4–8
Gell-Mann and Lévy

method of, 13, 15, 22, 29
Gell-Mann matrices, 2–4
Gell-Mann, Oakes, and Renner

relation, 89, 140
Gell-Mann-Okubo relation, 89
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Generating functional, 32–35, 41, 42,
91, 133, 255

Generators, 16, 18, 20, 25, 28, 29, 56–61, 70,
72, 76, 251

Goldberger-Treiman discrepancy, 158
Goldberger-Treiman relation, 155, 157–158,

165, 166
Goldstone boson, 56, 60, 61, 63, 71, 76

mass, see mass pseudoscalar octet
massless, 56, 58–60, 63, 72, 75, 84
number of, 59
transformation properties, 76–82

Goldstone theorem, 59–63
Green function, 28, 31–33, 36–38,

40–42, 150, 254

H
Hadron spectrum, 1, 69–72
Heavy-baryon ChPT, 154, 179–185, 201,

215–218, 227, 240–242
Hellmann-Feynman theorem, 223,

224, 226
Hypergeometric function, 193–195

I
Infrared regularization, 185–192, 197–198,

221, 225, 227, 232, 235–237
Infrared-regular part, 187, 188, 191,

192, 197, 198, 228
Infrared-singular part, 187, 189, 191, 192, 228,

229, 235
Isospin-symmetry breaking, 27, 139, 242

J
Jacobi identity, 3

K
K(L, R, U), 148, 149

L
Lattice QCD, 121, 227, 239
LEC, 65–66, 94, 96, 121, 122, 152, 169, 212,

229, 236
Left-handed fields, 10
Lie algebra, 1–4, 18, 24, 55, 58, 59
Lie group, 1, 57, 76
Low-energy constant, see LEC
Low-energy theorem, 240

M
Mandelstam variables, 68, 101, 161
Mass

baryon octet, 72, 154, 243
D, 202
D-nucleon difference, 200, 213, 224
Goldstone boson, see mass pseudoscalar

octet
nucleon, 9, 175, 177–179, 215, 218, 224, 227
nucleon in chiral limit, 152, 222
pion, 132
pseudoscalar octet, 71, 89–90, 123, 128–129
quark, 6, 9, 25, 89

‘‘Mexican hat’’ potential, 56

Minimal subtraction scheme, see gMS scheme
Modified minimal subtraction scheme of

ChPT, see gMS scheme
MS scheme, 122
gMS scheme, 122, 175, 178, 179, 220, 221
Multi-loop diagrams, 192, 197

N
Nambu-Goldstone mode, 50, 51, 55
Natural units, 5
Noether theorem, 12, 13, 15
Nonlinear realization, 76, 82
Nucleon

magnetic moments, see anomalous
magneti moment

mass, see mass
Nucleon-nucleon interaction, 244

P
Parity, 10, 23, 42, 70, 91, 94

doubling, 70, 72
intrinsic, 83, 133, 135, 138

Partial functional derivative, 33, 35, 41,
253–256

Partially conserved axial-vector current,
see PCAC

Path integral, 29, 33, 68
Pauli matrix, 19, 251–252
PCAC, 27, 47, 140, 239
Pion decay, 96–100

constant, see F0

neutral, 137
Pion production, 36, 153, 239
Pion-nucleon coupling constant, 19, 156, 157,

165
Pion-nucleon scattering, 160–169, 184, 227
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P (cont.)
Pion-nucleon sigma term, 223, 226
Point transformation, 203, 211
Poisson bracket, 210
Polarizabilities

dynamical, 240
generalized, 241
nucleon, 240
pion, 140–142
spin, 240

Power counting, 66, 92, 117–120, 140,
153–154, 173–175, 212–213,
236–237

Q
QCD

Lagrangian, 6–9
Lagrangian and external fields, 40, 43
Lagrangian in chiral limit, 9–10, 12
mass term, 26

QED, 5, 28, 38
Quantum chromodynamics, see QCD
Quantum electrodynamics, see QED
Quark

charge matrix, 44, 136
heavy, 9
light, 9
mass, 6
mass matrix, 25

Quark condensate, 41, 72–76, 88, 90, 140
Quotient, 77–78

R
Rarita-Schwinger formalism, 201
Realization of a group, 80, 82, 149, 208
Regularization, 105, 115

dimensional, see dimensional
regularization

infrared, see infrared regularization
Renormalization, 66, 115, 116, 121, 171, 173,

191, 197, 218, 224
Right-handed fields, 11
Roper resonance, 244

S
Scattering length

pion-nucleon, 166–169
pion-pion, 90, 102, 138–140

Schwinger term, 38–39
Self energy

Goldstone boson, 123–128, 132
nucleon, 174–179, 215–222, 224–226

Sigma model, 54, 76, 223
Sigma terms, 222–224, 226
Small-scale expansion, 213, 224, 231, 241
Spin matrix Sv, 183
Spontaneous symmetry breaking, 51, 54, 56,

59, 69, 76, 82
Structure constant, 3, 18
SU(3), 1–4
Symmetry

chiral, see chiral symmetry
discrete, 42, 49, 92, 152
explicit breaking, see explicit symmetry

breaking
global, 1, 5, 12, 13, 24, 29, 34, 85, 90
local, 5, 7, 34, 42, 90, 150
spontaneous breaking, see spontaneous

symmetry breaking

T
Tensor integral, 189, 217, 234
h term, 8
’t Hooft parameter, 109

U
U (Goldstone bosons), 79

exponential parameterization, 80, 83, 130,
133

square-root parameterization, 103, 130,
133

V
Vacuum expectation value, 50, 54, 57, 59, 72,

76, 90
Vector current, 23, 86

divergence of, 27, 46
Vector meson, 139, 236–239

W
W boson, 44–45, 96–97, 153
Ward identity, 28, 32, 34–36, 90, 106, 133
Weinberg-Tomozawa term, 160, 168
Wess-Zumino-Witten action, see WZW action
Wick rotation, 107, 109, 114
Wigner-Eckart theorem, 28, 161
Wigner-Weyl mode, 50
WZW action, 121, 133–138

Z
Z boson, 45, 153
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