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Preface

Chiral perturbation theory (ChPT) is the effective field theory of quantum chro-
modynamics (QCD) at energies well below typical hadron masses. This means that
it is a systematic and model-independent approximation of QCD, based on the
symmetries of the underlying theory and general principles of quantum field
theory. Starting from early work on the interaction of pions, ChPT has grown to
become a valuable tool to analyze and interpret a host of low-energy experiments
involving the lowest-mass meson and baryon octets and decuplets. The application
to mm scattering and pion photoproduction are just two of the large number of
remarkable successes of ChPT.

This monograph is based on lectures on chiral perturbation theory given by one
of us (S.S.) on various occasions, supplemented with additional material. It is
aimed at readers familiar with elementary concepts of field theory and relativistic
quantum mechanics. The goal of these lecture notes is to provide a pedagogical
introduction to the basic concepts of chiral perturbation theory (ChPT) in the
mesonic and baryonic sectors. We therefore also derive and explain those aspects
that are considered well known by “experts.” In particular, we often include
intermediate steps in derivations to illuminate the origin of our final results. We
have also tried to keep a reasonable balance between mathematical rigor and
illustrations by means of simple examples. Numerous exercises throughout the text
cover a wide range of difficulty, from very easy to quite difficult and involved.
Ideally, at the end of the course, the reader should be able to perform simple
calculations in the framework of ChPT and to read the current literature. Solutions
to all exercises are provided for readers to check their own work.

These lecture notes include the following topics: Chapter 1 deals with QCD and
its global symmetries in the chiral limit, explicit symmetry breaking in terms of the
quark masses, and the concept of Green functions and Ward identities reflecting
the underlying chiral symmetry. In Chap. 2, the idea of a spontaneous breakdown
of a global symmetry is discussed and its consequences in terms of the Goldstone
theorem are demonstrated. Chapter 3 deals with mesonic chiral perturbation the-
ory. The principles entering the construction of the chiral Lagrangian are outlined
and a number of elementary applications are discussed. In Chap. 4, these methods
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are extended to include the interaction between Goldstone bosons and baryons in
the single-baryon sector. Chapter 5 discusses more advanced applications and
topics that are closely related to chiral perturbation theory.

This work is not intended as a comprehensive review of the status of chiral
perturbation theory. This also means that we cannot cite all of the vast literature,
especially on advanced applications. Readers interested in the present status of
applications are encouraged to consult the numerous available lecture notes,
review articles, and conference proceedings. A list of suggested references is
provided at the end of Chap. 5.

While the number of people who have contributed to our understanding of the
topics discussed in this monograph is too large to acknowledge each of them indi-
vidually, we would like to thank H.W. Fearing, J. Gegelia, H.W. GrieBhammer, and
D. R. Phillips for numerous interesting and stimulating discussions that have most
directly influenced us. We are grateful to A. Neiser for the careful reading of and
helpful comments on the manuscript. We would also like to thank all students who
participated in previous classes on ChPT and gave important feedback. The support
and patience of our editor C. Caron is gratefully acknowledged. S.S. would like to
thank M. Hilt for extensive technical support. M.R.S. would like to thank the Lattice
and Effective Field Theory group at Duke University for their hospitality. This work
was carried out in part with financial support from the Center for Nuclear Studies at
the George Washington University, National Science Foundation CAREER award
PHY-0645498, and US-Department of Energy grant DE-FG02-95ER-40907.

Mainz and Columbia, SC, April 2011 Stefan Scherer
Matthias R. Schindler
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Chapter 1
Quantum Chromodynamics and Chiral
Symmetry

1.1 Some Remarks on SU(3)

The special unitary group SU(3) plays an important role in the context of the
strong interactions, because

1. it is the gauge group of quantum chromodynamics (QCD);

2. flavor SU(3) is approximately realized as a global symmetry of the hadron
spectrum, so that the observed (low-mass) hadrons can be organized in
approximately degenerate multiplets fitting the dimensionalities of irreducible
representations of SU(3);

3. the direct product SU(3), x SU(3), is the chiral-symmetry group of QCD for
vanishing u-, d-, and s-quark masses.

Thus, it is appropriate to first recall a few basic properties of SU(3) and its Lie
algebra su(3) [8, 34, 43].

The group SU(3) is defined as the set of all unitary, unimodular, 3 x 3 matrices
U, ie. U'U =1," and det(U) = 1. In mathematical terms, SU(3) is an eight-
parameter, simply-connected, compact Lie group. This implies that any group
element can be parameterized by a set of eight independent real parameters
® = (0y,...,0g) varying over a continuous range. The Lie-group property refers
to the fact that the group multiplication of two elements U(®) and U(V) is
expressed in terms of eight analytic functions @;(®; W), i.e. U(®)U(Y) = U(D),
where ® = ©(®; ). It is simply connected because every element can be con-
nected to the identity by a continuous path in the parameter space and compactness
requires the parameters to be confined in a finite volume. Finally, for compact Lie
groups, every finite-dimensional representation is equivalent to a unitary one and

! Throughout this monograph we adopt the convention that 1 stands for the unit matrix in n
dimensions. It should be clear from the respective context which dimensionality actually
applies.

S. Scherer and M. R. Schindler, A Primer for Chiral Perturbation Theory, 1
Lecture Notes in Physics 830, DOI: 10.1007/978-3-642-19254-8_1,
© Springer-Verlag Berlin Heidelberg 2012



2 1 Quantum Chromodynamics and Chiral Symmetry

can be decomposed into a direct sum of irreducible representations (Clebsch-
Gordan series).

Elements of SU(3) are conveniently written in terms of the exponential
representation”

8
U(®) = exp <—iz ®a%> = exp (—i@a%), (1.1)
a=1

with ®, real numbers, and where the eight linearly independent matrices A, are the
so-called Gell-Mann matrices, satisfying

%: is(f)]a(o,...,()), (12)
da =M (1.3)
Tr(fuis) = 20, (1.4)
Tr(4,) = 0. (1.5)

The Hermiticity of Eq. 1.3 is responsible for U = U~!. On the other hand, since
det[exp(C)] = exp[Tr(C)], Eq. 1.5 results in det(U) = 1. An explicit representa-
tion of the Gell-Mann matrices is given by [25]

010 0 —i 0 1 0 0
=11 00|, =i 0o o], s=[0 -1 0],

000 0 0 0 0 0 0

00 1 0 0 —i 000
/14(000,15 00 0], i= 001),

1 00 i 0 0 010

00 0 1 0 0
Jg = 00—1‘,18:\@01 0 |. (1.6)

0 i 0 00 -2

The set {idsJa = 1,...,8} constitutes a basis of the Lie algebra su(3) of SU(3), i.e.,
the set of all complex, traceless, skew-Hermitian, 3 x 3 matrices. The Lie product
is then defined in terms of ordinary matrix multiplication as the commutator of two
elements of su(3). Such a definition naturally satisfies the Lie properties of
anticommutativity

2 Most of the time, we will make use of the repeated-index summation convention, i.e., wherever
in any term of an expression a literal index occurs twice, this term is to be summed over all
possible values of the index. However, sometimes we will find it instructive to explicitly keep the
summation symbol including its range of summation.
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Table 1.1 Totally antisymmetric nonvanishing structure constants of SU(3)

abc 123 147 156 246 257 345 367 458 678
N

as well as the Jacobi identity
[A,[B, C]] + [B,[C,A]] + [C, [A, B]] = 0. (1.8)

In accordance with Eqgs. 1.1 and 1.2, elements of su(3) can be interpreted as
tangent vectors in the identity of SU(3).

The structure of the Lie group is encoded in the commutation relations of the
Gell-Mann matrices,

Ja ) e
|:?7?:| - lfahcza (19)

where the totally antisymmetric real structure constants f,,. are obtained from
Eq. 1.4 as
1 1
Fabe = ETr([ﬂm, 2b)e). (1.10)
Exercise 1.1 Verify Eq. 1.10.

Exercise 1.2 Show that f;. is totally antisymmetric.
Hint: Consider the symmetry properties of Tr([A, B]C).

The independent nonvanishing values are explicitly summarized in Table 1.1 [25].
Roughly speaking, these structure constants are a measure of the non-commutativity
of the group SU(3).

The anticommutation relations of the Gell-Mann matrices read

4
{)‘aa /Lb} = §5ab11 + 2dabc)vm (111)

where the totally symmetric d,;. are given by

1
dab(f = ZTr({iaa ;Lb};LL‘)a (112)

and are summarized in Table 1.2 [25].
Exercise 1.3 Verify Eq. 1.12 and show that d,. is totally symmetric.

Clearly, the anticommutator of two Gell-Mann matrices is not necessarily a
Gell-Mann matrix. For example, the square of a (nontrivial) skew-Hermitian
matrix is not skew Hermitian.
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Table 1.2 Totally symmetric nonvanishing d symbols of SU(3)
abc 118 146 157 228 247 256 338 344 355 366 377 448 558 668 778 888
d, 1 1 1 11 L1 1 1 1 1 1

L _ 1 1 1 1 1
be 32 2 3 T2 A2 2 2 T2 T2/3 A B s B

Exercise 1.4 Using

A 1 1 2 .
/Lalh = 5{)%7 ib} + ium )vh] = géabﬂ + habc)vca hahc = dahc + lfabm

in combination with Eqgs. 1.4 and 1.5, traces of products of Gell-Mann matrices
may be evaluated recursively. Verify

Tr()ua)»h ;LL> = 2habc )

4
Tr()ua)»b)vcﬂnd) = géabécd + 2habehecda
4

4
Tr(/la/ibic)vd)he) = ghabcéde + géabhcde + 2habfhfcghgde~

Hint: A, is invariant under cyclic permutations, i.e. hgpe = hpea = Peap-

Moreover, it is convenient to introduce as a ninth matrix

2

such that Egs. 1.3 and 1.4 are still satisfied by the nine matrices 4,. In particular,
the set {il,Ja=0,...,8} constitutes a basis of the Lie algebra u(3) of U(3),
i.e., the set of all complex, skew-Hermitian, 3 x 3 matrices. Many useful prop-
erties of the Gell-Mann matrices can be found in Sect. 8 of Ref. [12].

Finally, an arbitrary 3 x 3 matrix M can be written as

M:ZMa}%u (113)
a=0
where M, are complex numbers given by
1
M, = ETr(/laM). (1.14)

1.2 Local Symmetries and the QCD Lagrangian

The gauge principle has proven to be a tremendously successful method in ele-
mentary particle physics to generate interactions between matter fields through the
exchange of massless gauge bosons (for a detailed account see, e.g., Refs. [1, 13,
15, 43, 54]).
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1.2.1 The QED Lagrangian

The best-known example is quantum electrodynamics (QED) which is obtained
from promoting the global U(1) symmetry of the Lagrangian describing a free
electron,’

Y- exp(i®)¥ : Lhree = ‘i’(iy”@u — m)‘P»—> Plrees (1.15)

to a local symmetry. In this process, the parameter 0 < ® <27 describing an
element of U(1) is allowed to vary smoothly in space-time, ® — ©(x), which is
referred to as gauging the U(1) group. To keep the invariance of the Lagrangian
under local transformations one introduces a four-vector potential .«7, into the
theory which transforms under the gauge transformation .7, — .27, 4+ 0,0 /e. The
method is referred to as gauging the Lagrangian with respect to U(1):

Laep = P[i" (0, —iet ) —m|¥ = 2F T, (1.16)

ENI

where &, = 0,7, — 0,9/, denotes the electromagnetic field-strength tensor.*
The covariant derivative of W,

DY = (0, —iest,)¥,
is defined such that under a so-called gauge transformation of the second kind
W() o expli@@(), () o, (x) +0,0() e, (1.17)
it transforms in the same way as ¥ itself:
D, ¥ (x) — expli®(x)]D, ¥ (x). (1.18)

In Eq. 1.16, the term containing the squared field strength makes the gauge
potential a dynamical degree of freedom as opposed to a pure external field.
A mass term M?.c7? /2 is not included since it would violate gauge invariance and
thus the gauge principle requires massless gauge bosons.” In the present case we
identify .7, with the electromagnetic four-vector potential and .7 ,, with the field-
strength tensor containing the electric and magnetic fields. The gauge principle has
(naturally) generated the interaction of the electromagnetic field with matter:

Line = —(—e) PP VYot , = —J o, (1.19)

3 We use the standard representation for the Dirac matrices (see, e.g., Ref. [11]).
* We use natural units, i.e., i=c=1, ¢ >0, and a = €?/4n ~ 1/137.

5 Masses of gauge fields can be induced through a spontaneous breakdown of the gauge
symmetry.
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Table 1.3 Quark flavors and their charges and masses

Flavor u d s

Charge [e] 2/3 -1/3 -1/3

Mass [MeV] 1.7-3.3 4.1-5.8 101+%

Flavor c b t

Charge [e] 2/3 —1/3 2/3

Mass [GeV] 127408 4.19*948 1720£09£13

See Ref. [39] for details

where J# denotes the electromagnetic current (density). If the underlying gauge
group is non-Abelian, the gauge principle associates an independent gauge field
with each independent continuous parameter of the gauge group.

1.2.2 The QCD Lagrangian

QCD is the gauge theory of the strong interactions [18, 29, 51] with color SU(3) as
the underlying gauge group. For a comprehensive guide to the literature on QCD,
see Ref. [35]. Historically, the color degree of freedom was introduced into the
quark model to account for the Pauli principle in the description of baryons as
three-quark states [28, 30]. The matter fields of QCD are the so-called quarks
which are spin-1/2 fermions, with six different flavors (u,d, s, c, b, t) in addition to
their three possible colors (see Table 1.3). Since quarks have not been observed as
asymptotically free states, the meaning of quark masses and their numerical values
are tightly connected with the method by which they are extracted from hadronic
properties (see Ref. [39] for a thorough discussion). Regarding the so-called
current-quark-mass values of the light quarks, one should view the quark-mass
terms merely as symmetry breaking parameters with their magnitude providing a
measure for the extent to which chiral symmetry is broken [46].°

The QCD Lagrangian can be obtained from the Lagrangian for free quarks by
applying the gauge principle with respect to the group SU(3). Denoting the quark
field components by g, ra, where oo = 1,...,4 refers to the Dirac-spinor index,
f=1,...,6to the flavor index, and A = 1,2, 3 to the color index, respectively, the
“free” quark Lagrangian without interaction may be regarded as the sum of
6 x 3 = 18 free fermion Lagrangians:

3 6 4
Lhree quarks — § E E

of,A (ygoc’iaﬂ - mféozot’>Qa’,f,A- (120)

S

S The expression current-quark masses for the light quarks is related to the fact that they appear
in the divergences of the vector and axial-vector currents (see Sect. 1.3.6).
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Suppressing the Dirac-spinor index, we introduce for each quark flavor f a color
triplet

qr.1
qr = | ar2 |- (1.21)
a3

The gauge principle is applied with respect to the group SU(3), i.e., the trans-
formations are flavor independent as all gy are subject to the same local SU(3)
transformation:

c

)= ) = exp(~10,00% Jar) = Uar). (122

The eight /; denote Gell-Mann matrices acting in color space and the ®, are
smooth, real functions in Minkowski space. Technically speaking, each quark field
gy transforms according to the fundamental representation of color SU(3). For the
adjoint quark fields, Eq. 1.22 implies the transformation behavior

g} (x) = gl () U (x). (1.23)

Because of the partial derivatives acting on the quark fields, the Lagrangian of
Eq. 1.20 is not invariant under the transformations of Eqgs. 1.22 and 1.23. In order
to keep the invariance of the Lagrangian under local transformations, one intro-
duces eight four-vector gauge potentials .2/, into the theory, transforming as’

c

)\. 1 n
A= At ol = Ust U + éaHUU' . (1.24)

The ordinary partial derivative 0,gy is replaced by the covariant derivative

Dugr = (8 + ig3,) gy, (1.25)

which, by construction, transforms as the quark field. In Eqgs. 1.24 and 1.25, g3
denotes the strong coupling constant. We note that the interaction between quarks
and gluons is independent of the quark flavors which can be seen from the fact that
only one coupling constant g3 appears in Eq. 1.25.

Exercise 1.5 Show that the covariant derivative D,gy transforms as g, i.e.,
Dygy— (Dugy)' = D)yq; = UDyugy.

So far we have only considered the matter-field part of Zocp including its
interaction with the gauge fields. In order to treat the gauge potentials .7, as

7 Under a gauge transformation of the first kind, i.e., a global SU(3) transformation, the second
term on the right-hand side of Eq. 1.24 would vanish and the gauge fields would transform
according to the adjoint representation.
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dynamical degrees of freedom, one defines a generalization of the field-strength
tensor to the non-Abelian case as

g[m\y = all&/a" - av%aﬂ - g}f;bc%huﬂcva (126)

with the SU(3) structure constants given in Table 1.1. Given Eq. 1.24, the field-
strength tensor transforms under SU(3) as

2¢

G, = %H% - UG, U (1.27)

Exercise 1.6 Verify Eq. 1.27.
Hint: Equation 1.26 is equivalent to %,, = 0,.2/, — 0,7, + ig3[.Z , /).

The QCD Lagrangian obtained by applying the gauge principle to the free
Lagrangian of Eq. 1.20, finally, reads [7, 40]

. 1 v
Lqcp = Z a (P — my)qr — Z{qauvg’a : (1.28)

=
Using Eq. 1.4, the purely gluonic part of #ocp can be written as
1 ;
—ETI'C (g#vg# ) y

which, using the cyclic property of traces, Tr(AB) = Tr(BA), together with
UU' =1, is easily seen to be invariant under the transformation of Eq. 1.27.

In contradistinction to the Abelian case of quantum electrodynamics, the
squared field-strength tensor gives rise to gauge-field self interactions involving
vertices with three and four gauge fields of strength g3 and g%, respectively. Such
interaction terms are characteristic of non-Abelian gauge theories and make them
much more complex than Abelian theories.

From the point of view of gauge invariance, the strong-interaction Lagrangian
could also involve a term of the type

0 :
g() = —TC ) gg\gga, &0123 — 1, (129)

where ¢,,,, denotes the totally antisymmetric Levi-Civita tensor.® The so-called 0
term of Eq. 1.29 implies an explicit P and CP violation of the strong interactions
which, for example, would give rise to an electric dipole moment of the neutron.

—1 if {u,v,p,0} is an odd permutation of {0, 1,2,3} .

s +1 if {g,v,p,c} is an even permutation of {0, 1,2, 3}
Epvpe =
0  otherwise
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The present empirical information indicates that the 0 term is small [44] and, in the
following, we will omit Eq. 1.29 from our discussion.

1.3 Accidental, Global Symmetries of the QCD Lagrangian

1.3.1 Light and Heavy Quarks

The six quark flavors are commonly divided into the three light quarks u,d, and s
and the three heavy flavors ¢, b, and ¢,

m, = (1.7-3.3) MeV me = 1.271000 GeV
mg = (4.1-5.8)MeV | < 1GeV < my = 4197018 GeV :
mg = (80—130) MeV m; = (172.0 £0.9 £ 1.3) GeV

(1.30)

where the scale of 1 GeV is associated with the masses of the lightest hadrons
containing light quarks, e.g., m, = 770 MeV, which are not Goldstone bosons
resulting from spontaneous symmetry breaking. The scale associated with spon-
taneous chiral symmetry breaking, 4nF, ~ 1,170 MeV, is of the same order of
magnitude. A nonvanishing pion-decay constant F is a necessary and sufficient
criterion for spontaneous chiral symmetry breaking (see Sect. 3.2.2).

The masses of the lightest meson and baryon containing a charmed quark,
D' =cd and A} = udc, are (1,869.5 4+ 0.4) MeV and (2,286.46 4 0.14) MeV,
respectively [41]. The threshold center-of-mass energy to produce, say, a D™D~
pair in e*e™ collisions is approximately 3.74 GeV, and thus way beyond the low-
energy regime which we are interested in. In the following, we will approximate
the full QCD Lagrangian by its light-flavor version, i.e., we will ignore effects due
to (virtual) heavy quark-antiquark pairs hh.

Comparing the proton mass, m, = 938 MeV, with the sum of two up and one
down current-quark masses (see Table 1.3),

my, > 2m, + mg, (1.31)

shows that an interpretation of the proton mass in terms of current-quark-mass
parameters must be very different from, say, the situation in the hydrogen atom,
where the mass is essentially given by the sum of the electron and proton masses,
corrected by a small amount of binding energy. In this context we recall that the
current-quark masses must not be confused with the constituent-quark masses of a
(nonrelativistic) quark model, which are typically of the order of 350 MeV. In
particular, Eq. 1.31 suggests that the Lagrangian . %CD, containing only the light-
flavor quarks in the so-called chiral limit m,,, my, mg — 0, might be a good starting
point in the discussion of low-energy QCD:
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0o _ . 1 -
"?QCD - Z QIlwcﬂ - Zgauvga . (132)
I=u,d,s

We repeat that the covariant derivative D, in Eq. 1.25 acts on color indices only,
but is independent of flavor.

1.3.2 Left-Handed and Right-Handed Quark Fields

In order to fully exhibit the global symmetries of Eq. 1.32, we consider the chi-

0,,1,2,3

rality matrix ys = 9° = iy%!y?)? = yg, {7*,75} =0, y% =1, and introduce the

projection operators
1 + 1 t
PR:E(“+V5):PR7 PLZE(ﬂ_%):PLa (1.33)

where the subscripts R and L refer to right-handed and left-handed, respectively, as
will become clearer below. The 4 x 4 matrices Pg and P; satisfy a completeness
relation,

Pr+P. =1, (1.34)
are idempotent,
Py =P, P; =P, (1.35)
and respect the orthogonality relations

PrP, = P P = 0. (1.36)

Exercise 1.7 Verify the properties of Eqs. 1.33—-1.36.

The combined properties of Eqs. 1.33—1.36 guarantee that Pg and P, are indeed
projection operators which project from the Dirac field variable g to its chiral
components gg and gy,

qr = Prq, qL=P.q. (1.37)

We recall in this context that a chiral (field) variable is one which under parity is
transformed into neither the original variable nor its negative.” Under parity, the
quark field is transformed into its parity conjugate,

P L](l‘,f) = VO‘I(t; 7)_5)5

and hence

9 1In case of fields, a transformation of the argument X — —X is implied.
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qR(taf) = PR('I(tvz) HPR'VOQ(% —)?) = yOPLq(t7 —)?) = “/OCIL(E —}?) 7£ iqk(ta _f)v

and similarly for g;."°

The terminology right-handed and left-handed fields can easily be visualized in
terms of the solution to the free Dirac equation. For that purpose, let us consider an
extreme relativistic positive-energy solution to the free Dirac equation with three-
momentum p,""

- ) E>m y _'
u(p,£) =vE+m 3,4* =" VE / = us(P),
A+ tys

where we assume that the spin in the rest frame is either parallel or antiparallel to
the direction of momentum

G pre =T

2 we find

po— L T2 Do p L Toa T
oo\ e Ta2 ) 75 2\ -ha Taa )

Exercise 1.8 Show that

In the standard representation of Dirac matrices'

Pruy =u,, Pruy =0, Pru_ =0, Pru_=u_.

In the extreme relativistic limit (or better, in the zero-mass limit), the operators Pg
and P;, project onto the positive and negative helicity eigenstates, i.e., in this limit
chirality equals helicity.

Our goal is to analyze the symmetry of the QCD Lagrangian with respect to
independent global transformations of the left- and right-handed fields. There are
16 independent 4 x 4 matrices I', which can be expressed in terms of the unit
matrix 1, the Dirac matrices y*, the chirality matrix vys, the products y"y5, and the
six matrices ¢’ = i[y*,7"]/2. In order to decompose the corresponding 16 qua-
dratic forms into their respective projections to right- and left-handed fields, we
make use of

o Jarlar+ g, Tqr for I € T'y = {p*,y"ys},
g = { Grl'qr +q;T'gr forI' e I, = {1,y5,0"}, (1.38)

where!?

19 Note that in the above sense, also q is a chiral variable. However, the assignment of
handedness does not have such an intuitive meaning as in the case of g, and gg.

"' Here we adopt a covariant normalization of the spinors, u®(B)u (5) = 2E5,4, etc.
12 Unless stated otherwise, we use the convention of Bjorken and Drell [11].
'3 For notational convenience we write g, and g instead of g7 and gz.
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dr = qkvo = 4'Phye = 4'Pryy = ¢'90PL = Py,
q;, = qPr.

Exercise 1.9 Verify Eq. 1.38.
Hint: Insert unit matrices as

ql'q = q(Pr + PL)I'(Pg + Pr)q,

and make use of {I',y5} =0for I € I'; and [I',y5] =0 for I € T'; as well as the
properties of the projection operators derived in Exercise 1.7.

We stress that the validity of Eq. 1.38 is general and does not refer to
“massless” quark fields.

We now apply Eq. 1.38 to the term in the Lagrangian of Eq. 1.32 containing the
contraction of the covariant derivative with y*. This quadratic quark form de-
couples into the sum of two terms which connect only left-handed with left-handed
and right-handed with right-handed quark fields. The QCD Lagrangian in the
chiral limit can then be written as

_ . . 1 ,
goQCD = Z (qR,llquJ + QL,llquLJ) - Zgaﬂvgiz”' (1.39)
I=u,d,s

Due to the flavor independence of the covariant derivative, f%CD is invariant

under
ur, u, g ; ur
dL = UL dL = exp <—l z_:l @LQE‘Z) e_l®l‘ dL ,
S, S, a= SL
Ur Uur 8 /1 Ur
dR — UR dR = exp <—l ZI: ®Ra70> e_iek dR 5 (140)
SR SR a= SR

where U and Uy are independent unitary 3 x 3 matrices and where we have
extracted the factors e '® and ¢ '®* for future convenience. We have thus
decomposed the U(3) x U(3) transformations into SU(3) x SU(3) x U(1) x U(1)
transformations. Note that the Gell-Mann matrices act in flavor space. We will
refer to the invariance of #{, under SU(N), x SU(N), (N =2 or 3) as chiral
symmetry.

X%CD is said to have a classical global U(3); x U(3)r symmetry. Applying
Noether’s theorem one would expect a total of 2 x (8 + 1) = 18 conserved cur-
rents from such an invariance.
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1.3.3 Noether Theorem

Noether’s theorem [6, 24, 31, 42] establishes the connection between continuous
symmetries of a dynamical system and conserved quantities (constants of the
motion). For simplicity we consider only internal symmetries. (The method can
also be used to discuss the consequences of Poincaré invariance.)

In order to identify the conserved currents associated with the transformations
of Egs. 1.40, we briefly recall the method of Gell-Mann and Lévy [24], which we
will then apply to Eq. 1.39.

We start with a Lagrangian ¥ depending on n independent fields ®; and their
first partial derivatives 0,®; (i = 1, ..., n), collectively denoted by the symbols ®
and 9,®,"

&L =Z(9,0,9), (1.41)
from which one obtains n equations of motion:

0¥ 0¥

L 5 % o izt 1.42
o, 30,0, 0, i=1...n (142)

Suppose the Lagrangian of Eq. 1.41 to be invariant under a continuous, global
transformation of the fields depending smoothly on r real parameters. The method
of Gell-Mann and Lévy [24] now consists of promoting this global symmetry to a
local one, from which we will then be able to identify the Noether currents. To that
end we consider transformations which depend on r real local parameters &, (x),"”

@;(x) — D}(x) = Bi(x) + 0D;(x) = D;(x) — igq(x)Fui|P(x)], (1.43)

and obtain, neglecting terms of order &2, as the variation of the Lagrangian,

5% = P(¥,0,0) — £(D,0,0)
Y o
5300 0,60,
=230, T 50,0, 202
lausaFai — i8aa Fa,'

_ 7-@£F.7 0z 02 5 ko) 4o ;92
~ e\ T, T o, ) O\ T g,y

= ,0,JY + 0,840%. (1.44)

According to this equation we define for each infinitesimal transformation a four-
current density as

!4 The extension to higher-order derivatives is also possible.
15 Note that the transformation need not be realized linearly on the fields.
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P

i p o 14
« = '50,@ (1.45)

By calculating the divergence 0,J% of Eq. 1.45

a#J;‘:—i<a oc >Fa,-—' oz 0uFui

130,®; '90,®;
_ %y L p
o, T o, e

where we made use of the equations of motion, Eq. 1.42, we explicitly verify the
consistency with the definition of 0,J% according to Eq. 1.44. From Eq. 1.44 it is
straightforward to obtain the four-currents'® as well as their divergences as

007
—
J" e (1.46)
Y
(g . 1.47
a#‘la aga ( )

We chose the parameters of the transformation to be local. However, the
Lagrangian of Eq. 1.41 was only assumed to be invariant under a global trans-
formation. In that case, the term 0,¢, disappears, and since the Lagrangian is
invariant under such transformations, we see from Eq. 1.44 that the current J/ is
conserved, 0,J% = 0. For a conserved current the charge

Q.(t) = / dxJ(1,X) (1.48)

is time independent, i.e., a constant of the motion.

Exercise 1.10 By applying the divergence theorem for an infinite volume, show
that Q,(¢) is a constant of the motion for 0. = 0. Assume that the fields and thus
the current density vanish sufficiently rapidly for |¥| — oo.

Exercise 1.11 Consider the Lagrangian of two real scalar fields ®; and ®, of
equal masses m with a so-called 2®* interaction:

1 A
& = [0, ®13D) +3,0:0"®; —m’ (0 4+ ©3)] - (@] + @), (149)

where m? > 0 and / > 0.

(a) Determine the variation 6. under the infinitesimal, local transformation of the
fields

16 Most of the time, we follow common practice and speak of four-currents instead of four-
current densities.
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Table 1.4 Different versions

. Invariant quantity Current density or charge

of conservation laws =

0L =0 Jt =22 50
30,
0 = ey " I = 500 — S
oL =0 0 = [dZ500
d2 _ (13,07 sd _ g

oL = g2 Q= [d¥3%0D — 2
0S=0 Explicit form of J* not known

The transformation of the fields is symbolically written as
O @+ 6D = ® + £5D. L and S refer to the Lagrange function
and the action, respectively. The second column denotes which
quantity can be explicitly obtained from the Lagrangian

(I)ll = q)] + 5(1)] = (DI — E(X)(Dz, (Dlz = (1)2 + 5@2 = (DZ + S(X)(Dl. (150)

(b) Apply the method of Gell-Mann and Lévy to determine the corresponding
current J* and show that J* is conserved.

In the above discussion, we have assumed that the Lagrangian is invariant under
a global transformation of the type Eq. 1.43 which is sufficient for the present
purposes. However, we would like to mention that, demanding less restrictive
assumptions, it is still possible to derive conservation laws of the type 3,J* =0
(see Ref. [52]). The various possibilities are summarized in Table 1.4.

So far we have discussed Noether’s theorem on the classical level, implying
that the charges Q,(¢) can have any continuous real value. However, we also need
to discuss the implications of a transition to a quantum theory.

To that end, let us first recall the transition from classical mechanics to quantum
mechanics. Consider a point mass m in a central potential V(r), i.e., the corre-
sponding Lagrange and Hamilton functions are rotationally invariant. As a result
of this invariance, the angular momentum [=7x P is a constant of the motion
which, in classical mechanics, can have any continuous real value. In the transition
to quantum mechanics, the components of 7 and j turn into Hermitian, linear
operators, satisfying the commutation relations

[%i,pj] = 05, [%, %] =0, [pi,pj] =0.

The components of the angular momentum operator are given by

li = &iX;Px
which, for later comparison with the results in quantum field theory, we express in
terms of the 3 x 3 matrices L;‘d of the adjoint representation,

li = —ip; (—igyk) Xx. (1.51)
——
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Both the matrices of the adjoint representation and the components of the angular
momentum operator satisfy the angular momentum commutation relations,

[L?d,L;d] = l.SijkLid, [Z,‘, Z]] = l'Sl:/‘kik.

Since the components of the angular momentum operator cannot simultaneously
be diagonalized, the states are organized as eigenstates of 1il; and I3 with eigen-
values /(I+1) and m=—1I,...,1 (I=0,1,2,...). Also note that the angular
momentum operators are the generators of rotations. The rotational invariance of
the quantum system implies that the components of the angular momentum
operator commute with the Hamilton operator,

[I:]7 Zl] = 07

i.e., they are still constants of the motion. One then simultaneously diagonalizes

H, 7,-7,-, and I3. For example, the energy eigenvalues of the hydrogen atom are given
by

“’m 136

E,=— ~ T 5
2n? n?

ev,
where n=n'+1+ 1,n >0 denotes the principal quantum number, and the
degeneracy of an energy level is given by n? (spin neglected). The value E; and
the spacing of the levels are determined by the dynamics of the system, i.e., the
specific form of the potential, whereas the multiplicities of the energy levels are a
consequence of the underlying rotational symmetry."’

Having the example from quantum mechanics in mind, let us turn to the
analogous case in quantum field theory. After canonical quantization, the fields ®;
and their conjugate momenta IT; = 0. /0(0y®;) are considered as linear operators
acting on a Hilbert space which, in the Heisenberg picture, are subject to the equal-
time commutation relations

[@,‘(l,)?%ﬂj(l,f)] = i53()_5_ )_;)51/’
[(Di(taf)aq)j(tay)] =0, (152)

As a special case of Eq. 1.43 let us consider infinitesimal transformations that are
linear in the fields,

D;(x) — Di(x) = Bi(x) — igg(x)1,,;P;(x), (1.53)

where the #,; are constants generating a mixing of the fields. The angular-
momentum analogue reads

'7" In fact, the accidental degeneracy for n > 2 is a result of an even higher symmetry of the 1/r
potential, namely an SO(4) symmetry (see, e.g., Ref. [34]).
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)AC,' '—>)AC,' — iSk(—iSk,'j))ACj.
From Eq. 1.45 we then obtain

0¥

) =~ g
)= ~ig5, @,

a

D, (1.54)

Qu(t) = —i / AT (x)1,,D;(x), (1.55)

where J#(x) and Q,(t) are now operators. Note the perfect analogy to the angular
momentum case of Eq. 1.51.

In order to interpret the charge operators Q,(t), let us make use of the equal-
time commutation relations, Eqs. 1.52, and calculate their commutators with the
field operators,

00): @u(0.5)) = ~ita [ d5(IL(1, 1015 0u(s. )
= —ta®i(1,), (1.56)
which corresponds to
I, %] = iewiji.
Note that we did not require the charge operators to be time independent.

Exercise 1.12 Using the equal-time commutation relations of Eqs. 1.52, verify
Eq. 1.56.

On the other hand, for the transformation behavior of the Hilbert space asso-
ciated with a global infinitesimal transformation, we make an ansatz in terms of an
infinitesimal unitary transformation'®

o) = [1 + ie,Ga(1)]]r), (1.57)
with Hermitian operators G,. Demanding
(BlAlo) = (BlA|e) Y o), |B). a; (1.58)

in combination with Eq. 1.53 yields the condition

(Bl®;(x)]o) = (B'|D}(x)[o)
= (BI[1 — ieaGa(0)][@i(x) — ienty 7 D; (x)][1 + iccGe (1)]]ot).

By comparing the terms linear in ¢, on both sides,

'8 We have chosen to have the fields (field operators) rotate actively and thus must transform the
states of the Hilbert space in the opposite direction.
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0 = —igq[G,(1), Di(x)]  —ieatay®@i(x) (1.59)
= ieq[Qa(t), D;i(x)]

we see that the infinitesimal generators G,(¢), acting on the Hilbert space states,
that are associated with the transformation of the fields are identical with the
charge operators Q,(¢) of Eq. 1.55.

Finally, evaluating the commutation relations for the case of several generators,
[Qa(t)a Qh([)} = *i(ta,ijthjk - th‘ljtajk)/d3xni(ta )_C')(I)k(taz)v (160)

we find the right-hand side of Eq. 1.60 to be again proportional to a charge
operator, if

ta,ijth.jk - th,ijta,jk = iCabctc‘ika (161)
i.e., in that case the charge operators Q,(t) form a Lie algebra

[Qa(t)a Qb(t)] = iC(leQC(t) (162)
with structure constants Cyp,.

Exercise 1.13 Using the canonical commutation relations of Egs. 1.52, verify
Eq. 1.60.

From now on we assume the validity of Eq. 1.61 and interpret the constants #, ;
as the entries in the ith row and jth column of an n X n matrix Ty,

ta11 cee ta,ln
T, =

ta,nl e ta,nil

Because of Eq. 1.61, these matrices form an n-dimensional representation of a Lie
algebra,

[Tm Tb] = iCabcTc~

The infinitesimal, linear transformations of the fields ®; may then be written in a
compact form,

@ (x)
: =0(x)—~ D' (x) = (1 — ie,T,)D(x). (1.63)
D, (x)

In general, through an appropriate unitary transformation, the matrices 7,, may be
decomposed into their irreducible components, i.e., brought into block-diagonal

form, such that only fields belonging to the same multiplet transform into each
other under the symmetry group.
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Exercise 1.14 In order to also deal with the case of fermions, we discuss the
isospin invariance of the strong interactions and consider, in total, five fields. The
commutation relations of the isospin algebra su(2) read

(0, Q)] = ieyjuQx- (1.64)
A basis of the so-called fundamental representation (n = 2) is given by
1
! =5t (f: fundamental) (1.65)

with the Pauli matrices

S R ) N (K N

We replace the fields @4 and @5 by the nucleon doublet containing the proton and

neutron fields,
_ (P
Y= (n ) (1.67)

A basis of the so-called adjoint representation (n = 3) is given by

tad tad tad
il iz s
T = t;flgl tf‘gz t;‘% , t;f‘jk:—is,-jk (ad: adjoint), (1.68)
tad tz}d tgd
i,31 1,32 1,33
ie.
00 O 0 0 i 0 —i O
™=100 —i|, ¥=(0 0 o0), T™=|i 0 0].(1.69)
0 i O —i 0 0 0 0 O

With @53 — ® we consider the pseudoscalar pion-nucleon Lagrangian
_ 1 o - o - o
L=V §—my)¥ + E(a,,q) D - Mf;cbz) —igPyd-TY,  (1.70)

where g = gy = 13.2 denotes the pion-nucleon coupling constant. As a specific
application of the infinitesimal transformation of Eq. 1.53 we take

@ . @ (T 03,
(‘I—’)H[ﬂ lsa(x)Ta}<lP), Ta—<02X3 ) (1.71)

(T, block-diagonal), i.e.

Yo = (11 — iE(x) §>‘P (1.72)
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T )<D:<D+§><<f). (1.73)
(a) Show that the variation of the Lagrangian is given by

3L =0, (‘I‘y"%‘{’ + & x af%f)). (1.74)

From Egs. 1.46 and 1.47 we find

I X 7
P =gra= \w%\f' + @ x 0", (1.75)
i
00" = 0L _,, (1.76)

0¢

We obtain three time-independent charge operators

0= / d* {‘I’T(x);‘l’(x) + ®(x) x O(x)]. (1.77)

These operators are the infinitesimal generators of transformations of the Hilbert
space states. The generators decompose into a fermionic and a bosonic piece,
which commute with each other. Using the anticommutation relations for the
fermion fields

(W (1, 5), W) (1,5)} = 6 (F — §)3updis, (1.78)
{‘I’W([,)_c'),‘}’ﬁ’s(t,)_f)} =0, (1.79)
{1, (1,%), ¥} (1,5} =0, (1.80)

where o and f denote Dirac indices, and r and s denote isospin indices, and the
commutation relations for the boson fields

[(Df(tvz)vns(ta)_;)] :i53(2_5)’)5ma (181)
[(I)r(h)?)aq)s(tv)_;)} =0, (182)
[T, (2, %), (¢, 5)] = 0, (1.83)

together with the fact that fermion fields and boson fields commute, we will
verify:

[0i, Q)] = igijiOx- (1.84)
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We start from
0,,0)] = / Py [ (1,92 (1,3) + il )T, ),
(1,512 (1,5) + 63n @1, )L 1,5)|
— [ ([958, ¥ 0.9 P05
+ e @ (1, )T (2, %), o (1, )L, (1, y)])
= A; + By

For the evaluation of A; we make use of

|:llj;r(t7 f) @ la/fﬁrSlIllf,S(ta 55)3 \P;t(ta .)_;) 627(5,114\11(5,1405 5;):|

= @la/}.m@%&.ru [Wl‘r(l‘;f)w/},s(n 2)7 WIJ(L)_;)\PE,u(Ly)] . (1 85)
(b) Verify
[ab,cd] = a{b,c}d — ac{b,d} + {a,c}db — c{a,d}b (1.86)

and express the commutator of fermion fields in terms of anticommutators as
|:\Picﬁr(t> )?)\Pﬁ,s(h X), ‘{117[(;7 )_;)\Pé-,u(tﬂ )_;)}
= WL, (1,9) W5 (1,5)8° (¥ = 5)35,00 — W], (1,5) ¥ (1,5)8° (% = ) 8250 .
In a compact notation:

[TT(I7£)F1F1T(taf)a lPT(tay)r2F2lP(t7§)]
=& X -3 [P, )T F FY(1,5) — P (6, 7)00 P F Y (1,7)],  (1.87)

where I'; is one of the sixteen 4 x 4 matrices
;o ,
0,97, 95,9"%5, 6 = 50" '),
and F; one of the four 2 x 2 matrices
1 , Tie

(c) Apply Eq. 1.87 and integrate | d. .. to obtain

A,:,' = iagk/d3xWT(x)%T(x).
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(d) Verify
[ab, cd) = a[b,c]d + ac[b,d] + [a, c]db + c[a,d]b. (1.88)

(e) Apply Eq. 1.88 in combination with the equal-time commutation relations to
obtain

[(Dk(tyf)nl(ta)_é)a(Dm(ta}_})nn([a)_;)]
= —i®y (t, )1, (£, 5) (F — )Opm + iDp (£, ¥) (£, %)0° (X — ¥) . (1.89)

(f) Apply Eq. 1.89 and integrate [ d%. .. to obtain
B,’j = iaijk/d3x8k[md)l(x)l'[m(x).
Adding the results for A; and B;; we obtain

[Q,‘, Q,] = ié‘l:/‘k |:/ dSXLPT(X)%“P(X) + /d3xsk1m(D1(x)Hm(x)

= iSiijk.

1.3.4 Global Symmetry Currents of the Light-Quark Sector

The method of Gell-Mann and Lévy can easily be applied to the QCD Lagrangian
by calculating the variation under the infinitesimal, local form of Egs. 1.40,

8 ) g
_ A ~ Jl
0% oco = <Z a"gR”Ea + auSR> aqr + 4 (Z a;ﬁLaga + 6M3L> 7,
a=l a=1
(1.90)

from which, by virtue of Eqs. 1.46 and 1.47, one obtains the currents associated
with the transformations of the left-handed or right-handed quarks,

L, = agéi% = ZILVH%‘]La oLt = % =0,
R, = —agf oo = EIRVH&‘]Ra OuRY = ngw =0
ok 2 68’;“ (1.91)
LF = aéai(;?) =4q."qL, 0Lt = GéiSCD =0,
R' = —a(;i%? =qr)"qr,  OuR' = Li‘}w =0
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Note that a summation over color indices is implied in Egs. 1.90 and 1.91. For
example, the detailed expression for L reads

L = ZILo:.f,AVZw%CSAA’QLa’,f’,A’~
The eight currents L} transform under SU(3), x SU(3), as an (8, 1) multiplet, i.e.,
as octet and singlet under transformations of the left- and right-handed fields,
respectively. Similarly, the right-handed currents transform as a (1,8) multiplet
under SU(3); x SU(3),. Instead of these chiral currents one often uses linear
combinations,

ta
Vi =Rl 4L =377, (1.92)
ﬁ:@—%:w%%% (1.93)

transforming under parity as vector and axial-vector currents, respectively,
P VE(t,X) — Vg, (1, —3), (1.94)

P AL, X) — — Ag(t, —X). (1.95)

Exercise 1.15 Verify Egs. 1.92 and 1.93.

From Eq. 1.91 one also obtains a conserved singlet vector current resulting
from a transformation of all left-handed and right-handed quark fields by the same
phase,

VI =R+ L' = ',
0, V* = 0. (1.96)

The singlet axial-vector current,
AM = R — L' = gy'ysq, (1.97)

originates from a transformation of all left-handed quark fields with one phase and
all right-handed quark fields with the opposite phase. However, such a singlet
axial-vector current is only conserved on the classical level. Quantum corrections
destroy the singlet axial-vector current conservation and there are extra terms,
referred to as anomalies [3, 4, 10], resulting in

3g3

0,A" = 22
# 3272

Sﬂvpag/atvggc7 0123 — 1. (198)
The factor of three originates from the number of flavors. In the large N. (number
of colors) limit of Ref. [49] the singlet axial-vector current is conserved, because
the strong coupling constant behaves as g3 ~ N !
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1.3.5 The Chiral Algebra

The invariance of X%CD under global SU(3), x SU(3); x U(1), transformations
implies that also the QCD Hamilton operator in the chiral limit, HgCD, exhibits a

global SU(3); x SU(3); x U(1)y symmetry. As usual, the “charge operators” are
defined as the space integrals of the charge densities,

N N

0u() = [ dhal 95 n) = [ dsgleDrSawn,  (199)
i ﬂ/la — — ;La —

0rt) = [ dxahte. 9 5an0.0) = [ da (e DPa D, (1100

0v() = [ @[}t 3)au0. ) + ahtt. Dan(t9)] = [ dxal(tDa(e.5). (1.100)

For conserved symmetry currents, these operators are time independent, i.e., they
commute with the Hamiltonian,

[QLMH(%CD] = [QRmchnl = [QV7H8CD] =0. (1~102)

The commutation relations of the charge operators with each other are obtained by
using Eq. 1.87 applied to the quark fields,

[(IT(taf)FlFM(faf)y qT(f,f)Fzeq(f7y)]
=8 (% -3 [q' (1, YT\ [2F 1 Faq(1,5) — q' (1, 5)[2T1 FaFig(1, %)), (1.103)

where I'; and F; are 4 x 4 I' matrices and 3 x 3 flavor matrices, respectively.'®
After inserting appropriate projectors Prz, Eq. 1.103 is easily applied to the
charge operators of Eqs. 1.99-1.101, showing that these operators indeed satisfy
the commutation relations corresponding to the Lie algebra of SU(3),x
SU@3)g x U(D)y,

[OLa, Orb) = ifanc Qe (1.104)
[Ora; Orb] = ifae Ore, (1.105)
[OLas Ors] = 0, (1.106)
[QLa, Qv] = [Qra, Qv] = 0. (1.107)

For example (recall P2 =Pp)

19 Strictly speaking, we should also include the color indices. However, since we are only
discussing color-neutral quadratic forms a summation over such indices is always implied, with
the net effect that one can completely omit them from the discussion.
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P L o A o
[OLa, O] = / dxd’y [qT(t,X)Pqu(m), q*(t,y)PLgbq(t,y)

A . Aa A ~
= /d3xd3y()3(x —¥)q'(t,X) PP, 77})(1(1‘7)’)

=P,
Ab Aa

- /d3xd3y53 (f—ﬁ)q*(t,i)h;;q(t,f)

. np e o
= lfabc / d3qu (tvx)PLECI(Lx) = lﬁlchLc-

Exercise 1.16 Verify the remaining commutation relations, Eqs. 1.105-1.107.

It should be stressed that, even without being able to explicitly solve the
equation of motion of the quark fields entering the charge operators of
Egs. 1.104-1.107, we know from the equal-time commutation relations and the
symmetry of the Lagrangian that these charge operators are the generators of
infinitesimal transformations of the Hilbert space associated with H{p,. Fur-
thermore, their commutation relations with a given operator specify the trans-
formation behavior of the operator in question under the group SU(3), x
SU@3), x U(1)y,.

1.3.6 Chiral Symmetry Breaking by the Quark Masses

So far we have discussed an idealized world with massless light quarks. The
finite u-, d-, and s-quark masses in the QCD Lagrangian explicitly break the
chiral symmetry, resulting in divergences of the symmetry currents. As a
consequence, the charge operators are, in general, no longer time independent.
However, as first pointed out by Gell-Mann, the equal-time commutation
relations still play an important role even if the symmetry is explicitly broken
[22]. As will be discussed later on in more detail, the symmetry currents give
rise to chiral Ward identities relating various QCD Green functions to each
other. Equation 1.47 allows one to discuss the divergences of the symmetry
currents in the presence of quark masses. To that end, let us consider the quark-
mass matrix of the three light quarks and project it onto the nine 4 matrices of
Eq. 1.13,

m, 0 O
M= 0 mgy 0 |. (1.108)
0 0 my

Exercise 1.17 Express the quark-mass matrix in terms of the A matrices Ao, /3,
and /g.
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In particular, applying Eq. 1.38 we see that the quark-mass term mixes left- and
right-handed fields,

Ly=—qllqg= —(Z]RQWC]L + Z]L%QR). (1109)

The symmetry-breaking term transforms under SU(3), x SU(3), as a member of a
(3,3%) @ (3*,3) representation, i.e.,

Griijqri + qri iiqrj— ULpUg yGr i jqri + (L < R),

where (U, Ug) € SU(3); x SU(3)z. Such symmetry-breaking patterns were
already discussed in the pre-QCD era in Refs. [26, 27].

From %, one obtains the variation 0., under the infinitesimal transforma-
tions corresponding to Eqgs. 1.40,

8 8
2 2
0Ly = —i [qR< E 8Ra?a+£1e> Mqy, —qRﬂ< E SLa?a-FSL)qL

a=1 a=1

8 8 )
Aa B Ja
+q; ( E SLa? =+ 8L> rﬂqR — qL<%< E EREE + 8R> QR]
= a=1

a=1
| _ _ a _ _
= =i\ tra| Gy — QM ar ) + er(@rdqr — @M )
3 . y
+ Y e (ZILz«/%CIR - @R%ZQL> +eL(qrMar — qr-fqr) |,  (1.110)
a=1

which results in the following divergences,*

002y Ny _
Oully = ———=—i| q,-Mqr — 5
=a agLa ! <CIL 2 R qRﬂ 2 (IL> ’
65$ / o /la _ ;La
OuRl; = Oen L= i <‘1R?«/%QL - CIL/%?(IR)
- ; (1.111)
0L = sLM = —i(q M qr — qr-qL),
00.% e _
OuRM = a.gRM = —i(gr-MqL — qr-MqR).

The anomaly has not yet been considered. Applying Eq. 1.38 to the case of the
vector currents and inserting projection operators for the axial-vector current, the
corresponding divergences read

20 The divergences are proportional to the mass parameters which is the origin of the expression
current-quark mass.
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1.38) _ Aa
qR<: )tq[//,—]q,

Aa 24
0,V = —igg [_» %] qL — 4y, [—»% >

2 2

, A la g N _
OuAy = —i <‘IR7/% qr — qrM qu> + l<qL7/% qr — qR%TIL>

- <q{%%}q - q{%ﬂ}q>
_ i(CI%(ﬂ +v5){%"7«/%}q gyl - m{% //}q)

_ia
= lqu{zv /%}CL

V" =0,
2

3
0,A" = 2igys. g +

ﬁguwgﬁj@ga, go123 = 1, (1.112)

where the axial anomaly has also been taken into account.

We are now in the position to summarize the various (approximate) symmetries

of the strong interactions in combination with the corresponding currents and their
divergences.

1.

In the limit of massless quarks, the sixteen currents L% and R or, alternatively,
V# and AY are conserved. The same is true for the singlet vector current V¥,
whereas the singlet axial-vector current A* has an anomaly.

For any values of quark masses, the individual flavor currents #y“u, dy"d, and
sy"s are always conserved in the strong interactions reflecting the flavor
independence of the strong coupling and the diagonal form of the quark-mass
matrix. Of course, the singlet vector current V¥, being the sum of the three
flavor currents, is always conserved.

In addition to the anomaly, the singlet axial-vector current has an explicit
divergence due to the quark masses.

For equal quark masses, m, = my = my, the eight vector currents V¥ are con-
served, because [4,, 1] = 0. Such a scenario is the origin of the SU(3) symmetry
originally proposed by Gell-Mann and Ne’eman [25]. The eight axial-vector
currents A% are not conserved. The divergences of the octet axial-vector cur-
rents of Eq. 1.112 are proportional to pseudoscalar quadratic forms. This can be
interpreted as the microscopic origin of the PCAC relation (partially conserved
axial-vector current) [5, 23] which states that the divergences of the axial-
vector currents are proportional to renormalized field operators representing the
lowest-lying pseudoscalar octet (for a comprehensive discussion of the meaning
of PCAC see Refs. [5, 6, 23, 50]).

Taking m, = my # m,; reduces SU(3) flavor symmetry to SU(2) isospin
symmetry.

Taking m, # my leads to isospin-symmetry breaking.

Various symmetry-breaking patterns are discussed in great detail in Ref. [45].
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1.4 Green Functions and Ward Identities

For conserved currents, the spatial integrals of the charge densities are time
independent, i.e., in a quantized theory the corresponding charge operators com-
mute with the Hamilton operator. These operators are generators of infinitesimal
transformations on the Hilbert space of the theory. The mass eigenstates should
organize themselves in degenerate multiplets with dimensionalities corresponding
to irreducible representations of the Lie group in question.”’ Which irreducible
representations ultimately appear, and what the actual energy eigenvalues are, is
determined by the dynamics of the Hamiltonian. For example, SU(2) isospin
symmetry of the strong interactions reflects itself in degenerate SU(2) multiplets
such as the nucleon doublet, the pion triplet, and so on. Ultimately, the actual
masses of the nucleon and the pion should follow from QCD.

It is also well-known that symmetries imply relations between S-matrix ele-
ments. For example, applying the Wigner-Eckart theorem to pion-nucleon scat-
tering, assuming the strong-interaction Hamiltonian to be an isoscalar, it is
sufficient to consider two isospin amplitudes describing transitions between states
of total isospin I = 1/2 or I = 3/2 (see, for example, Ref. [16]). All the dynamical
information is contained in these isospin amplitudes and the results for physical
processes can be expressed in terms of these amplitudes together with geometrical
coefficients, namely, the Clebsch-Gordan coefficients.

In quantum field theory, the objects of interest are the Green functions which
are vacuum expectation values of time-ordered products.”* Pictorially, these Green
functions can be understood as vertices and are related to physical scattering
amplitudes through the Lehmann-Symanzik-Zimmermann (LSZ) reduction for-
malism [36]. Symmetries provide strong constraints not only for scattering
amplitudes, i.e. their transformation behavior, but, more generally speaking, also
for Green functions and, in particular, among Green functions. The famous
example in this context is, of course, the Ward identity of QED associated with
U(1) gauge invariance [53],

I'(p,p) = —%Z(p), (1.113)

which relates the electromagnetic vertex of an electron at zero momentum transfer,
y* +T*(p, p), to the electron self-energy, Z(p).

Such symmetry relations can be extended to nonvanishing momentum transfer
and also to more complicated groups and are referred to as Ward-Fradkin-
Takahashi identities [17, 48, 53] (or Ward identities for short). Furthermore, even

2! Here we assume that the dynamical system described by the Hamiltonian does not lead to a
spontaneous symmetry breakdown. We will come back to this point later.

22 Later on, we will also refer to matrix elements of time-ordered products between states other
than the vacuum as Green functions.
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if a symmetry is broken, i.e., the infinitesimal generators are time dependent,
conditions related to the symmetry-breaking terms can still be obtained using
equal-time commutation relations [22].

1.4.1 Ward Identities Resulting from U(1) Invariance:
An Example

In this section we will show how to derive Ward identities for Green functions in
the framework of canonical quantization on the one hand, and quantization via the
Feynman path integral on the other hand, by means of an explicit example. In
order to keep the discussion transparent, we will concentrate on a simple scalar
field theory with a global SO(2) or U(1) invariance. To that end, let us consider the
Lagrangian of Exercise 1.11,

1 2 A
& = (0,030, +0,0:0'D,) - m?(cbf +@3) - (@] + 02)’
= 0,00"® — m* o0 — J(dTD)?, (1.114)
where
D(x) = =1 (1) + iD2(x)], D (x) = <[y (x) — D)
x) = —[®(x) + iD,(x)], x) = —=[®(x) — iDy(x)],
\/E 1 2 \/5 1 2

with real scalar fields ®; and ®@,. Furthermore, we assume m> > 0 and /1 > 0, so
there is no spontaneous symmetry breaking (see Chap. 2) and the energy is
bounded from below. Equation 1.114 is invariant under the global (or rigid)
transformations

(D/l :(Dl—S(Dz, (I)/ZZ(D2+8(D1, (1115)
or, equivalently,
O =(1+ie)®, & =(1-ie)df, (1.116)

where ¢ is an infinitesimal real parameter. Applying the method of Gell-Mann and
Lévy, we obtain for a local parameter &(x),

8L = d,e(x) (i0" D — iD'" D), (1.117)

from which, via Eqs. 1.46 and 1.47, we derive for the current corresponding to the
global symmetry,

05y

uE

JH

= (0" DD — (DO D, (1.118)
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6L
) 1.11
Ot == ==0 (1.119)

Recall that the identification of Eq. 1.47 as the divergence of the current is only
true for fields satisfying the Euler-Lagrange equations of motion.

We now extend the analysis to a quantum field theory. In the framework of
canonical quantization, we first define conjugate momenta,

0¥ K% . 07 .
= - o MTM=—_—0o
00y ®;’ 00y @ ’ 00, ®f ’

(1.120)

and interpret the fields and their conjugate momenta as operators which, in the
Heisenberg picture, are subject to the equal-time commutation relations

(@, (1, %), TL(t,5)] = i6;6° (X — ¥), (1.121)
and
[@(7,%), I1(2,5)] = [CDT(tv)_C‘)aHT(Zv)_;)} = i53()_57)_;)' (1.122)

The remaining equal-time commutation relations vanish. For the quantized theory,
the current operator then reads

JH(x) =: (0" DD — iDTHD) -, (1.123)

where : : denotes normal or Wick ordering, i.e., annihilation operators appear to
the right of creation operators. For a conserved current, the charge operator, i.e.,
the space integral of the charge density, is time independent and serves as the
generator of infinitesimal transformations of the Hilbert space states,

Q= /deJO(t,)_c’). (1.124)

Applying Eq. 1.122, it is straightforward to calculate the equal-time commutation
relations®

[Jo(t,f)7®(t’)7)] = 5%(2_)7)(1)(1‘756)5
o1, % y)] = =& (% — y)I(, %
[JO (t’f)’HT(t’{)]: 53{ {)HT(@ 2 (1.125)
7 (8, %), @'(,¥)] = —0” (¥ — ¥)@'(1, %),
V06, %), (1, 5)] = 6° (¥ — )IT' (¢, %)

In particular, performing the space integrals in Eqgs. 1.125, one obtains

23 The transition to normal ordering involves an (infinite) constant which does not contribute to
the commutator.
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[0, D(x)] = D(x),

[0, T1(x)] = —M(x),

[0, 0 (x)] = —@7 (x), (1.126)
[0, T (x)] =TT (x)

In order to illustrate the implications of Egs. 1.126, let us take an eigenstate |o;) of
Q with eigenvalue g, and consider, for example, the action of ®(x) on that state,

O(0(x)]2)) = (IQ, D(x)] + ®(x)Q)[x) = (1 + g2)(P(x)[20)).

We conclude that the operators ®(x) and ITf(x) [®'(x) and TI(x)] increase
(decrease) the Noether charge of a system by one unit.

We are now in the position to discuss the consequences of the U(1) symmetry
of Eq. 1.114 for the Green functions of the theory. To that end, let us consider as
our prototype the Green function

G"(x,y,2) = (O|T[®(x)J" (y)®' (2)]|0), (1.127)

which describes the transition amplitude for the creation of a quantum of Noether
charge +1 at x, propagation to y, interaction at y via the current operator, prop-
agation to z with annihilation at z. In Eq. 1.127, |0) refers to the ground state of the
quantum field theory described by the Lagrangian of Eq. 1.114 and should not be
confused with the ground state of a free theory.

First of all we observe that under the global infinitesimal transformations of
Eq. 1.116, J*(x)+— J"*(x) = J*(x), or in other words [Q,J"(x)] =0. We thus
obtain

G"(x,y,2) = G"(x,,2) = (OT[(1 + i) @(x)J" (y)(1 — ie) D' (2)]|0)
= (0|T[®(x)J*(y)®(2)][0)
= G*(x,y,2), (1.128)

the Green function remains invariant under the U(1) transformation. (In general,
the transformation behavior of a Green function depends on the irreducible rep-
resentations under which the fields transform. In particular, for more complicated
groups such as SU(N), standard tensor methods of group theory may be applied to
reduce the product representations into irreducible components. We also note that
for U(1), the symmetry current is charge neutral, i.e. invariant, which for more
complicated groups, in general, is not the case.)

Moreover, since J#(x) is the Noether current of the underlying U(1) symmetry
there are further restrictions on the Green function beyond its transformation
behavior under the group. In order to see this, we consider the divergence of
Eq. 1.127 and apply the equal-time commutation relations of Eqs. 1.125 to obtain

0,G"(x,y,2) = [8*(y = x) = 0* (v — DO T[@(x)@'(2)] 0), (1.129)
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where we made use of 0,J* = 0. Equation 1.129 is the analogue of the Ward
identity of QED [53]. In other words, the underlying symmetry not only deter-
mines the transformation behavior of Green functions under the group, but also
relates n-point Green functions containing a symmetry current to (n — 1)-point
Green functions. In principle, calculations similar to those leading to Eqgs. 1.128
and 1.129, can be performed for any Green function of the theory.

Exercise 1.18 Derive Eq. 1.129.
Hints: The time ordering is defined as

(O|T[®(x)J*(y) D' (2)]]0) = ©(x)J*(y)®"(2)O(x0 — y0)O(y0 — 20)
+ O(x) D' (2)J*(3)O(x0 — 20)O(20 — Yo) + -+ -

All in all there exist 3! = 6 distinct orderings. Make use of

GLG(XO = Y0) = —8u00(xo — Yo),
af@()’o —20) = guofs(YO — 20)-

We will now show that the symmetry constraints imposed by the Ward
identities can be compactly summarized in terms of an invariance property of a
generating functional. For a discussion of functionals and partial functional
derivatives, see App. B. In the present case, the generating functional depends on a
set of functions denoted by j,j*, and j, which are called external sources. They
couple to the fields @', @, and the U(1) current J, respectively. The generating
functional is defined as

W[j?j*vju] = exp(iZ[j,j*,j#])
= <O|T(exp{i/d4x[j(x)(1ﬁ(x) + 5 () D(x) + ju(x)J*(x)] }) |0),
(1.130)

where |0) denotes the ground state of the theory described by the Lagrangian of
Eq. 1.114. Moreover, ®, ®', and J* (x) refer to the field operators and the Noether
current in the Heisenberg picture. Note that the field operators and the conjugate
momenta are subject to the equal-time commutation relations and, in addition,
must satisfy the Heisenberg equations of motion:

do®(x) = i[H, D(x)],
oI (x) = i[H, T ()], (1.131)
%' (x) = i[H, @' (x))],

B0l (x) = i[H, T1(x)],
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where

H= /d%yf, (1.132)

H =TT+ VO VO + m?d @ + A(0! D). (1.133)

Via the equations of motion and implicitly through the ground state, the generating
functional depends on the dynamics of the system which is determined by the
Lagrangian of Eq. 1.114 or the Hamiltonian of Eq. 1.132. The Green functions of
the theory involving @, ®f, and J* are obtained through partial functional deriv-
atives of Eq. 1.130. For example, the Green function of Eq. 1.127 is given by**

S Wi, 7]

1y = (—1i o el .
G (x,y,2) = (=) 0 ()0 (¥)9j(2) =05 —0,1,~0

(1.134)

Alternatively, the generating functional may be written as the vacuum-to-
vacuum transition amplitude in the presence of external fields,

W(j,j",jul = (0, 0ut|0, in) (1.135)

Ji

In order to discuss the constraints imposed on the generating functional via the
underlying symmetry of the theory, let us consider its path integral representation
[14, 551,

Wiioj ] = / [d][dy ] 05, (1.136)
where

S[®, @, j,j",ju] = S[@, @] + / X[ (x)j" (x) + O (x)j(x) + J*(x)j, (%))
(1.137)

denotes the action corresponding to the Lagrangian of Eq. 1.114 in combination
with a coupling to the external sources. In the path integral formulation we deal
with functional integrals instead of linear operators. In the following we will write

24 In order to obtain Green functions from the generating functional, the simple rule

o (x)
o (v)
is extremely useful. Furthermore, the partial functional derivative satisfies properties similar to

the ordinary differentiation, namely linearity, the product and chain rules. See App. B for more
details.

% Up to an irrelevant constant the measure [d®;][d®Ds] is equivalent to [d®][d®"], with ® and
®* considered as independent variables of integration.

=o' (x—y)
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®* instead of ®'. Let us now consider a local infinitesimal transformation of the
fields (see Eqs. 1.116) together with a simultaneous transformation of the external
sources,

J) =1 +ie@)]ix), J7 @) =[1— i@l (), j,(x) =ju(x) = 0ue(x).
(1.138)
The action of Eq. 1.137 remains invariant under such a transformation,
S, @), 7,] = S0, @7, jul. (1.139)

We stress that the transformation of the external current j, is necessary to cancel a
term resulting from the kinetic term in the Lagrangian. Also note that the global
symmetry of the Lagrangian determines the explicit form of the transformations of
Eq. 1.138. We can now verify the invariance of the generating functional as follows,

W[i?j*7j/t] = /[d(Dl}[d(Dz]eiS[q)!q)*foiu]

N /[d(Dl][d‘Dz]eiS[d)/’(D, A

a@ / JK sk
= [d<I>’IHd<D’2]< ) SO
/ o
- / [d0][d@,]e
= WIi\J"J,)- (1.140)

We made use of the fact that the Jacobi determinant is one and renamed the
integration variables. In other words, given the global U(1) symmetry of the
Lagrangian, Eq. 1.114, the generating functional is invariant under the local
transformations of Eq. 1.138. It is this observation which, for the more general
case of the chiral group SU(N)xSU(N), was used by Gasser and Leutwyler as the
starting point of chiral perturbation theory [20, 21].

We still have to discuss how this invariance allows us to collect the Ward
identities in a compact formula. We start from Eq. 1.140 and perform a Taylor
series expansion, keeping only terms linear in infinitesimal quantities,

0= /[dd) ][d(Dz]( iS00/ ] _ eiS[q’-,‘D*JJ*-ju])

= /[dd) |[d®,] / {e[® —iJ"0 a}e’sq)‘b Sl

Observe that

D (x)eSPP I = &SIOPIT

&j* (%)
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and similarly for the other terms, resulting in

0= / [d®,][dD,] / d“x{ew {] (x)éj*é(x) N ’7()‘)51'?@}

}eiS[cb,cbw* .

_6u3(x)5ju 5

Finally, we interchange the order of integration, make use of integration by
parts, and apply the divergence theorem:

4 oy O . 0 0 o
0= /dxs(x) [U(x)éj(x) —ij (x>5j*(x) +aﬂ%(x)} Wj,J"jul- (1.141)

Since Eq. 1.141 must hold for any &(x) we obtain as the master equation for
deriving Ward identities,

. R
959~ s~

}W[i,j*,j,t} =0. (1.142)

We note that Eqs. 1.140 and 1.142 are equivalent.
As an illustration let us re-derive the Ward identity of Eq. 1.129 using
Eq. 1.142. For that purpose we start from Eq. 1.134,

oG"(x,y,2) = (fi)36y—53w
wem 107 (x)0ju(v)9j(2)’

)

j=0,*=0,j,=0

apply Eq. 1.142,
—(—})? *(v) i(v)
= (i . V| O I | W ;
=) {51*(x)51(1) ) & (v) v) G0 S j=0j—0j,=0

make use of &j*(y)/dj*(x) = 6*(y — x) and 9j(y)/dj(z) = 6*(y — z) for the partial
functional derivatives,

W
9j*(v)9j(2)

and, finally, use the definition of Eq. 1.130,

= (—i)2{54(y —x) — 5ty - Z)éziw}j_w_w“_o?

o (x)0j(y)

0,G" (x,y,2) = [8'(y = x) = 0" (y = )OI T [@(x) @ (2)]|0)

which is the same as Eq. 1.129. In principle, any Ward identity can be obtained by
taking appropriate higher partial functional derivatives of W and then using
Eq. 1.142.
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1.4.2 Chiral Green Functions

Let us now turn to time-ordered products of color-neutral, Hermitian quadratic
forms involving the light-quark fields evaluated between the vacuum of QCD.
Using the LSZ reduction formalism [32, 36] such Green functions can be related to
physical processes involving mesons as well as their interactions with the elec-
troweak gauge fields of the Standard Model. The interpretation depends on the
transformation properties and quantum numbers of the quadratic forms, deter-
mining for which mesons they may serve as an interpolating field. In addition to
the vector and axial-vector currents of Egs. 1.92, 1.93, and 1.96 we want to
investigate scalar and pseudoscalar densities,*

Sa(x) = q(x)2aq(x), Pa(x) =ig(x)yslaq(x), a=0,...38, (1.143)

which enter, for example, in Eqgs. 1.112 as the divergences of the vector and axial-
vector currents for nonzero quark masses. Whenever it is more convenient, we will
also use

S(x) = q(x)q(x), P(x) = ig(x)ysq(x), (1.144)

instead of Sy and Py.
For example, the following Green functions of the “vacuum” sector,

(OIT[AL (x) Py ()]]0),
(OIT[Pa(x)J*(y)P5(2)]]0),
(OIT[Pu(w)Py(x)Pc(y)Pa(2)]]0),

are related to pion decay, the pion electromagnetic form factor (J* is the elec-
tromagnetic current), and pion-pion scattering, respectively. One may also con-
sider similar time-ordered products evaluated between a single nucleon in the
initial and final states in addition to the vacuum Green functions. This allows one
to discuss properties of the nucleon as well as dynamical processes involving a
single nucleon, such as

N|J*(x)|N) < nucleon electromagnetic form factors,

(
(N|AL(x)|N) < axial form factor + induced pseudoscalar form factor,
(N|T[J*(x)J" (y)]|N) < Compton scattering,

(N|T[J*(x)P4(y)]|N) < pion photo- and electroproduction.

Generally speaking, a chiral Ward identity relates the divergence of a Green

function containing at least one factor of V¥ or A# (see Eqs. 1.92 and 1.93) to some

26 The singlet axial-vector current involves an anomaly such that the Green functions involving
this current operator are related to Green functions containing the contraction of the gluon field-
strength tensor with its dual.
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linear combination of other Green functions. The terminology chiral refers to the
underlying SU(3), x SU(3); group. To make this statement more precise, let us
consider as a simple example the two-point Green function involving an axial-
vector current and a pseudoscalar density,?’

Glipap(x,¥) = (O|T[AG (x)Py(y)]|0)
= O(x0 — y0)(0]A7 (x)Py(y)]0) + O(yo — x0) (0|, (y)A%(x)[0),
(1.145)

and evaluate the divergence

0, Gpas (%, ¥) = 0[O (x0 — 0) (0IAL (x) Py () |0) + O (o — x0) (01 Py (y)Af (x)[0)]

= 8(x0 — y0)(0AG(x)P5 ()]0} — d(x0 — y0) (0[P (y)Aq (x) 0)
+0(xo — y0) (0]0,A% (x) Py (¥)[0) + O (yo — x0) (0[P (y)8,Af (x) 0)

= d(x0 — y0){0|[Ag(x), P (»)]|0) + (0| (&A% (x)P(»)]|0),

where we made use of 9,0(xo — yo) = 6(xo — y0)gox = —0,O(yo — xo). This
simple example already shows the main features of (chiral) Ward identities. From
the differentiation of the theta functions one obtains equal-time commutators
between a charge density and the remaining quadratic forms. The results of such
commutators are a reflection of the underlying symmetry, as will be shown below.
As a second term, one obtains the divergence of the current operator in question. If
the symmetry is perfect, such terms vanish identically. For example, this is always
true for the electromagnetic case with its U(1) symmetry. If the symmetry is only
approximate, an additional term involving the symmetry breaking appears. For a
soft breaking such a divergence can be treated as a perturbation.

Via induction, the generalization of the above simple example to an (n + 1)-
point Green function is symbolically of the form

0 (O[T {IH (x)A1 (x1). . An(xa) }|0)
= (0]T{[0,/"(x))A ( 1) -An(x2) }|0)

50 — X)OIT{ o), A1 (1) Aa(x2). . A, (x,)}]0)
30 — ) OIT{A1 (1) o (x), Az (x2)]. . A, (x,)}]0)
e 000 — ) OT{A (1), . o), An ()]} [0), (1.146)

where J#* now generically stands for any of the Noether currents.

27 The time ordering of n points x|, ..., x, gives rise to n! distinct orderings, each involving
products of n — 1 theta functions.
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1.4.3 The Algebra of Currents

In the above example, we have seen that chiral Ward identities depend on the
equal-time commutation relations of the charge densities of the symmetry currents
with the relevant quadratic quark forms. Unfortunately, a naive application of
Eqg. 1.103 may lead to erroneous results. Let us illustrate this by means of a
simplified example, the equal-time commutator of the time and space components
of the ordinary electromagnetic current in QED. A naive use of the canonical
commutation relations leads to

[Jo(tv)_é)v‘,i(ta)_;)] = [LPT(t?X’)lP(tvf)vLPT(tv)_;)VOA)}i\P(ta)_;)]
=OF =Y (D0, 9] ¥ (1,3) =0,  (1.147)
where we made use of the delta function to evaluate the fields at X = y. It was

noticed a long time ago by Schwinger that this result cannot be true [47]. In order
to see this, consider the commutator

[]O(LE)’ ﬁy . ‘7([’5;” = _[JO(tv)—é)7 atJO(tv)_;)]a

where we made use of current conservation, 6,,]” = 0. If Eq. 1.147 were true, one
would necessarily also have

0= [Jo(l7f)7 at-l()(tv)_;)}a
which we evaluate for X = ¥ between the ground state,

0= <0|[J()(t155)a alJO(t7)_C))]|0>
= > ((OWo(t: %) m) (nf0 o (1, 10} — (018, %) ) (nlo(1, %)[0) )

=20 (Ey — Eo)|{01o(t, %)[m)|*.
Here, we inserted a complete set of states and made use of
0,Jo(t,X) = i[H, Jo(t,X)].
Since every individual term in the sum is nonnegative, one would need
(0o (2, %)[n) = 0

for any intermediate state, which is unphysical because it would imply that, for
example, eTe™ pairs cannot be created from the application of the charge density
operator to the ground state. The solution is that the starting point, Eq. 1.147, is
not true. The corrected version of Eq. 1.147 picks up an additional, so-called
Schwinger term containing a derivative of the delta function.

Quite generally, by evaluating commutation relations with the component @
of the energy-momentum tensor one can show that the equal-time commutation
relation between a charge density and a current density can be determined up to
one derivative of the ¢ function [33],
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V(0,%),75(0,5)] = iCupe i (0,8)8 (% — 3) + S5,(0.5)9,6° (&~ 5),  (1.148)
where the Schwinger term possesses the symmetry
Si(0.5) = 5,(0.3),

and C,p denote the structure constants of the group in question.

However, in our above derivation of the chiral Ward identity, we also made use
of the naive time-ordered product (7') as opposed to the covariant one (T*)
which, typically, differ by another non-covariant term which is called a seagull.
Feynman’s conjecture [33] states that there is a cancelation between Schwinger
terms and seagull terms such that a Ward identity obtained by using the naive
T product and by simultaneously omitting Schwinger terms ultimately yields the
correct result to be satisfied by the Green function (involving the covariant
T* product). Although this will not be true in general, a sufficient condition for it to
happen is that the time component algebra of the full theory remains the same as
the one derived canonically and does not possess a Schwinger term.

Keeping the above discussion in mind, the complete list of equal-time com-
mutation relations, omitting Schwinger terms, reads

[V(1,3), Vi (1,)] = 0° (% = 3)ifunc VI (1,),

[Va(1,%), V! (t,5)] = 0,

[Vo(1,%),A5(1,5)] = 8 (% — 3)ifurcAL (1, %),

[V2(£,3), S5(1,7)] = 8 (¥ = MifuncSe(1,%), b =1,...,8,

[V (2,%), So(1,7)] = 0,

[V2(6,3), Po(1,7)] = &° (¥ = )ifurcPe(1,%), b =1,...,8,

[Vi (1,%), Po(1,5)] = 0,

[AS(1, %), V5 (1,7)] = (% = V)ifuncAL(1,3),

[Ag(tﬂ)_é)v Vﬂ(ta)_;)] =0,

AD(0.2). AL, 5)] = 0° (8 — 5)if V(1. 5), L119)

[A%(1, %), S,(1,5)] = i6° (X — ¥) [\/géabPo(t, X) 4 dapePe(t, f)] ,
b=1,...,8,

[A9(2,%), So(1, 7)) = i (% - 7) \/gPa(t,fL

[A°(1,%), Py (1,5)] = —id (X — ¥) [\@50,,50(:,55) + da,,csc(r,z)] :
b=1,...,8,

[Ag(tax‘)?PO(taS;)] = —1.53()_5—)7)\/%5“([,)?).
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For example,
Ve (t,.%), Vi (1,9)]

N N
= {q*(t,x)ﬂfQ(m),qT(t,y)“/ov”ng(hy)

L o el e
=3 |d D0 Sal0.9) - 4 1 T a0

22
= 53(} - y)#abc'vf(t7})'

The remaining expressions are obtained analogously.

1.4.4 QCD in the Presence of External Fields
and the Generating Functional

Here, we want to consider the consequences of Egs. 1.149 for the Green functions
of QCD (in particular, at low energies). In principle, using the techniques of
Sect. 1.4.2, for each Green function one can explicitly work out the chiral Ward
identity which, however, becomes more and more tedious as the number n of quark
quadratic forms increases. As seen above, there exists an elegant way of formally
combining all Green functions in a generating functional. The (infinite) set of all
chiral Ward identities is encoded as an invariance property of that functional. The
rationale behind this approach is that, in the absence of anomalies, the Ward
identities obeyed by the Green functions are equivalent to an invariance of the
generating functional under a /ocal transformation of the external fields [37]. The
use of local transformations allows one to also consider divergences of Green
functions. This statement has been illustrated in Sect. 1.4.1 using the U(1)
invariance of the Lagrangian of Eq. 1.114.

Following the procedure of Gasser and Leutwyler [20, 21], we introduce into
the Lagrangian of QCD the couplings of the nine vector currents and the eight
axial-vector currents as well as the scalar and pseudoscalar quark densities to
external c-number fields,

L =L+ Lexts (1.150)

where
3

. a 1 S
Lexi = 2 Vo Vi3 + Zl 44,0554
a= a=

8 8
=Y 54Ghaq + D Pai@ysiaq
a=0 a=0

_ 1 ' als i
=, (W + 3V T s ) q—q(s — iysp)q. (1.151)



1.4 Green Functions and Ward Identities 41

The 35 real functions vfj(x)m’(‘x) (x),a"(x),s4(x), and p,(x), will collectively be

denoted by [v,a, s, p].”® A precursor of this method can be found in Refs. [9, 10].

The ordinary three-flavor QCD Lagrangian is recovered by setting v = vt') =

*=p =0 and s = diag(m,,my,m;) in Eq. 1.151. The Green functions of the
vacuum sector may be combined in the generating functional

exp(iZ[v,a, s, p]) = (O|T exp [i / d4x$m(x)} 0, (1.152)

Note that both the quark field operators g in Z.y and the ground state |0) refer to
the chiral limit, indicated by the subscript 0 in Eq. 1.152. The quark fields are
operators in the Heisenberg picture and have to satisfy the equations of motion and
the canonical anticommutation relations. The generating functional is related to the
vacuum-to-vacuum transition amplitude in the presence of external fields,

exp(iZ[v,a, s, p]) = (0, out|0, in) (1.153)

vasp

A particular Green function is then obtained through a partial functional derivative
with respect to the external fields. As an example, suppose we are interested in the
scalar u-quark condensate in the chiral limit, (0|zu|0),. We express iu as

~ 1\F) +1 11
uu = 3 361061 ql3q + 2\/—61

and obtain

_ i| /2 o o 1 9§ )
(0]u(x)u(x)|0), = 3 [\/;m + m + %M] exp(iZ[v, a, s,p])}vza:s:pzo.

From the generating functional, we can even obtain Green functions of the “real
world,” where the quark fields and the ground state are those with finite quark
masses. For example, the two-point function of two axial-vector currents of the
“real world,” i.e., for s = diag(m,,, my, my), and the “true vacuum” |0}, is given by

52

(0|T[AL(x)AL(0)]]0) = (—i)zmexp(iz[‘%aa&l’])

v=a=p=0,s=diag(my,,mq,m;)

(1.154)

Note that the left-hand side involves the quark fields and the ground state of the
“real world,” whereas the right-hand side is the generating functional defined in
terms of the quark fields and the ground state of the chiral limit. The actual value

28 We omit the coupling to the singlet axial-vector current which has an anomaly, but include a
singlet vector current v‘(‘_;) which is of some physical relevance in the two-flavor sector.
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Table 1.5 Transformation properties of the matrices I" under parity

r 1 " g Vs Mys

7070 1 Vu Oy —Ys —Vu¥s

of the generating functional for a given configuration of external fields v, a, s, and
p reflects the dynamics generated by the QCD Lagrangian. The (infinite) set of
all chiral Ward identities resides in an invariance of the generating functional under
a local transformation of the external fields [20, 37] (see the discussion of
Sect. 1.4.1). The use of local transformations allows one to also consider diver-
gences of Green functions. We require . of Eq. 1.150 to be a Hermitian Lorentz
scalar, to be even under the discrete symmetries P, C, and T, and to be invariant
under local chiral transformations. In fact, it is sufficient to consider P and C, only,
because T is then automatically incorporated owing to the CPT theorem [38].
Under parity, the quark fields transform as

- P -
qr(t,X) = 7oqr(t, —X), (1.155)

and the requirement of parity conservation,

2(1,7) & 2(t,-3), (1.156)

leads, using the results of Table 1.5, to the following constraints for the external
fields,

P P (s) P P

¢ a'v— —a,, s—s, p N —p. (1.157)

£ i
L PR

In Eq. 1.157 it is understood that the arguments change from (¢,X) to (¢, —X).
Similarly, under charge conjugation the quark fields transform as

C _ _ C _
Gus = Cuplpys  Guy = —apsChy (1.158)

where the subscripts o and f are Dirac-spinor indices,

0 0 0 —1
. _ 0 0 1 0
C=i)'=-Cc'l=-cl=-c"= o -1 0 0
1 0 0 0

is the usual charge-conjugation matrix, and f refers to flavor. Taking Fermi sta-
tistics into account, one obtains

qTFq S —gCT CF g,

where F' denotes a matrix in flavor space. In combination with Table 1.6 it is
straightforward to show that invariance of .Z., under charge conjugation requires
the transformation properties
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Table 1.6 Transformation properties of the matrices I' under charge conjugation

r 1 a a Vs s

-cr'c 1 —7" —a" ’s "5
¢ T ¢ T c T C 1.1

Vi =V, vff) — —vff) , Aua,, s,presp, (1.159)

where the transposition refers to flavor space.

Finally, we need to discuss the requirements to be met by the external fields
under local SU(3), x SU(3), x U(1),, transformations. In a first step, we write
Eq. 1.151 in terms of the left- and right-handed quark fields.

Exercise 1.19 We first define

Fu=vy+au, Li=v,—a,. (1.160)
(a) Make use of the projection operators Py and P and verify
(v + 50 4, e LNE . Lo
qy (vy+3vu + /sau>q—cm <r,4+3 V), )qRJquV <l +3V ) qr-
(b) Also verify
q(s — iysp)g = qr(s — ip)ar + qr(s + ip)qL
We obtain for the Lagrangian of Eq. 1.151
L = Loep T (l v “)cmq v"(r o “) ar
Qcp T 4L 3 u R w3V
(s —ip)qr- (1.161)

Equation 1.161 remains invariant under local transformations’

O(x)
3

— qr(s +ip)aL — q.(s

qr — €Xp <l > Vr(X)qr,

(1.162)

qL— exp (—i¥> Vi(x)qr,

where Vg(x) and Vi (x) are independent space-time-dependent SU(3) matrices,
provided the external fields are subject to the transformations

2% From now on Vg and V;, will denote local transformations, whereas R and L will be used for
global transformations.
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ru— Ver, Vi + iVgd, Vi,
Lo Vil Vi +iv 9,V

vff) — vif) -0,0, (1.163)
s+ip— Ve(s+ ip)Vz7

s—ip—Vi(s— ip)Vlz.

The derivative terms in Eq. 1.163 serve the same purpose as in the construction of
gauge theories, i.e., they cancel analogous terms originating from the kinetic part
of the quark Lagrangian.

There is another, yet, more practical aspect of the local invariance, namely:
such a procedure allows one to also discuss a coupling to external gauge fields in
the transition to the effective theory to be discussed later. For example, a coupling
of the electromagnetic field to point-like fundamental particles results from
gauging a U(1) symmetry. Here, the corresponding U(1) group is to be understood
as a subgroup of a local SU(3), x SU(3);. Another example deals with the
interaction of the light quarks with the charged and neutral gauge bosons of the
weak interactions.

Let us consider both examples explicitly. The coupling of quarks to an external
electromagnetic four-vector potential ., is given by

ry =l = —ed 0, (1.164)

where Q = diag(2/3,—1/3,—1/3) is the quark-charge matrix and e > 0 the
elementary charge:

Lext = _e&/;l(QLQV#QL + QRQVHQR) = _e&[ll(_]Qy”q

2 1- 1
= —e&/u (gﬁ'})‘uu — gd'y'ud - gg’))‘us> = —e;z/,,]“.

On the other hand, if one considers only the two-flavor version of QCD one has to
insert for the external fields

3 e
=ty = et ) = 57 (1.165)

In the description of semi-leptonic interactions such as n~ — u v, n° —
ne~V,, or neutron decay n — pe~V, one needs the interaction of quarks with the

massive charged weak bosons “f/fl = (W1, FiW2)/V2,

-_&

V2

ra=0, 1, (W[ T +He), (1.166)
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where H.c. refers to the Hermitian conjugate and

0 Vud Vus
7.=[0 0 0
0 O 0

Here, V;; denote the elements of the Cabibbo-Kobayashi-Maskawa quark-mixing
matrix describing the transformation between the mass eigenstates of QCD and the
weak eigenstates [41],

|Vua| = 0.97425 £+ 0.00022,  |V,s| = 0.2252 £ 0.0009.

At lowest order in perturbation theory, the Fermi constant is related to the gauge
coupling g and the W mass by

2
Gr = V2-5 - = 1.16637(1) x 105 GeV 2. (1.167)
8M2,
Making use of
0 Vud Vus u
qL’))HW:T+qL = W:(ﬁc_ii)PRy“ 0 0 0 PL d
0 0 0 s
Vudd + Vu‘vs
N
=W i@dsy's (1= 0
0

1
=5 WVaaty" (1 = y5)d + Vit (1 = y5)s],

we see that inserting Eq. 1.166 into Eq. 1.161 leads to the standard charged-
current weak interaction in the light-quark sector,

Lext = —%{WI[VMW“(H — ps)d + Viysity" (1 — p5)s] + Hc}

The situation is slightly different for the neutral weak interaction. Here, the
three-flavor version requires a coupling of the Z boson to the singlet axial-vector
current which, because of the anomaly of Eq. 1.112, we have dropped from our
discussion. On the other hand, in the two-flavor version the axial-vector current
part is traceless and we have

ry = etan(@w)fé’,,—T;,

§ 73 13
ly=—"%,—+ w)Z =,
! COS(() ) H2 etan(g ) H2 (1168)

; tan(0
V§j> :46 an; W)glla
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where Oy is the weak angle. With these external fields, we obtain the standard
weak neutral-current interaction

:—Lﬁ T l_iz ']]_l
gext 2COS(9w)JM<u/ {[2 SSIH (0W> 2?5 u

where we made use of e = gsin(Oy).

1.4.5 PCAC in the Presence of an External
Electromagnetic Field

Finally, the technique of coupling the QCD Lagrangian to external fields also
allows us to determine the current divergences for rigid external fields, i.e., fields
which are not simultaneously transformed. For example, in Eqs. 1.112 we have
determined the divergences of the vector and axial-vector currents due to the quark
masses. The presence of an external electromagnetic field provides another
example which has been used in the discussion of pion photo- and electropro-
duction on the nucleon. For the sake of simplicity we restrict ourselves to the two-
flavor sector. (The generalization to the three-flavor case is straightforward.)

Exercise 1.20 Consider a global chiral transformation only and assume that the
external fields are not simultaneously transformed. Show that the divergences of
the currents read (see Eq. 1.47) [19]

L [T . Ti _[Ti _ [T
0.V} = igy" [ﬁ vy}qu iqy")s [*, au]q —ig [ﬁ S}q —qs [ﬁp}q, (1.169)

2 2 2 2

o = T; P Ti — Ti _ (T
OuAl = 1q"ys |5 Vi | + 190" |5 a4y |4 + 1975 58 14+ Y 5P § - (1.170)

Exercise 1.21 As an example, let us consider the QCD Lagrangian for a finite
light quark mass m = m, = m, in combination with a coupling to an external
electromagnetic four-vector potential o7, (see Eq. 1.165, a, = 0 = p). Show that
the expressions for the divergence of the vector and axial-vector currents,
respectively, are given by

T .
0.V = —83,-,-&52/,@))"5% = fsgl-je;z/uVj‘ , (1.171)
1 —u Tj P T L N
0,AY = —eol 3" ys qu + 2migys 54= —esl yesAl + mP;, (1.172)
where we have introduced the isovector pseudoscalar density P; = igy5t;q. In fact,

Eq. 1.172 is incomplete, because the third component of the axial-vector current,
A¥, has an anomaly which is related to the decay 1 — 7. The full equation reads
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&2

a#A‘IL} = mP; — e‘%ﬂgﬁjA/H + 51’33_2 28Iuvpg=97w97pa, &3 = 1, (1173)
: Y

where # ,, = 0,9/, — 0,7, is the electromagnetic field-strength tensor.

We emphasize the formal similarity of Eq. 1.172 to the (pre-QCD) PCAC
(Partially Conserved Axial-Vector Current) relation obtained by Adler [2] through
the inclusion of the electromagnetic interactions with minimal electromagnetic
coupling. Since in QCD the quarks are taken as truly elementary, their interaction
with an (external) electromagnetic field is of such a minimal type. In Adler’s
version, the right-hand side of Eq. 1.173 contains a renormalized field operator
creating and destroying pions instead of mP;. From a modern point of view, the
combination mP;/(M2F,) serves as an interpolating pion field. Furthermore, the
anomaly term is not yet present in Ref. [2].
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Chapter 2
Spontaneous Symmetry Breaking
and the Goldstone Theorem

2.1 Degenerate Ground States

Before discussing the case of a continuous symmetry, we will first have a look at a
field theory with a discrete internal symmetry. This will allow us to distinguish
between two possibilities: a dynamical system with a unique ground state or a
system with a finite number of distinct degenerate ground states. In particular, we
will see how, for the second case, an infinitesimal perturbation selects a particular
vacuum state.

To that end we consider the Lagrangian of a real scalar field ®(x) [8]

1 u m 5 Ay

which is invariant under the discrete transformation R : ®+— —®. The corre-
sponding classical energy density reads

. 1~2 1 - 2 m2 ) ;L 4
N ———
=7 (D)

where one chooses A > 0 so that J# is bounded from below. The field ®; which
minimizes the Hamilton density # must be constant and uniform since in that
case the first two terms take their minimum values of zero everywhere. It must also
minimize the “potential” ¥” since ¥ (®(x)) > ¥ (dy), from which we obtain the
condition

V(D) = O(m* + 1D%) = 0.

We now distinguish two different cases:

S. Scherer and M. R. Schindler, A Primer for Chiral Perturbation Theory, 49
Lecture Notes in Physics 830, DOI: 10.1007/978-3-642-19254-8_2,
© Springer-Verlag Berlin Heidelberg 2012
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Fig. 2.1 V(x)

Y (x) = x*/2 +x*/4

(Wigner-Weyl mode) 5t
3 L

1. m? > 0 (see Fig. 2.1): In this case the potential ¥ has its minimum for ® = 0.
In the quantized theory we associate a unique ground state |0) with this min-
imum. Later on, in the case of a continuous symmetry, this situation will be
referred to as the Wigner-Weyl realization of the symmetry.

2. m? <0 (see Fig. 2.2): Now the potential exhibits two distinct minima. (In the
continuous symmetry case this will be referred to as the Nambu-Goldstone
realization of the symmetry.)

We will concentrate on the second situation, because this is the one which we
would like to generalize to a continuous symmetry and which ultimately leads to
the appearance of Goldstone bosons. In the present case, ¥ (®) has a local
maximum for ® = 0 and rwo minima for

—m2
D, = +) /Tm = +,. (2.3)

As will be explained below, the quantized theory develops two degenerate vacua
|0, +) and |0, —) which are distinguished through their vacuum expectation values
of the field ®(x):'

(0, +|®(x)]0, +) = (0, +|eF*D(0)e™*|0, 4) = (0, +|D(0)]0, +) = Dy,

<07_|(D(x)|07_> = —(I)(). (24)

We made use of translational invariance, ®(x) = e"*®(0)e~""*, and the fact that
the ground state is an eigenstate of energy and momentum. We associate with the
transformation R : ® — @' = —® a unitary operator # acting on the Hilbert space
of our model, with the properties

! The case of a quantum field theory with an infinite volume V has to be distinguished from, say,
a nonrelativistic particle in a one-dimensional potential of a shape similar to the function of
Fig. 2.2. For example, in the case of a symmetric double-well potential, the solutions with
positive parity always have lower energy eigenvalues than those with negative parity (see, e.g.,
Ref. [11]).
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Fig. 2.2 V(x)
YV (x) = —x2/2 +x*/4
(Nambu-Goldstone mode)
1.5¢
05}
J1 1 x
-0.5

R =1, R=R"'=R".
In accord with Eq. 2.4 the action of the operator # on the ground states is given by
700, =) = [0, 7). (2.5)

For the moment we select one of the two expectation values and expand the
Lagrangian about +®;:”

O = +dy + P,
0,® = 0,9’ (2:6)
e = O
Exercise 2.1 Show that
- iy Aoy 1 2\ g2 B A
Thus, the Lagrangian in terms of the shifted dynamical variable reads
Y / 1 I ALY 1 23 /2 /3 A 4 A 4

Z'(2,0,0") = Ea,@a d —E(—Zm YO F 1Dy D _A_L(D +4—L(DO' (2.7)

In terms of the new dynamical variable @', the symmetry R is no longer manifest,
i.e., it is hidden. Selecting one of the ground states has led to a spontaneous
symmetry breaking which is always related to the existence of several degenerate
vacua.

At this stage it is not clear why the ground state of the quantum system should
be one or the other of |0,4) and not a superposition of both. For example, the
linear combination

1

ﬂ(IQ +)+10,-))

2 The field @ instead of ® is assumed to vanish at infinity.



52 2 Spontaneous Symmetry Breaking

Fig. 2.3 Potential with a V(x)
small odd component:
Y (x) = x/10 — x2/2 + x* /4
051
\__]/ : :
-05¢L

is invariant under £ as is the original Lagrangian of Eq. 2.1. However, this
superposition is not stable against any infinitesimal external perturbation which is
odd in @ (see Fig. 2.3),

ReH' R = —cH'.
Any such perturbation will drive the ground state into the vicinity of either
|0,4) or |0, —) rather than \/ii(|0, +) £ 10,—)). This can easily be seen in the
framework of perturbation theory for degenerate states. Consider

1=

1
\/§(|O’ +)+10,-)), 12) =—(10,+) = 10,-)),

V2

such that
Ay =1y ap)=-2).

The condition for the energy eigenvalues of the ground state, E = E(©) + ¢E(1) 4 ...
to first order in ¢ results from

WAy —EO ) )
w( 2|H|1) mwm—mﬂ

Due to the symmetry properties of Eq. 2.5, we obtain
(1H'|1) = (1|2 '2H' %' %|1) = (1| — H'|1) =0

and similarly (2|H’|2) = 0. Setting (1|H’|2) =a >0, which can always be
achieved by multiplication of one of the two states by an appropriate phase, one
finds

H=ut

QIH D= ) = a = a = (|H2),

resulting in

—ED
det( f‘; a<1>> —EW_g2=0. =EY=+a
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Fig. 2.4 Dispersion relation E
E = /1 + p? and asymptote
E = |p;|
1.5F
0.51
* Py
-1 1

In other words, the degeneracy has been lifted and we get for the energy
eigenvalues

E=E9+ea+-... (2.8)

The corresponding eigenstates of zeroth order in ¢ are |0,+) and |0, —), respec-
tively. We thus conclude that an arbitrarily small external perturbation which is
odd with respect to R will push the ground state to either |0, +) or |0, —).

In the above discussion, we have tacitly assumed that the Hamiltonian and the
field ®(x) can simultaneously be diagonalized in the vacuum sector, i.e.,
(0,410, —) = 0. Following Ref. [18], we will justify this assumption which will
also be crucial for the continuous case to be discussed later.

For an infinite volume, a general vacuum state |v) is defined as a state with

momentum eigenvalue 0,
Ph) =0,

where 0 is a discrete eigenvalue as opposed to an eigenvalue of single- or many-

particle states for which p = 0 is an element of a continuous spectrum (see
Fig. 2.4). We deal with the situation of several degenerate ground states® which
will be denoted by |u), |v), etc., and start from the identity

0= (ul[H,®(x)]lv) V x, (2.9)
from which we obtain for t = 0

/d3y (|l A (5,0)®(x,0)|v) = /d3y (u|®(X,0)# (5, 0)[v). (2.10)

Let us consider the left-hand side,

3 For continuous symmetry groups one may have a non-countably infinite number of ground
states.
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/d3y {(ul A (7,0)0(%, 0)[v) = > (ulH|w) {w|®(0)|v)

w

+ / dy / dp Yl # (F,0)|n, ) (n, BlOO) v)e 7,

where we inserted a complete set of states which we split into the vacuum con-
tribution and the remainder, and made use of translational invariance. We now
define

[, P) = (| A (5, 0)|n, p){n, p|®(0) )

and assume f, to be reasonably behaved such that one can apply the lemma of
Riemann and Lebesgue,

lim [ dpf(p)e P =0.

|X|—o00
At this point the assumption of an infinite volume, |¥| — oo, is crucial. Repeating
the argument for the right-hand side and taking the limit |¥| — oo, only the
vacuum contributions survive in Eq. 2.10 and we obtain

D (ulHw)(wlD(0)[v) =D (u|®(0) |w) (w|H]|v)

for arbitrary ground states |u) and |v). In other words, the matrices (H,,) =
((u|H|v)) and (®,,) = ((u|®(0)|v)) commute and can be diagonalized simulta-
neously. Choosing an appropriate basis, one can write

(u|®(0)|v) = 0y, vER,

where v denotes the expectation value of @ in the state |v).
In the above example, the ground states |0,+) and |0,—) with vacuum
expectation values £®, are thus indeed orthogonal and satisfy

2.2 Spontaneous Breakdown of a Global, Continuous,
Non-Abelian Symmetry

Using the example of the O(3) sigma model we recall a few aspects relevant to our
subsequent discussion of spontaneous symmetry breaking [16].* To that end, we
consider the Lagrangian

4 The linear sigma model [6, 7, 17] is constructed in terms of the O(4) multiplet (o, 7y, 2, 73).
Since the group O(4) is locally isomorphic to SU(2) x SU(2), the linear sigma model is a
popular framework for illustrating the spontaneous symmetry breaking in two-flavor QCD.
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L(0,0,®) = L(D;, ©y, ©3,0,D;,0,D2,0,Ds)
1 m2 /1 2
=-0,0;0'D; — — O;D; — —(D;D; 2.11
S0PV — 0, = (@), 211)
where m?> <0, 2 > 0, with Hermitian fields ®;. By choosing m? <0, the symmetry
is realized in the Nambu-Goldstone mode [9, 13].°
The Lagrangian of Eq. 2.11 is invariant under a global “isospin” rotation,’

8 €8003) : O~ @, = Dy(g)®; = (7 ™) ;. (2.12)

For the @! to also be Hermitian, the Hermitian 7; must be purely imaginary and
thus antisymmetric (see Eqs. 1.69). The iT; provide the basis of a representation of
the so(3) Lie algebra and satisfy the commutation relations [T}, T}] = ig;xT. We
use the representation of Eqgs. 1.69, i.e., the matrix elements are given by f; 5 =
—igix. We now look for a minimum of the potential which does not depend on x.

Exercise 2.2 Determine the minimum of the potential

m2 /l 2
Y (Dy, Dy, D3) = 7(135(1’;' + Z(q)iq)i) .

We find

> —m? "
[Punin| =/ —— =, |®| = /D] + @5 + ©3. (2.13)

Since @iy can point in any direction in isospin space we have a non-countably
infinite number of degenerate vacua. Any infinitesimal external perturbation that is
not invariant under SO(3) will select a particular direction which, by an appro-
priate orientation of the internal coordinate frame, we denote as the 3 direction in
our convention,

Dpyin = ves3. (2.14)

-

Clearly, ®p,, of Eq. 2.14 is not invariant under the full group G = SO(3) since
rotations about the 1 and 2 axes change (f)min.7 To be specific, if

5 1In the beginning, the discussion of spontaneous symmetry breaking in field theories [9, 13-15]
was driven by an analogy with the theory of superconductivity [1, 2, 4, 5].

S The Lagrangian is invariant under the full group O(3) which can be decomposed into its two
components: the proper rotations connected to the identity, SO(3), and the rotation-reflections.
For our purposes it is sufficient to discuss SO(3).

7 We say, somewhat loosely, that T, and T, do not annihilate the ground state or, equivalently,

finite group elements generated by 7 and 7, do not leave the ground state invariant. This
should become clearer later on.
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. 0
Qpin=v| 0|,
1
we obtain
qu)min =V —1 s TZ(I)min =V 0 N T3(Dmin = 0 (215)
0 0

Note that the set of transformations which do not leave (I_im,-n invariant does not

form a group, because it does not contain the identity. On the other hand, i)min is
invariant under a subgroup H of G, namely, the rotations about the 3 axis:

-/

heH: ® =DHh)®=e ™00, D(h)Ppiy = Dpin.- (2.16)

Exercise 2.3 Write @5 as

D3 (x) = v +n(x), (2.17)

where 7(x) is a new field replacing ®3(x), and express the Lagrangian in terms of
the fields @y, ®,, and 1, where v = \/—m? /..

The new expression for the potential is given by

¥ = %(—2m2)n2 + v (D2 + @F + n?) + 4—'1 (0} + @3 + 172)2—%4- (2.18)

Upon inspection of the terms quadratic in the fields, one finds after spontaneous
symmetry breaking two massless Goldstone bosons and one massive boson:

2 2
mg =my =0,
o (2.19)

The model-independent feature of the above example is given by the fact that for
each of the two generators 7 and 7, which do not annihilate the ground state one
obtains a massless Goldstone boson. By means of a two-dimensional simplification
(see the “Mexican hat” potential shown in Fig. 2.5) the mechanism at hand can
easily be visualized. Infinitesimal variations orthogonal to the circle of the mini-
mum of the potential generate quadratic terms, i.e., “restoring forces” linear in the
displacement, whereas tangential variations experience restoring forces only of
higher orders.
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Fig. 2.5 Two-dimensional
rotationally invariant
potential:

7(x,y) = = +y*)+

(492
4

Now let us generalize the model to the case of an arbitrary compact Lie group G
of order ng resulting in ng infinitesimal generators.8 Once again, we start from a
Lagrangian of the form [10]

2(6,0,8) = %aﬂcﬁ b1 (d), (2.20)

where @ is a multiplet of scalar (or pseudoscalar) Hermitian fields. The Lagrangian
% and thus also ¥~ are supposed to be globally invariant under G, where the
infinitesimal transformations of the fields are given by

geiG: O;— O; + 5(1),‘, 5(131 = —l'Satanq)j. (221)

The Hermitian representation matrices T, = (,;) are again antisymmetric and
purely imaginary. We now assume that, by choosing an appropriate form of ¥, the
Lagrangian generates a spontaneous symmetry breaking resulting in a ground state

with a vacuum expectation value (_ﬁmm = (@) which is invariant under a contin-
uous subgroup H of G. We expand ¥~ about Cf)mm, |(f)min| =v, ie., O =D, + A

A (cﬁmm) ) azﬂ/(dimm)

v (& :%(&)-) T WiV AT 222
() min ) + 20, 1+ 5030, Lidy + (2.22)
—_————
:0 _ 2
:m

i

8 The restriction to compact groups allows for a complete decomposition into finite-dimensional
irreducible unitary representations.
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The matrix M?> = (mé) must be symmetric and, since one is expanding about a
minimum, positive semidefinite, i.e.,

> mxi>0 ¥ X (2.23)
ij

In that case, all eigenvalues of M? are nonnegative. Making use of the invariance
of ¥~ under the symmetry group G,

“//(i)mm) - V(D(g)fﬁmin) = (<f>mm + 5<ifmm)

' . 1
0 (Buin) + 00 0O+ (224)

one obtains, by comparing coefficients,
M 0@pin j0Ppyinj = 0. (2.25)

Differentiating Eq. 2.25 with respect to 6@y, and using mi = mfl results in the

matrix equation

M@, = 0. (2.26)
Inserting the variations of Eq. 2.21 for arbitrary &,, 5(_ﬁmin = —isaTa(f)min, we
conclude

MT, B = 0. (2.27)

Recall that the 7, represent generators of the symmetry transformations of the
Lagrangian of Eq. 2.20. The solutions of Eq. 2.27 can be classified into two
categories:

1. T,, a=1,...,nyg, is a representation of an element of the Lie algebra
belonging to the subgroup H of G, leaving the selected ground state invariant.
Therefore, invariance under the subgroup H corresponds to

T.®nin=0, a=1,...,ny,

such that Eq. 2.27 is automatically satisfied without any knowledge of M?.

2. T,, a=ny+1,... ng,is not a representation of an element of the Lie algebra
belonging to the subgroup H. In that case Ta(f)min * 6, and Tacf)mm is an
eigenvector of M? with eigenvalue 0. To each such eigenvector corresponds a
massless Goldstone boson. In particular, the different Ta(fmin #* 0 are linearly
independent, resulting in ng — ny independent Goldstone bosons. (If they were
not linearly independent, there would exist a nontrivial linear combination
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a=ny+1

6: i Ca<Ta(f)min) = ( i CaTa> &)min;
—_———

such that 7 is an element of the Lie algebra of H in contradiction to our
assumption.)

Remark It may be necessary to perform a similarity transformation on the fields in
order to diagonalize the mass matrix.

Let us check these results by reconsidering the example of Eq. 2.11. In that case
ng = 3 and ny = 1, generating two Goldstone bosons (see Eq. 2.19).
We conclude this section with two remarks.

1. The number of Goldstone bosons is determined by the structure of the
symmetry groups. Let G denote the symmetry group of the Lagrangian with ng
generators, and H the subgroup with ny generators which leaves the ground
state invariant after spontaneous symmetry breaking. For each generator which
does not annihilate the vacuum one obtains a massless Goldstone boson, i.e.,
the total number of Goldstone bosons equals ng — ng.

2. The Lagrangians used in motivating the phenomenon of a spontaneous sym-
metry breakdown are typically constructed in such a fashion that the degen-
eracy of the ground states is built into the potential at the classical level (the
prototype being the “Mexican hat” potential of Fig. 2.5). As in the above case,
it is then argued that an elementary Hermitian field of a multiplet transforming
nontrivially under the symmetry group G acquires a vacuum expectation value
signaling a spontaneous symmetry breakdown. However, there also exist the-
ories such as QCD where one cannot infer from inspection of the Lagrangian
whether the theory exhibits spontaneous symmetry breaking. Rather, the cri-
terion for spontaneous symmetry breaking is a nonvanishing vacuum expec-
tation value of some Hermitian operator, not an elementary field, which is
generated through the dynamics of the underlying theory. In particular, we will
see that the quantities developing a vacuum expectation value may also be
local Hermitian operators composed of more fundamental degrees of freedom
of the theory. Such a possibility was already emphasized in the derivation of
Goldstone’s theorem in Ref. [10].

2.3 Goldstone Theorem

By means of the above example, we motivate another approach to Goldstone’s
theorem without delving into all the subtleties of a quantum field-theoretical
approach (for further reading, see Sect. 2 of Ref. [3]). Given a Hamilton operator



60 2 Spontaneous Symmetry Breaking

with a global symmetry group G = SO(3), let ®(x) = (®;(x), D1 (x), D3(x))
denote a triplet of local Hermitian operators transforming as a vector under G,
- > 3 - 3 3 o
g€G: D)o@ (x) = e 2ot U P(x)e 2o 0 = ¢ 2 W Ti(x), (2.28)

where the Q; are the generators of the SO(3) transformations on the Hilbert space
satisfying [Q;, Qj] = ie;xQx and the T; = (%) are the matrices of the three-
dimensional representation satisfying #; j = —ig;. We assume that one component
of the multiplet acquires a nonvanishing vacuum expectation value:

(0]01(x)[0) = (0]@(x)|0) =0,  (0]®3(x)[0) = v # 0. (2.29)

Then the two generators Q; and O, do not annihilate the ground state, and to each
such generator corresponds a massless Goldstone boson.

In order to prove these two statements, let us expand Eq. 2.28 to first order in
the oy :

i3 w00 ® <1 ijakrk>q3:&>+ax 3
k=1 k=1
Comparing the terms linear in the oy,
i[Ok, @] = &m0 Dy,
and noting that all three oy can be chosen independently, we obtain
i[Ok, @1 = —&x1n P,
which expresses the fact that the field operators ®; transform as a vector.” Using

EkimEkin = 20mn, We find

i
- Egkln [Qka (Dl] = 5mn(Dm = (Dn-

In particular,

@y = = 3101, @] 02, 01)), (2:30)

with cyclic permutations for the other two cases.
In order to prove that Q; and Q> do not annihilate the ground state, let us
consider Eq. 2.28 for & = (0,7/2,0),

B cos(Z) 0 sin() @, @, @,
Td=| 0 1 0 O | = & | =€ Dy e
—sin(3) 0 cos(3) @, -, @,

° Using the replacements Qy — I, and @; — X, note the analogy with i [ik,fq} = —&mXom-
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From the first row we obtain
O3 = e’ng(Dle_’ng.
Taking the vacuum expectation value
Vv = <0‘e’%Q2(I)le”%Q2 |0>

and using Eq. 2.29, clearly 0,|0) # 0, since otherwise the exponential operator
could be replaced by unity and the right-hand side would vanish. A similar
argument shows Q,]0) # 0.

At this point let us make two remarks.

1. The “states” Q;(2)|0) cannot be normalized. In a more rigorous derivation one
makes use of integrals of the form

/ & (0][0(1,7), 0,(0)][0),

and first determines the commutator before evaluating the integral [3].

2. Some derivations of Goldstone’s theorem right away start by assuming
Q1(2)|0) # 0. However, for the discussion of spontaneous symmetry breaking in
the framework of QCD it is advantageous to establish the connection between
the existence of Goldstone bosons and a nonvanishing expectation value (see
Sect. 3.2).

Let us now turn to the existence of Goldstone bosons, taking the vacuum
expectation value of Eq. 2.30:

0 v = (013(0)[0) = — 3 (01(101, ®2(0)] ~ [02, @, O))[0) = ~ 3 (4~ B).

We will first show A = —B. To that end we perform a rotation of the fields as well
as the generators by 7/2 about the 3 axis [see Eq. 2.28 with o = (0,0, 7/2)]:

-0, D,
e NP = O, = 7% 0, e”gQﬂ
@5 D,

and analogously for the charge operators

- ' o '
Q1 | =5 0y |75
03 03

We thus obtain
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B = (0]12 1 (0)]]0) = (0] (~01) =552 w3(0)e ™5
=1
— B0, (0)e HO: eigga(_Ql)e—z%Qa) 10)
= —(0[[Q1, 2,(0)][0) = —A,

where we made use of 03]|0) =0, i.e., the vacuum is invariant under rotations
about the 3 axis. In other words, the nonvanishing vacuum expectation value v can
also be written as

0 # v = (0/®3(0)|0) = —i(0][Q1, P>(0)]|0) = —i/d3x (Ol7 (1, %), ©2(0)]]0).
(2.31)

We insert a complete set of states 1 = XVL) (n| into the commutator'”
n

v= —igﬁ / & ((0170(1,)[n) (n]®3(0)[0) — (0[(0) ) (] (1, )[0)),

and make use of translational invariance

i / (e P (01(0)]m) n|@2(0)[0) — - )
= =i 328 B e (OO (102(0)0) — ¢ (00(0)) (12 0)0).

n

Integration with respect to the momentum of the inserted intermediate states yields
an expression of the form

- S ),

n

where the prime indicates that only states with j = 0 need to be considered. Due to
the Hermiticity of the symmetry current operators J; as well as the ®;, we have

= (017(0) ) (n|@2(0)[0) = (n]/7(0)[0)" (0]®2(0)[m)",

such that

= —i(2n)3zl (cue ™" — che'™). (2.32)

n

10 The abbreviation i\n><n| includes an integral over the total momentum 5 as well as all

n
other quantum numbers necessary to fully specify the states.
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From Eq. 2.32 we draw the following conclusions.

1. Due to our assumption of a nonvanishing vacuum expectation value v, there must
exist states |1z) for which both (017, (0)|) and (n|®;2)(0)|0) do not vanish. The
vacuum itself cannot contribute to Eq. 2.32 because (0|®;(5)(0)|0) = 0.

2. States with E, > 0 contribute (¢, is the phase of c¢,)

1 . , 1 . . S
?(cnef’E”t —cre™') = ?|c,,| (e'Pne™ "t — =i 0ne'™n") = 2|c,|sin(¢p, — E,t)

to the sum. However, v is time independent and therefore the sum over states
with (E, ) = (E, > 0,0) must vanish.

3. The right-hand side of Eq. 2.32 must therefore contain the contribution from
states with zero energy as well as zero momentum thus zero mass. These zero-
mass states are the Goldstone bosons.

2.4 Explicit Symmetry Breaking: A First Look

Finally, let us illustrate the consequences of adding a small perturbation to our
Lagrangian of Eq. 2.11 which explicitly breaks the symmetry. To that end, we
modify the potential of Eq. 2.11 by adding a term a®;,

2 )
1 (D, Dy, D3) = %qa,@i + Z((Di@i)z + a®;, (2.33)

where m? <0, > 0, and a > 0, with Hermitian fields ®@;. Clearly, the potential no
longer has the original O(3) symmetry but is only invariant under O(2). The

conditions for the new minimum, obtained from ﬁqu =0, read

O =0, =0, ID}+m’D3+a=0.
Exercise 2.4 Solve the cubic equation for @3 using the perturbative ansatz

(@3) = D) + 40" + 0(a?). (2.34)

0 / m2 1 1

As expected, CDgO) corresponds to our result without explicit perturbation. The

condition for a minimum (see Eq. 2.23) excludes (Dgo) =44/ m72 Expanding the

potential with @3 = (®3) + 1 we obtain, after a short calculation, for the masses

The solution reads
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Y,
mél = méz =a 7
; (2.35)
mi = —2m*+3a —.

The important feature here is that the original Goldstone bosons of Eq. 2.19 are
now massive. The squared masses are proportional to the symmetry breaking
parameter a. Calculating quantum corrections to observables in terms of
Goldstone-boson loop diagrams will generate corrections which are nonanalytic in
the symmetry breaking parameter such as aln(a) [12]. Such so-called chiral
logarithms originate from the mass terms in the Goldstone-boson propagators
entering the calculation of loop integrals. We will come back to this point in the
next chapter when we discuss the masses of the pseudoscalar octet in terms of
the quark masses which, in QCD, represent the analogue to the parameter a in the
above example.
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Chapter 3
Chiral Perturbation Theory for Mesons

3.1 Effective Field Theory

Before discussing chiral perturbation theory (ChPT) in detail, we want to briefly
outline some of the main features of the effective-field-theory approach, as it finds
a wide range of applications in physics. Detailed introductions and reviews are
found, e.g., in Refs. [29, 45, 48, 58, 66, 74, 78, 82]. An effective field theory (EFT)
is a low-energy approximation to some underlying, more fundamental theory. By
that we mean that the EFT is a valid approximation for energies that are small
compared to some scale A of the underlying theory. The specific value of A
depends on the theory under investigation, which may in fact contain several such
scales A; <A, < ---. The basic idea of an EFT is that one does not need to know
details of the underlying theory at energies larger than A in order to find a useful
description of the physics in the energy domain one is interested in.

An EFT uses the degrees of freedom suitable for the particular low-energy
domain of interest. For example, one can neglect those degrees of freedom that are
too heavy to be produced at low energies, which can simplify calculations sig-
nificantly. In fact, the degrees of freedom can be entirely different from those
appearing in the underlying theory: we will use the pseudoscalar octet (7, K, 7)
and the octet of %+ baryons (p,n, X, E, A) instead of the more fundamental quarks
and gluons as the degrees of freedom in low-energy processes in hadronic physics.

Using different degrees of freedom, we have to assure that observables calcu-
lated in the EFT are related to those of the underlying theory. This is achieved by
using the most general Lagrangian that is consistent with the symmetries of the
underlying theory, as this yields the “most general possible S-matrix consistent
with analyticity, perturbative unitarity, cluster decomposition and the assumed
symmetry principles” [100]. Since we are using the most general Lagrangian, it
actually consists of an infinite number of terms, each with its own coefficient, the
so-called low-energy constants (LECs). Obviously, this is not a very useful pre-
scription without some kind of approximation to avoid having to calculate an

S. Scherer and M. R. Schindler, A Primer for Chiral Perturbation Theory, 65
Lecture Notes in Physics 8§30, DOI: 10.1007/978-3-642-19254-8_3,
© Springer-Verlag Berlin Heidelberg 2012



66 3 Chiral Perturbation Theory for Mesons

infinite number of contributions to each physical observable. The solution lies in
two restrictions: first, we only demand a finite accuracy to our results, i.e., our
results are allowed to differ from those of the underlying theory by a specified
(small) amount; and second, we restrict ourselves to a certain energy domain,
which means that the EFT has a limited range of applicability. The EFT is then
used to calculate physical observables in terms of an expansion in p/A, where p
generically stands for energy, momenta or masses that are smaller than the scale A
related to the underlying theory. As long as p < A, only a finite number of terms
in the expansion contribute for a specified accuracy, which correspond to a finite
number of terms in the most general Lagrangian. We will see an example of a
method to determine which terms to include when considering Weinberg’s power
counting in Sect. 3.4.9.

As explained above, the terms in the Lagrangian are constrained by the sym-
metries of the underlying theory. This explains our focus on the symmetries of
QCD in the previous two chapters. In the following, we will study the implications
of these symmetries for the interactions of the Goldstone bosons of spontaneously
broken chiral symmetry. While the symmetries impose conditions on the structure
of the Lagrangian, they do not restrict the LECs. These should in principle be
calculable from the underlying theory. In the cases where this is not possible, e.g.
if the underlying theory is not known or one does not (yet) know how to solve it,
they can be fitted to data. Once the LECs are determined, the effective theory
possesses predictive power.

On a technical note, EFTs are non-renormalizable in the traditional sense, as
with increasing accuracy one needs to include more and more terms. However,
as long as one considers all terms that are allowed by the symmetries, divergences
that occur in calculations up to any given order of p/A can be renormalized by
redefining fields and parameters of the EFT Lagrangian [101].

One of the best-known examples of an effective theory is Fermi’s theory of beta
decay. It can in fact be regarded as the leading-order piece of an EFT in which the
massive gauge bosons are “integrated out.” In the Standard Model, neutron beta
decay n — pe~ v, is described via an intermediate W boson with mass My ~
80GeV. For momentum transfers g < My, the W boson propagator can be
replaced by the lowest-order expansion in the small quantity ¢/My, symbolically

1 I
- b
¢ —My My

resulting in the four-fermion contact interaction of Fermi’s theory. This low-
energy theory includes all the ingredients of an EFT discussed above: The degrees
of freedom differ from those of the underlying theory as the W boson is excluded,
the underlying scale A is identified with the mass My, and the domain of appli-
cability is restricted to momentum transfers ¢ << My, . It is also non-renormalizable
in the traditional sense, as the Fermi constant Gy describing the four-fermion
coupling has dimensions energy 2.
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Let us consider an analogous, but simplified, example in more detail. We choose
a toy model with two massive scalar degrees of freedom,’

$ = g() + =gint7
1 1
Lo =5(0,90"9p — M*¢*) + (8,00 — m¢?), (3.1)
mt - __d)q) ’

with m < M. The equations of motion are then derived from the Euler-Lagrange
equations to be

O+ M+ 50* =0, (32)

Og +m?e + Ap¢p = 0. (3.3)
Formally solving Eq. 3.2 for ¢,

A 1

_ 2
d)_ 2M21—|—DP7

and inserting the solution into Eq. 3.3, we obtain

2 1

We see that the heavy degree of freedom ¢ has disappeared from the equation of
motion of the light particle. If the momentum of ¢ is much less than M we can
formally expand the last term in Eq. 3.4 in 1/M?. The leading-order expression is
given by

22
D¢+M¢fﬁﬁ¢:0. (3.5)

The same equation of motion is generated by the effective Lagrangian

1
Lett = E(a,u(/)auq) - mz(pz) + i§047 (36)

as long as

8M?

! The toy model serves pedagogical purposes only. As a (quantum) field theory it is not
consistent because the energy is not bounded from below [14].
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Fig. 3.1 Diagrams ‘\ / Tee Pt S. L
contributing to ¢@(p;) + \ )/ Sy AN 7
@(p2) — @(p3) + @(p4) in P PSRN
the fundamental theory K % J |

The effective Lagrangian only depends on the light field ¢ and contains a ¢*
interaction, which is the analogue of the Fermi interaction. Note that, instead of
using the equations of motion, one can also directly “integrate out” the heavy
degrees of freedom from the Lagrangian in a path-integral formalism.

Exercise 3.1 We now show that the effective Lagrangian of Eq. 3.6 produces the

same low-energy scattering amplitude for ¢(p;) + @(p2) — ¢@(p3) + @(p4) as the
original Lagrangian of Eq. 3.1.

(a) Show that the Feynman rule for the coupling of a heavy field ¢ to two light
fields ¢ in the original theory is given by —iA.

(b) Calculate the amplitudes for the diagrams shown in Fig. 3.1, where the dashed
and solid lines represent the fields ¢ and ¢, respectively. The heavy-particle
Feynman propagator is given by

1
A =
Fo(P) p* — M2 +i0+

Show that the result can be expressed in the Mandelstam variables s =
(p1+p2) t = (p1 = p3)’, and u = (p1 — pa)” as

Miuna = —12( : + : + : ) (3.7)

s—M?4+i0t  t—M?24+i0t  u—M?+i0*

(c) We now restrict ourselves to very low energies, such that {s, |¢|, |u|} < M>.
Show that the leading-order contribution in the low-energy expansion is given
by

3i)?
g =35 o),

M? M?
(d) In the effective theory, we only need to consider the diagram of Fig. 3.2. Show
that the corresponding amplitude is given by

Lo 3id?
%eff = l(4')/t, = W’

which exactly reproduces the leading-order contribution in the fundamental
theory. This calculation shows that even if we know how to calculate
observables in the underlying theory, use of an EFT can simplify the necessary
calculations.
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Fig. 3.2 Diagram S T
contributing to ¢@(p;) + N 7
@(p2) = ¢(p3) + ¢(pa) in N
the effective theory P
7 7 > N
7 7 N
7 N N
4 N

In the example above we eliminated some of the heavy degrees of freedom by
explicit calculation. In the case of chiral perturbation theory, the hadronic degrees of
freedom are very different from even the light degrees of freedom of the underlying
theory of QCD, and we therefore have to rely on the symmetries of QCD to construct
the effective Lagrangian. This will be the focus of the following sections.

3.2 Spontaneous Symmetry Breaking in QCD

While the toy model of Sect. 2.2 is constructed to illustrate the concept of spon-
taneous symmetry breaking, it is not fully understood theoretically why QCD
should exhibit this phenomenon. We will first motivate why experimental input,
the hadron spectrum of the “real” world, indicates that spontaneous symmetry
breaking occurs in QCD. Secondly, we will show that a nonvanishing scalar
singlet quark condensate is a sufficient condition for spontaneous symmetry
breaking in QCD.

3.2.1 The Hadron Spectrum

We saw in Sect. 1.3 that the QCD Lagrangian possesses an SU(3), x SU(3), X
U(1), symmetry in the chiral limit in which the light-quark masses vanish. From
symmetry considerations involving the Hamiltonian H(%CD only, one would naively
expect that hadrons are organized in approximately degenerate multiplets fitting
the dimensionalities of irreducible representations of the group SU(3), X
SU(3), x U(1),. The U(1), symmetry results in baryon number conservation and
leads to a classification of hadrons into mesons (B = 0) and baryons (B = 1). The
linear combinations

QVa = QRa + QLa (38)

and

QAa = QRa - QLa (39)
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of the left- and right-handed charge operators commute with HgCD, have opposite
parity, and thus for states of positive parity one would expect the existence of
degenerate states of negative parity which can be seen as follows.?

Let |o, +) denote an eigenstate of H(%CD and parity with eigenvalues E, and +1,
respectively,

HgCD|a7+> :EOC|OC7+>7
P|O"+> = |OC,+>,

such as, e.g., a member of the lowest-lying baryon octet (in the chiral limit).
Defining [/,,) = Qaal2, +), because of [Hp, Oaa] = 0, we have

H8CD|¢aa> = H(%CDQAaW, +> = QAaH(%CD|“> +> = EaQAa|“a +> = Ea|'//aa>>
Py,) = POaaP™ ' Plot, +) = —Qua(+lo, +)) = = |¥as)-

The state |/,,) can be expanded in terms of the members of a multiplet with
negative parity,

|¢aa> = QAtl|O(a +> = |:B’ _><ﬂ’ _|QAa|OC’ +> = ta,/f%|ﬁ7 _>'

However, the low-energy spectrum of baryons does not contain a degenerate
baryon octet of negative parity. Naturally the question arises whether the above
chain of arguments is incomplete. Indeed, we have tacitly assumed that the ground
state of QCD is annihilated by the generators Qu,. Let bl , denote an operator
creating quanta with the quantum numbers of the state |, +). Similarly, let b;_
create degenerate quanta of opposite parity. Expanding

|:QAa7bL+:| = b};,ta,ﬁm
the usual chain of arguments then works as

Qaalt, +) = Qaaby|0) = (1Qaar bys] + bre Qaa)I0) = tapub 10)- (3.10)

—0

However, if the ground state is not annihilated by Q4,, the reasoning of Eq. 3.10
does no longer apply. In that case the ground state is not invariant under the full
symmetry group of the Lagrangian, resulting in a spontaneous symmetry breaking.
In other words, the non-existence of degenerate multiplets of opposite parity points
to the fact that SU(3),, instead of SU(3), x SU(3);, is approximately realized as a
symmetry of the hadrons. Furthermore, the octet of the pseudoscalar mesons is
special in the sense that the masses of its members are small in comparison with

2 The existence of mass-degenerate states of opposite parity is referred to as parity doubling.
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Fig. 3.3 Pseudoscalar meson N
octet in an (I3,S) diagram.
Baryon number B = 0. 1 ° °
Masses in MeV K(498) K (494)
7~ (140) 70(135) 7t (140)
0 ° ® °
1(548)
-1 ° °
K~ (494) R°(498)
I
-1 -12 0 12 1

the corresponding vector mesons (J© = 17). They are the candidates for the
Goldstone bosons of spontaneous symmetry breaking in QCD.
In order to understand the origin of the SU(3),, symmetry, let us consider the

vector charges Qvy = Ora + Ora.”

Exercise 3.2 Using Eqgs. 1.104-1.106, show that the vector charges satisfy the
commutation relations of an su(3) Lie algebra,

[Ova, Ovb] = ifupcQve- (3.11)

It was shown by Vafa and Witten [94] that, in the chiral limit, the ground state is
necessarily invariant under SU(3), x U(1),, i.e., the eight vector charges Qy, as
well as the baryon number operator* Qy /3 annihilate the ground state,

Ova|0) = Qv[0) = 0. (3.12)

According to the Coleman theorem [41], the symmetry of the ground state
determines the symmetry of the spectrum, i.e., Eq. 3.12 implies SU(3),, multiplets
which can be classified according to their baryon number. In the reverse conclu-
sion, the symmetry of the ground state can be inferred from the symmetry pattern
of the spectrum. Figures 3.3 and 3.4 show the octets of the lowest-lying pseudo-
scalar-meson states and the lowest-lying baryon states of spin-parity ;,
respectively.

Let us now turn to the linear combinations Qa, = Ors — Ol4-

Exercise 3.3 Using Eqgs. 1.104-1.106, verify the commutation relations

[QAaa QAb] = fabe Qve, (3.13)

3 The subscript V (for vector) indicates that the generators result from integrals of the zeroth
component of vector-current operators and thus transform with a positive sign under parity.

* Recall that each quark is assigned a baryon number 1/3.
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Fig. 3.4 Baryon octet N
(JP :{') in an (13,5)
diagram. Baryon number -2 _e ot
= =20(1315
B = 1. Masses in MeV (132 (1315)
2(1197) 20(1193) 2*(1189)
-1 ° ® °
A(1116)
0 ° °
n(940) p(938)
I3
-1 -12 0 12 1
[QVa; QAb] = iﬁleQAC' (314)

Note that these charge operators do not form a closed algebra, i.e., the commutator
of two axial-charge operators is not again an axial-charge operator. Since the
parity doubling is not observed for the low-lying states, one assumes that the Oy,
do not annihilate the ground state,

0aal0) # 0, (3.15)

i.e., the ground state of QCD is not invariant under “axial” transformations. In the
present case, G = SU(3); x SU(3), with ng = 16 and H = SU(3),, with ny =8
and we expect eight Goldstone bosons. According to the Goldstone theorem [60],
each axial generator Q4,, which does not annihilate the ground state, corresponds
to a massless Goldstone-boson field ¢, with spin 0, whose symmetry properties are
tightly connected to the generator in question. The Goldstone bosons have the
same transformation behavior under parity as the axial generators,

Bo(1,%) > (1, —3), (3.16)

i.e., they are pseudoscalars, and transform under the subgroup H = SU(3),,, which
leaves the vacuum invariant, as an octet (see Eq. 3.14):

[Qva; ¢ (x)] = ifanede(x)- (3.17)

3.2.2 The Scalar Singlet Quark Condensate

In this section all quantities such as the ground state, the quark operators, etc. are
considered in the chiral limit. We will show that a nonvanishing vacuum expec-
tation value of the operator gq in the chiral limit is a sufficient (but not a necessary)
condition for spontaneous symmetry breaking in zero-temperature QCD. An
increase in temperature will ultimately lead to a phase transition into the regime
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where chiral symmetry is restored, i.e., no longer spontaneously broken (see Ref.
[59] for a discussion of the low-temperature behavior of the quark condensate).
The terminology scalar singlet quark condensate originates from the fact that gg
transforms as a scalar under the full Lorentz group and as singlet under SU(3),,,
respectively. The “condensation” is a non-perturbative phenomenon of the QCD
ground state that is driven by the formation of quark-antiquark pairs. The sub-
sequent discussion will parallel that of the toy model in Sect. 2.3 after replacement
of the elementary fields ®@; by appropriate composite Hermitian operators of QCD.

Let us first recall the definition of the nine scalar and pseudoscalar quark
densities:

Sa(y) =q(»)Aaq(y), a=0,...8, (3.18)
Pa(y) = iQ(y)A))Slaq(y)v a=0,...,8. (319)

Exercise 3.4 Show that S, and P, transform under SU(3), x SU(3), i.e.,
g q, = Urqr and gr — g = Urgr, as

Sa—S, = 3LU} 2aUrgr + GrUkaUsds,
Pa i—>P£I = iC]_LUz)vaURqR — iC_]RU;[g/LzULQL-
Hint: Express S, and P, in terms of left- and right-handed quark fields.

In technical terms: The components S, and P, transform as members of
(3%,3) @ (3,3") representations.
The equal-time commutation relation of two quark operators of the form A;(x) =

q'(x)A;q(x), where A; symbolically denotes I and flavor matrices and a summation
over color indices is implied, can be compactly written as (see Eq. 1.103)

(A1 (,3), A2(1,5)] = 8 (& — F)g (x) [A1, A2] (%) (3.20)

In the following, let y denote (z,¥). With the definition

la
QVa(t) :/dSXQT(tvf)?Q(lrx)v

and using’
ta
|:1]77 y()/loil = 07

)La 5 . )
{1]37 "/O/lb} =% ; ifabches

S 1In this section, we explicitly write out sums over flavor indices, because a summation over
repeated indices is not implied in the final results of Eqs. 3.27 and 3.28.
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we see, after integration of Eq. 3.20 over X, that the scalar quark densities of
Eq. 3.18 transform under SU(3),, as a singlet and as an octet, respectively,

[Ova(1),So(y)] =0, a=1,...8, (3.21)
8
[Ova(1), S5 =i _fareSe(y), a,b=1,...,8, (3.22)

with analogous results for the pseudoscalar quark densities. In the SU(3),, limit
and, of course, also in the even more restrictive chiral limit, the charge operators in
Eqs. (3.21) and (3.22) are actually time independent.® Using the relation

8
Z Jabefava = 30ca (3.23)

a,b=1

for the structure constants of su(3), we re-express the octet components of the
scalar quark densities as

Su) = 23" furlOu (0, 5:)) (3.24)
b,c=1

which represents the analogue of Eq. 2.30 in the discussion of the Goldstone
theorem.

In the chiral limit the ground state is necessarily invariant under SU(3),, [94],
i.e., Ov,|0) = 0, and we obtain from Eq. 3.24

(01S.()]0) = (0[S,(0)[0) = (S.) =0, a=1,...8, (3.25)

where we made use of translational invariance of the ground state. In other words,
the octet components of the scalar quark condensate must vanish in the chiral limit.
From Eq. 3.25, we obtain for a = 3

(i) — (dd) =0,

i.e., (i) = (dd) and for a = 8

(uu) + (dd) — 2(ss) = 0,
ie., (iu) = (dd) = (ss).
Because of Eq. 3.21 a similar argument cannot be used for the singlet con-
densate, and if we assume a nonvanishing scalar singlet quark condensate in the
chiral limit, we find using (uu) = (dd) = (5s):

S The commutation relations also remain valid for equal times if the symmetry is explicitly
broken.
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0 # (gq) = (u + dd + 5s) = 3(uu) = 3{dd) = 3(ss). (3.26)

Finally, we make use of (no summation implied!)
2| 4 , ,
& {%Eav "/0“/5/4 = Pols

in combination with

100
W=3=kx=10 1 0],
000
100
=Ji=10 0 0],
00 1
000
=k=(0 1 0],
00 1
100
zé:% 01 0],
00 4
to obtain
iy +dd, a=1,273
0P =4 Gl T (3.27)

H(au +dd + 4ss), a=38

where we have suppressed the y dependence on the right-hand side. We evaluate
Eq. 3.27 for a ground state which is invariant under SU(3),,, assuming a non-
vanishing singlet scalar quark condensate,

(01011, Pu0)]0) = 5(ag), a=1....8 (328)
where, because of translational invariance, the right-hand side is independent of y.
Inserting a complete set of states into the commutator of Eq. 3.28 yields, in
complete analogy to Sect. 2.3 (see the discussion following Eq. 2.31) that both the
pseudoscalar densities P,(y) as well as the axial charge operators 04, must have a
nonvanishing matrix element between the vacuum and massless one-particle states
|¢,). In particular, because of Lorentz covariance, the matrix element of the
axial-vector current operator between the vacuum and these massless states,
appropriately normalized, can be written as
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Table 3.1 Comparison of spontaneous symmetry breaking patterns
Section 2.3 O(N) sigma model QCD

Symmetry group G of Lagrangian 0@3) O(N) SU(3), x SU(3),

Number of generators ng 3 NN —-1)/2 16

Symmetry group H of ground state ~ O(2) O(N —1) SU@3),

Number of generators ny 1 (N-1)(N-2)/2 8

Number of Goldstone bosons ng — ny 2 N -1 8

Multiplet of Goldstone-boson fields (@ (x), Pa(x)) (D (x),...,Py_1(x)) ig(x)ysieq(x)

Vacuum expectation value v = (D3) v = (Dy) v =(qq)
(O1A2(0) |y (p)) = D" Fodan, (3.29)

where Fj denotes the “decay” constant of the Goldstone bosons in the three-flavor
chiral limit (m, = my = my; = 0). From Eq. 3.29 we see that a nonzero value of F
is a necessary and sufficient criterion for spontaneous chiral symmetry breaking.
On the other hand, because of Eq. 3.28 a nonvanishing scalar singlet quark con-
densate (gg) is a sufficient (but not a necessary) condition for a spontaneous
symmetry breakdown in QCD. Table 3.1 contains a summary of the patterns of
spontaneous symmetry breaking as discussed in Sect. 2.3, the generalization of
Sect. 2.2 to the so-called O(N) linear sigma model, and QCD.

3.3 Transformation Properties of the Goldstone Bosons

The purpose of this section is to discuss the transformation properties of the field
variables describing the Goldstone bosons [10, 33, 42, 70, 99]. We will need the
concept of a nonlinear realization of a group in addition to a representation of a
group which one usually encounters in physics. We will first discuss a few general
group-theoretical properties before specializing to QCD.

3.3.1 General Considerations

Let us consider a physical system described by a Lagrangian which is invariant
under a compact Lie group G. We assume the ground state of the system to be
invariant under only a subgroup H of G, giving rise to n = ng — ny Goldstone
bosons. Each of these Goldstone bosons will be described by an independent field
¢; which is a smooth real function on Minkowski space M*. These fields are
collected in an n-component vector ® = (¢,,...,¢,), defining the real vector
space

M, = {®: M* - R"|¢p, : M* — R smooth}. (3.30)
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Our aim is to find a mapping ¢ which uniquely associates with each pair (g, ®) €
G X M, an element ¢(g, ®) € M; with the following properties:

ple,®) =® V & e M, eidentity of G, (3.31)

?(g1,0(82,P)) = ¢(g182,P) V g1,£2€G, ¥V deM. (3.32)

Such a mapping defines an operation of the group G on M;. The second condition
is the so-called group-homomorphism property [9, 64, 77]. The mapping will, in
general, not define a representation of the group G, because we do not require the
mapping to be linear, i.e., ¢(g, A®) # Ap(g,®). The construction proceeds as
follows [70]. Let ® = O denote the “origin” of M; which, in a theory containing
Goldstone bosons only, loosely speaking corresponds to the ground state config-
uration. Since the ground state is supposed to be invariant under the subgroup H
we require the mapping ¢ to be such that all elements 2 € H map the origin onto
itself. In this context the subgroup H is also known as the little group of ® = 0.

We will establish a connection between the Goldstone-boson fields and the set
of all left cosets {gH|g € G} which is also referred to as the quotient G/H. For a
subgroup H of G the set gH = {gh|h € H} defines the left coset of g which is one
element of G/H . For our purposes we need the property that cosets either
completely overlap or are completely disjoint, i.e., the quotient is a set whose
elements themselves are sets of group elements, and these sets are completely
disjoint.

As an illustration of these properties, consider the symmetry group C4 of a
square with directed sides:

e
!

The corresponding abstract group G consists of four elements, G = Cy =
{e,a,a* a®} with the defining relation a* = e. Geometrically, a may be repre-
sented by a rotation through 90° about an axis through the center and normal to the
plane of the square. Using a* = e, the left cosets of the (nontrivial) subgroup
H = {e,a*} are given by

eH = {e,d*} = a’H, aH = {a,a’} = a’H.

7 Accordingly, the right coset of g is defined as Hg = {hg|h € H}. An invariant subgroup has
the additional property that the left and right cosets coincide for each g which allows for a
definition of the factor group G/H in terms of the complex product. However, here we do not
need this property.
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The quotient G/H = {gH|g € G} therefore consists of the two elements {e,a’}
and {a,a’}. Since the elements of the quotient are completely disjoint, any
element of a given coset uniquely represents the coset in question.

Returning to the discussion of the mapping ¢, Eqgs. 3.31 and 3.32 result in two
important properties when considering the quotient G/H. Let us first show that the
origin is mapped onto the same vector in R” under all elements of a given coset
gH:

¢(gh,0) = ¢(g,¢(h,0)) = ¢(g,0) V g&€G and heH.

Secondly, the mapping is injective with respect to the elements of G/H. Consider
two elements g and g’ of G where g’ & gH. Let us assume ¢(g,0) = ¢(g’,0):

0=0(e,0) = p(g',0) = p(g", 0(3,0)) = 0(g™", 0(g',0)) = p(g'¢’,0).

However, this implies g~'¢’ € H or g’ € gH in contradiction to the assumption
g & gH and therefore ¢(g,0) = ¢(g’,0) cannot be true. In other words, the
mapping can be inverted on the image of ¢(g,0). The conclusion is that there
exists an isomorphic mapping between the quotient G/H and the Goldstone-boson
fields. Of course, the Goldstone-boson fields are not constant vectors in R" but
functions on Minkowski space. This is accomplished by allowing the cosets gH to
also depend on x.

Now let us discuss the transformation behavior of the Goldstone-boson fields
under an arbitrary g € G in terms of the isomorphism established above. To each
@ corresponds a coset gH with appropriate g. Let f = gh € gH denote a repre-
sentative of this coset such that

® = ¢(f,0) = »(2h,0).

Now apply the mapping ¢(g) to ®:

@(g,®) = ¢(g,9(gh,0)) = ¢(ggh,0) = o(f',0) =¥, [ € g(gH).

In order to obtain the transformed @ from a given @, we simply need to multiply
the left coset gH representing ® by g in order to obtain the new left coset rep-
resenting @'
40
U (3.33)
gH % ggH

This procedure uniquely determines the transformation behavior of the Goldstone
bosons up to an appropriate choice of variables parameterizing the elements of the
quotient G/H.
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3.3.2 Application to QCD

The symmetry groups relevant to the application in QCD are
G =SU(N) x SU(N) = {(L,R)|L € SU(N),R € SU(N)}
and
H={(V,V)|[VeSUN)} = SUN),

with N = 2 for massless u and d quarks and N = 3 for massless u, d, and s quarks.
Let g = (L,R) € G. We characterize the left coset gH through the SU(N) matrix
U = RL' [10] such that gH = (1,RLY)H. This corresponds to the convention of
choosing as the representative of the coset the element which has the unit matrix in
its first argument. The transformation behavior of U under g = (L,R) € G is
obtained by multiplying the left coset gH from the left with g (see Eq. 3.33):

ggH = (L,RRLYH = (1,RRL'L")(L,L)H = (1,R(RL")L"H,

where we made use of the fact that a multiplication of H with any element
(L,L) € H simply reproduces H. According to our convention, the representative

of the transformed left coset is (1, RRL'L!). The transformation behavior of U is
therefore given by

U=RL+— U =R(RL"L' = RUL'. (3.34)

As mentioned above, we need to introduce an x dependence to account for the fact
that we are dealing with fields:

U(x)— RU(x)L . (3.35)

Let us now restrict ourselves to the physically relevant cases of N =2 and
N = 3 and define

M= {®: M* - R3¢, : M* — R smooth} for N =2,
"T {0 M* — R, : M* — R smooth}  for N = 3.

Furthermore let /#(N) denote the set of all Hermitian and traceless N x N
matrices,

H(N)={A € gd(N,C)|JAT = A ATr(A) = 0},

which under addition of matrices defines a real vector space. We define a second

set My = {¢ : M* — #(N)|¢ smooth}, where the entries are smooth functions.
For N = 2, the elements of M, and M, are related to each other according to
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0=30m= (0,20 "0)= (o T5) 0

where the 7; are the usual Pauli matrices and ¢, :%Tr[r,-qﬁ}. Analogously for
N =3,

70 + %’7 ﬂn+ \/§K+

b= ¢ ia=| V2 2"+ V2K |, (3.37)
o=t V2K© V2K 2

with the Gell-Mann matrices 4, and ¢, = 1Tr[Z,¢]. Again, M, forms a real vector
space.

Exercise 3.5 Make use of the Gell-Mann matrices of Eq. 1.6 and express the
physical fields in terms of the Cartesian components, e.g.,

7t = (¢ — idy).

N

Let us finally define
M; = {U :M* — SUN)|U = exp(iFi)qﬁ € Mg}.
0

At this stage, the constant Fy is introduced to make the argument of the expo-
nential function dimensionless. Since a bosonic field has the dimension of energy,
Fy also has the dimension of energy. Later on, F, will be identified with the
“decay” constant of the Goldstone bosons in the chiral limit.® At this point it is
important to note that M3 does not define a vector space because the sum of two
SU(N) matrices is not an SU(N) matrix.

We are now in the position to discuss a realization of SU(N) x SU(N) on Ms.
The homomorphism

®:GxM; — M; with o[(L,R),U] = RUL,

defines an operation of G on M3, because

8 There is a subtlety here, because Fy is traditionally reserved for the three-flavor chiral limit,
whereas the two-flavor chiral limit (at fixed m) is denoted by F. In this section, we will use F
for both cases.
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1. RUL' € M3, since U € M5 and R, L! € SU(N), i.e., RUL' is a smooth SU(N)-
valued function.

2. ¢[(1,1),U] =1U1 =U.

3. Let g; = (L, R;) € G and thus g8, = (L1Ly,R1R;) € G.

ole1, 9lg2, Ul = olg1, (RULL)] = RIR,ULL,
0lg182, U] = RiRU(LiLy)' = R\RULIL].

The mapping ¢ is homogeneous of degree one but it is not a representation,
because M3 is not a vector space.

The origin ¢p = 0 (for all x), i.e., Uy = 1, denotes the ground state of the system.
Under transformations of the subgroup H = {(V, V)|V € SU(N)} corresponding
to rotating both left- and right-handed quark fields in QCD by the same V, the
ground state remains invariant,

plg = (V,V), Uy = VUV! = Wi =1 = U,.

On the other hand, under “axial transformations,” i.e., rotating the left-handed
quarks by a nontrivial A and the right-handed quarks by Af, the ground state does
not remain invariant,

olg = (A,A1), Ug] = ATUeAT = ATAT £ U,

which is consistent with the assumed spontaneous symmetry breakdown.

The traceless and Hermitian matrices of Eqs. 3.36 and 3.37 contain the
Goldstone-boson fields. We want to discuss their transformation behavior under
the subgroup H = {(V, V)|V € SU(N)}. Expanding

¢ ¢
U:ﬂ —_— e
T T2 T

we immediately see that the realization ¢ restricted to the subgroup H,

¢ ¢ ¢ ¢
T+ 4. v+ V!
i 2F3+ — g 2F3+ )
s disVT _ Vevivevi '
B Fo 2F} ’

defines a representation on M, 3 ¢ — VV' € M,, because

(Vv = vV, Tr(vevh) = Tr(¢) =0,
Vi(Vap VOV = (Vi) (viVy)T
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Let us consider the SU(3) case and parameterize

)\,
V =exp (—i@Vb?}’),

from which we obtain, by comparing both sides of Eq. 3.38,

, hesu@)y 1 . b, 7
¢ = ¢a/“a — V(;ZSV = ¢ - l®Vb¢a ?7 | Foo = d) +ﬁtbc®Vad)b/“c + .-

N ——
= ifba(:/lc
(3.39)

However, this corresponds exactly to the adjoint representation, i.e., in SU(3) the
fields ¢, transform as an octet which is also consistent with the transformation
behavior we discussed in Eq. 3.17:

£/©vaQva (f)hxbe*i@w-Qw- _ (]5;;/111 + Oy, [QVm ¢b] Ay
——

= ifabcd)c
= ¢+ farcOvaPpic + -+ . (3.40)

For group elements of G of the form (A, A") one may proceed in a completely
analogous fashion. However, one finds that the fields ¢, do not have a simple
transformation behavior under these group elements. In other words, the com-
mutation relations of the fields with the axial charges are complicated nonlinear
functions of the fields. This is the origin for the terminology nonlinear realization
of chiral symmetry [33, 42, 99].

3.4 Effective Lagrangian and Power-Counting Scheme

Having discussed the transformation behavior of the Goldstone-boson fields, we
now turn to describing their interactions with each other and with external fields at
energies far below 1 GeV.

3.4.1 The Lowest-Order Effective Lagrangian

Our goal is the construction of the most general theory describing the dynamics of
the Goldstone bosons associated with the spontaneous symmetry breakdown in
QCD. In the chiral limit, we want the effective Lagrangian to be invariant under
SU(3), x SU(3), x U(1),. It should contain exactly eight pseudoscalar degrees
of freedom transforming as an octet under the subgroup H = SU(3),,. Moreover,
taking account of spontaneous symmetry breaking, the ground state should only be
invariant under SU(3),, x U(1),,.
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In terms of the SU(3) matrix

U(x) = exp <i¢(x)> , (3.41)

Fo

where ¢ is given in Eq. 3.37, the most general, chirally invariant, effective
Lagrangian with the minimal number of derivatives reads

F2
Lot = TOTr(GMUa“UT). (3.42)

The parameter Fy will be related to the pion decay n™ — p*v, later on (see
Sect. 3.4.4).

First of all, the Lagrangian is invariant under the global SU(3), x SU(3),
transformations of Eq. 3.35:

U RUL',
0, U 0,(RUL) = 9,

=

UL' + RO,UL' + RU 9,L! = RO, UL,
0

X

Ut — LU'R,
0,U" — L3, U'R',

because

F2 F§
P HTOTI(RGNU L a”UTRT) - TOTr( R'R a#Ua“UT) = PLeir,
=1 =1

where we made use of the trace property Tr(AB) = Tr(BA). The global U(1),
invariance is trivially satisfied, because the Goldstone bosons have baryon number
zero, thus transforming as ¢ +— ¢ under U(1),, which also implies U — U.

The substitution ¢,(t,%)— — ¢,(t,X) or, equivalently, U(t, %) — U'(t, %) pro-
vides a simple method of testing whether an expression is of so-called even or odd
intrinsic parity,9 i.e., even or odd in the number of Goldstone-boson fields. For
example, it is easy to show, using the trace property, that the Lagrangian of
Eq. 3.42 is even.

The purpose of the multiplicative constant Fg /4 in Eq. 3.42 is to generate the
standard form of the kinetic term %Gﬂd)a@”q')a, which can be seen by expanding the
exponential U =1+ i¢p/Fo+---, 0,U = i0,¢/Fp + - - -, resulting in

° Since the Goldstone bosons are pseudoscalars, a true parity transformation is given by
¢,(t,%) — —¢,(t, %) or, equivalently, U(t,X) — U'(t, —X).
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F2_[i0,¢( id‘p 1
geff = ZOTr|: ;0 <_ F() >:| +---= ZTr(aﬂ(baiua”qbbib) + -

B0 by Te(has) - = 20,00 B + L.
4 ——— 2
= 25ab

In particular, since there are no other terms containing only two fields (%, starts
with interaction terms containing at least four Goldstone bosons) the eight fields
¢, describe eight independent massless particles. At this stage this is only a tree-
level argument. We will see in Sect. 3.5.2 that the Goldstone bosons remain
massless in the chiral limit even when loop corrections have been included.

A term proportional to Tr(UU') = 3 produces a constant which is irrelevant for
the dynamics of the Goldstone bosons and will therefore be omitted. A term of the
type Tr[(8,0"U)U'] may be re-expressed as

Tr[(0,0"U)U"| = 8, [Tr(3"UU")] — Tr(d"UD, U,

i.e.,, up to a total derivative it is proportional to the Lagrangian of Eq. 3.42.
However, in the present context, total derivatives do not have a dynamical sig-
nificance, i.e., they leave the equations of motion unchanged and can thus be
dropped. The product of two invariant traces is excluded at lowest order, because
Tr(0,UU") = 0.

Exercise 3.6 Prove
Tr(0,UU") = 0 (3.43)
for the general SU(N) case by considering an SU(N)-valued field
Ag
U(x) = exp (iw),
Fo

with N2 — 1 Hermitian, traceless matrices A, and real fields ¢,. Defining ¢ =
¢,A4, expand the exponential

o 1o 1
U:ﬂ — _ _— - “e.
+1F0+2Fg(z¢>) +3!F8(z¢) +

and consider the derivative

2 0, ¢ih + ipid,d  i0,p(i)* + ipid,pich + (ih)%id
o = i F%b +zu¢z¢2Féz¢ ¢, 0ublie) ¢z3!,;§z¢ ORI

Remark ¢ and 0,¢ are matrices which, in general, do not commute!
Hint: [¢, UT] = 0.
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Let us turn to the vector and axial-vector currents associated with the global
SU(3), x SU(3), symmetry of the effective Lagrangian of Eq. 3.42. To that end,
we consider the infinitesimal transformations

y/

L=1- i8La§, (344)
. a
R=1- iRay - (3.45)

In order to construct Jfa, set &g, = 0 and choose &1, = ¢1,(x) (see Sect. 1.3.3):

a
UHJ/ZRMJZUO+ﬁh7)

J
Uhauﬁz(ﬂ—mwf)w,

; ; (3.46)
a'uUD—> aluU/ = aNU(ﬂ + lSLa?u) + Ui@usu,ia,
f i o Pa\s Ut _ia e ag
6”U »—>6MU =(1- l8La? G#U — laMSLa?U 5
from which we obtain for 6 %:
For[rn  daun u da
0L ot = ZTr Uza,Lqua”U +90,U| —id* SL”?U
F2 Ja ,
:f@@ﬂ%ﬂNWU—WNm}
F2
= jfiéugLaTT(iaa”l]Tl]). (3.47)

In the last step we made use of
Uty = —UoMu,
which follows from differentiating U'U = 1. We thus obtain for the left currents

. 0L  Fi_ .,
Jr = Brine ::ziilTr(Aaa”lJT(]), (3.48)

and, completely analogously, choosing ¢, = 0 and ¢g, = &ga(x),

00 % et _F2
H = ¢ = — —0 " H T .
Ja B rone 14'Tr()al]6 u') (3.49)
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for the right currents. Combining Eqgs. 3.48 and 3.49, the vector and axial-vector
currents read

F2
Jh, =Tk +I = —iZOTr(/Ia[M ou'), (3.50)

F2
Tha = ia = I = = Tr(2{U, U (3.51)
Furthermore, because of the symmetry of Ze under SU(3), x SU(3)., both

vector and axial-vector currents are conserved. The vector currents Ji, of Eq. 3.50
contain only terms with an even number of Goldstone bosons,

¢ F?
g 2Tl (U U — 2 UU)
-Fé uyyt iyt 1
=~ Trl2y(~0U'U + U U] = Y,

On the other hand, the expression for the axial-vector currents is odd in the number
of Goldstone bosons,

——¢ [F?
/e 0T, (UT0U + OUh)]
For o0 oupt t "
= 0T, U0 + v U] = I,

To find the leading term, let us expand Eq. 3.51 in the fields,
F2 oM,/
J4 = —i9Tr( A, ﬂ+...,f,'M+... = —Fod'¢p, + -,
a 4 Fy

from which we conclude that the axial-vector current has a nonvanishing matrix
element when evaluated between the vacuum and a one-Goldstone-boson state:

(01734 () |5 (P)) = (O] = Fod" b, (x) ¢ (p)) = —Fod" exp(—ip - X)dap
ip"Foexp(—ip - x)0ap. (3.52)

Equation 3.52 is the manifestation of Eq. 3.29 at lowest order in the effective field
theory.

3.4.2 Symmetry Breaking by the Quark Masses

So far we have assumed a perfect SU(3), x SU(3), symmetry. However, in
Sect. 2.4 we saw, by means of a simple example, how an explicit symmetry
breaking may lead to finite masses of the Goldstone bosons. As has been discussed
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in Sect. 1.3.6, the quark-mass term of QCD results in such an explicit symmetry
breaking,10

m, 0 O
PLy=—qrlg, —ql'qr, M= 0 my 0 ]. (3.53)
0 0 my

In order to incorporate the consequences of Eq. 3.53 into the effective-Lagrangian
framework, one makes use of the following argument [57]: Although .# is in
reality just a constant matrix and does not transform along with the quark fields,
&L of Eq. 3.53 would be invariant if # transformed as

M — RALT. (3.54)

One then constructs the most general Lagrangian £ (U,.#) which is invariant
under Eqgs. 3.35 and 3.54 and expands this function in powers of .#. At lowest
order in .# one obtains

F2B,

Lp = Tr(4 U+ UMY, (3.55)

where the subscript s.b. refers to symmetry breaking. In order to interpret the new
parameter By, let us consider the Hamiltonian density corresponding to the sum of
the Lagrangians of Eq. 3.42 and 3.55:

Fooooen Foo o oo
H et :ZTI'(UU ) —&-ITr(VUVU ) — L.

Since the first two terms are always larger than or equal to zero, # e is minimized
by constant and uniform fields. Using the ansatz

1 1
¢:¢0+F3¢2+F_g¢4+"'

for the minimizing field values and organizing the individual terms in powers of
1/F2, one finds ¢ = 0 as the classical solution even in the presence of quark-mass
terms.

Exercise 3.7 We prove the statement above to order 1/F} in the ansatz for ¢.
Since we are considering constant and uniform fields, we only have to take into
account the symmetry-breaking Lagrangian ¥, of Eq. 3.55.

(a) Calculate the derivative of %, with respect to ¢,, where ¢ = ¢,1,. Using
M = ', show that

1% In view of the coupling to the external fields s + ip and s — ip (see Eq. 1.161) to be discussed

in Sect. 3.4.3, we distinguish between .# and .#' even though for a real, diagonal matrix they
are the same.
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xm+¢a+a&+¢@&+¢%m+¢%u
2F} 24F;

(b) Insert the ansatz ¢ = ¢ + %(]52 + --- and show that the trace is given by
0

1

- F%Tr[//(ia% + bota)l

a%+%a%+%a%+%@ﬂ_

1
——Tr |:ﬂ (/la¢2 + ¢2/1u - 12

2F

(c) The quark-mass matrix can be parameterized as .# = myly + m3ls + mgig
(see Exercise 1.17), with

my + mg + my my — Ny my + my — 2m
my=———, m3 = —, mg —=———=—,
0 N 3 ) 8 3
while ¢y = ¢g,4p. Considering a = 1, show that ¢, = 0 for ¢ to minimize
H otr. Analogous calculations hold for a =2, ..., 8.

Hint: {44, 2} =301 + 2dapcAc. The values for dgpe are given in Table 1.2.
(d) Using the result for ¢, show that also ¢, = 0. Analogous calculations apply
for higher orders in 1/F3.

Now consider the energy density of the ground state (Upin = Uy = 1),
<%eff>min = —F(%Bo(mu +mg + ms), (356)

and compare its derivative with respect to (any of) the light-quark masses m, with
the corresponding quantity in QCD,

omy,

(29)0>

Q| =

(0lgq|0), =

W | =

my=mg=m;=0

where (gq), is the scalar singlet quark condensate of Eq. 3.26. Within the
framework of the lowest-order effective Lagrangian, the constant By is thus related
to the scalar singlet quark condensate by

3F2By = —(4q),. (3.57)
Let us add a few remarks.

1. A term Tr(.#) by itself is not invariant.
2. The combination Tr(.#ZU' — UﬂT) has the wrong behavior under parity
o(t,X) — — ¢(t,—X), because
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Tel U (t,3) — U, X)) & Tel U (1, —3) — Ut (t, =)0

W="
M= 7Tr[ﬂUT(t, —X) — U(t, 755)ﬂT].

3. Because .# = /', ¥, contains only terms even in ¢.

In order to determine the masses of the Goldstone bosons, we identify the terms
of second order in the fields in Z;p,,

Lop = —%Tr(qﬁ//) 4o (3.58)

Exercise 3.8 Expand the mass term to second order in the physical fields and
determine the squared masses of the Goldstone bosons.

Using Eq. 3.37 we find

Tr(¢p* M) = 2(my, + mg)w" = + 2(m, + mg)K K~ + 2(mg + mg)K°K°

2

+ (my + mg)n’n’ +

( a) 7

For the sake of simplicity we consider the isospin-symmetric limit m, = my; = m

so that the 7% term vanishes and there is no n°-7 mixing. We then obtain for the
masses of the Goldstone bosons, to lowest order in the quark masses,

my +mg +4mg

(mu _md)non + 3

M? = 2By, (3.59)

M3 = Bo (it + my), (3.60)
2 2 ~

M, :§Bo(m—|—2mx). (3.61)

These results, in combination with Eq. 3.57, By = —(gq)/(3F3), correspond to
relations obtained in Ref. [56] and are referred to as the Gell-Mann, Oakes, and
Renner relations. Furthermore, the squared masses of Eqgs. 3.59-3.61 satisfy the
Gell-Mann-Okubo relation

4My = 4By (i + my) = 2By (i + 2m,) 4 2Boin = 3M, + M., (3.62)

independent of the value of By. Without additional input regarding the numerical
value of By, Eqs. 3.59-3.61 do not allow for an extraction of the absolute values of
the quark masses m and my, because rescaling By — ABj in combination with
my — mgy/ A leaves the relations invariant. For the ratio of the quark masses one
obtains, using the empirical values M, = 135MeV, My =496 MeV, and
M, = 548 MeV,
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Table 3.2 Comparison between the symmetry-breaking patterns of a Heisenberg ferromagnet
and QCD

Heisenberg ferromagnet QCD
Symmetry of Hamiltonian 0Q3) SU(3), x SU(3),
Symmetry of |0) 0(2) SuU(3)y,
Vacuum expectation value (M) (qq)o
Explicit symmetry breaking External magnetic field Quark masses
Interaction 7<]|7[> ‘H (H ) of Eq. 3.56
M2  im+m m
K= "=259,
M: 2m m
2 . (3.63)
My _2mstm_ my o) g
M?  3m mo T

Let us conclude this section with a remark on (gq),. A nonvanishing quark
condensate in the chiral limit is a sufficient but not a necessary condition for
spontaneous chiral symmetry breaking. The effective-Lagrangian term of Eq. 3.55
not only results in a shift of the vacuum energy but also in finite Goldstone-boson
masses, and both effects are proportional to the parameter By. We recall that it was
a symmetry argument which excluded a term Tr(.#) which, at leading order in ./#,
would decouple the vacuum energy shift from the Goldstone-boson masses. The
scenario underlying %y of Eq. 3.55 is similar to that of a Heisenberg ferro-
magnet which exhibits a spontaneous magnetization (A_/i ), breaking the O(3)
symmetry of the Heisenberg Hamiltonian down to O(2). In the present case, the
analogue of the order parameter (M) is the quark condensate (gg),. In the case of
the ferromagnet, the interaction with an external magnetic field H is given by
—<M ) H, which corresponds to Eq. 3.56, with the quark masses playing the role
of the external field H (see Table 3.2). However, in principle, it is also possible
that By vanishes or is rather small. In such a case the quadratic masses of the
Goldstone bosons might be dominated by terms which are nonlinear in the quark
masses, i.e., by higher-order terms in the expansion of (U, .#). Such a scenario
is the origin of the so-called generalized chiral perturbation theory [68]. The
analogue would be an antiferromagnet which shows a spontaneous symmetry
breaking but with <1\7I ) = 0. The analysis of the s-wave nzn-scattering lengths [35,
36] supports the conjecture that the quark condensate is indeed the leading order
parameter of the spontaneously broken chiral symmetry (see also Sect. 3.5.4).

3.4.3 Construction of the Effective Lagrangian

In Sect. 3.4.1 we have derived the lowest-order effective Lagrangian for a global
SU(3), x SU(3), symmetry. On the other hand, the Ward identities originating in
the global SU(3),; x SU(3), symmetry of QCD are obtained from a locally invariant
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Table 3.3 Transformation properties under the group (G), charge conjugation (C), and parity
(P). The expressions for adjoint matrices are trivially obtained by taking the Hermitian conjugate
of each entry. In the parity-transformed expression it is understood that the argument is (¢, —X)
and that partial derivatives 0, act with respect to x and not with respect to the argument of the
corresponding function

Element G C P

v VRUV} ur ut
D;,...D;,U VgD, ...D;, UV} (D;,...D;,U)" (D»...DU)!
x VezV) i 7!

D;,...D;, 1 ViD;,...D;, 1Vi (Dyy...Dy )" (D4 D)t
T Vi Vi + V0, Vi A "

Iy Vil V] +iVi0,V] —ry r

Tew Vifow Vi ~(fry)” i

Fra VifimV] —(fr)” i

generating functional involving a coupling to external fields (see Sects. 1.4.1 and

1.4.4). Our goal is to approximate the “true” generating functional Zoep[v, a, s, p| of

Eq. 1.153 by a sequence Z§§2 [v,a,s,p] —I—Zé;? [v,a,s,p] + - - -, where the effective

generating functionals are obtained using the effective field theory.'' Therefore, we
need to promote the global symmetry of the effective Lagrangian to a local one and
introduce a coupling to the same external fields v, a, s, and p as in QCD [52, 53, 71].

In the following we will outline the principles entering the construction of the
effective Lagrangian for a local G = SU(3), x SU(3), symmetry.'? The matrix U
transforms as

U(x) — U'(x) = V() U(x)V] (x), (3.64)

where V(x) and Vg (x) are independent space-time-dependent SU(3) matrices. As
in the case of gauge theories, we need external fields /#(x) and r%(x) (see Egs.
1.151, 1.160, and 1.163 and Table 3.3) corresponding to the parameters ®,(x)
and Og,(x) of V.(x) and Vg(x), respectively. For any object A transforming as

VRAVZ such as, e.g., U we define the covariant derivative D,A as

DA = 0,A — iryA + iAl,. (3.65)

" Including all of the infinite number of effective functionals Z&E?f") [v,a,s,p] will generate a
result which is equivalent to that obtained from Zgcp[v, a, s, p).

12 In principle, we could also “gauge” the U(l)y symmetry. However, this is primarily of
relevance to the two-flavor sector in order to fully incorporate the coupling to the
electromagnetic four-vector potential (see Eq. 1.165). Since in the three-flavor sector the
quark-charge matrix is traceless, this important case is included in our considerations.
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Exercise 3.9 Verify the transformation behavior
D,Aw— Vg(D,A)V]
W R\Mp L

Hint: Make use of VRauV,T-‘, = —6,4VRV1T-‘,.

Again, the defining property of the covariant derivative is that it should
transform in the same way as the object it acts on.'* Since the effective Lagrangian
will ultimately contain arbitrarily high powers of derivatives we also need the
field-strength tensors f;,, and fr,, corresponding to the external fields r, and /,,

Sruy = 0ury — Oyry — i1y, 1y, (3.66)
S = 0uly — 041, — i1, 1) (3.67)

The field-strength tensors are traceless,
Tr(fi,) = Tr(fgw) =0, (3.68)

because Tr(l,) = Tr(r,) = 0 and the trace of any commutator vanishes. Finally,
following the convention of Gasser and Leutwyler [53] we introduce the linear
combination y = 2By(s + ip) with the scalar and pseudoscalar external fields of
Eq. 1.151, where By is defined in Eq. 3.57. Table 3.3 contains the transformation
properties of all building blocks under the group (G) and the discrete symmetries
C and P.

In the counting scheme of chiral perturbation theory the elements count as'*

U= (O(qo)v DuU = (/ﬁ(q)v Fu, lu = (Q(q)va/R;w = (p(qZ)’ xX= (Q(qz)' (369)

The external fields r,, and /, count as ((g) to match d,A, and y is of ((¢*) because
of Egs. 3.59-3.61. Any additional covariant derivative counts as ((q).

The construction of the effective Lagrangian in terms of the building blocks of
Eq. 3.69 proceeds as follows.'” Given objects A, B, . . ., all of which transform as
A = VRAVZ7 B = VRBVZ7 ..., one can form invariants by taking the trace of
products of the type AB':

13 Under certain circumstances it is advantageous to introduce for each object with a well-
defined transformation behavior a separate covariant derivative. One may then use a product rule
similar to the one of ordinary differentiation.

' Throughout this monograph we will reserve the notation ((¢") for power counting in chiral
perturbation theory, whereas O(x") denotes terms of order x" in the usual mathematical sense.

!5 There is a certain freedom in the choice of the elementary building blocks. For example, by a

suitable multiplication with U or U’ any building block can be made to transform as V. . .V;
without changing its chiral order. The present approach most naturally leads to the Lagrangian
of Gasser and Leutwyler [53].
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Tr(ABY) i Tr[VeAV] (ViBV])T] = Tr(VzA V]V, BIV]) = Tr(ABT Vi Vi)
=7 iney
= Tr(AB").

The generalization to more terms is obvious and, of course, the product of
invariant traces is invariant:

Tr(AB'CD'), Tr(AB")Tr(CD'), ... (3.70)

The complete list of relevant elements up to and including ¢(¢*) transforming as
Vg.. .Vz reads

UaDyU7 D,uDvU7 X UfL,uwfRuvU- (3'71)
For the invariants up to (/(¢*>) we then obtain

0(¢°) : Tr(UU") =
0(q) : Tr(D, UUT)z—Tr[U( U)1Zo,
0(q?) : Te(D,D,UUY) Z —Tx[D,U(D,U) | Z Te[U(D,D,U)'],
Tr(xU'), (3.72)
Te(Uy"),
Tr(UfywU') = Tr(fyn) =0,
Tr(fruv) = 0.

In * we made use of two important properties of the covariant derivative D,U:
D, UU" = —U(D,U)', (3.73)
Tr(D,UU") = 0. (3.74)

The first relation results from the unitarity of U in combination with the definition
of the covariant derivative, Eq. 3.65:
DUU' = 9, UU" —ir, UU' +iULU",
= —vout =
~Uu(U)" = —vo,ut — vt ir, — U(=il,U").
=1

Equation 3.74 is shown using Tr(r,) = Tr(l,) =0 together with Eq. 3.43,
Tr(0,UUT) = 0:

Tr(D,UU") = Tr(3,UU" — ir, UU' + iUL,U") = 0.
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Exercise 3.10 Verify *x,
Tr(D,D,UU") = —Tr[D,U(D,U)"] = Tr[U(D,D,U)'],
by explicit calculation.

Finally, we impose Lorentz invariance, i.e., Lorentz indices have to be con-
tracted, resulting in three candidate terms:

Tr[D,U(D"U)', (3.75)
Tr(xU' + Uyh). (3.76)

The term in Eq. 3.76 with the minus sign is excluded because it has the wrong sign
under parity (see Table 3.3), and we end up with the most general, locally
invariant, effective Lagrangian at lowest chiral order [53],'°

F Fj
Py = TOTr[DMU(D”U)T] + Tt + U7 (3.77)

At O(qg?) it contains two low-energy constants: the SU(3) chiral limit of the
Goldstone-boson decay constant Fy, and By = —(0|gq|0),/(3F2) (hidden in the
definition of y).

Exercise 3.11 Under charge conjugation fields describing particles are mapped
onto fields describing antiparticles, i.e., n°
K° — KO,

=, e, 1t e, K e K,

(a) What does that mean for the matrix

TCO +%VI \/§n+ \/§K+

¢ = V2r~ —n0+%7] \/§K0 ?
V2K~ V2K® =2y

(b) Using A”B” = (BA)", show by induction (A7)" = (A”)". In combination with
(a) show that U = exp(i¢p/Fo) S U
(c) Under charge conjugation the external fields transform as

S S

a,,l—>aT T7 p'_)pT.

T
Ve =V T

wr
Derive the transformation behavior of r,=v,+a, l,=v,—a, 1=
2By (s +ip), and %'

(d) Using (b) and (c), show that the covariant derivative of U under charge
conjugation transforms as

16" At 0(¢?) invariance under C does not provide any additional constraints.
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DU~ (D,U)".
(e) Show that

F§ F3
& = IOTr[D#U(D“U)T] + - Tr(zU" + Ux)

is invariant under charge conjugation. Note that (AT)T = (AT)T and Tr(AT) =
Tr(A).

(f) As an example, show the invariance of the L3 term of %4 (see Sect. 3.5.1)
under charge conjugation:

LyTr|D,U(D"U)'D,U(D'U)'|.

Hint: At the end you will need (D,U)' = —U'D,UU' and U'D,UU' =
—(D,U).

The lowest-order equation of motion corresponding to Eq. 3.77 is obtained by
considering small variations of the SU(3) matrix,

U(x) =U(x) +dU(x) = (1] + iiAu(x)/la> U(x), (3.78)
a=1

where the A,(x) are real functions. The matrix U’ satisfies both conditions
U'U'" =1 and det(U’) = 1 up to and including terms linear in A,. Applying the
principle of stationary action, the variation of the action reads

[5)
F2 8 .
68 = 170 / dr / d%ZAa(x)Tr{Aa[DHDNUU' —U(DD"U) — yUT + Ux*]}
a=1
a1

where we made use of integration by parts, the standard boundary conditions
Ay(t1,%) = Ay(12,X) =0, the divergence theorem, and the definition of the
covariant derivative of Eq. 3.65. Since the test functions A,(x) may be chosen
arbitrarily, we obtain eight Euler-Lagrange equations

Te{2[D°0U" = U(DP0) = 20T + U1} =0, a=1,...8,  (3.79)
which may be combined into a compact matrix form
1

0@, (U) = D*UUT — U(D*U)T — yUT + Uy +3Tr(U" — Uz) = 0. (3.80)

The trace term in Eq. 3.80 appears, because Eq. 3.79 contains eight and not nine
independent equations.
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Fig. 3.5 Pion decay u Vp

nt = vy W
l W+
d ut

3.4.4 Application at Lowest Order: Pion Decay

The Lagrangian ¥, of Eq. 3.77 has predictive power once the low-energy con-
stant F) is identified. This LEC may be obtained from the weak decay of the pion,
nt — utv,.

At the level of the Standard Model degrees of freedom, pion decay is described
by the annihilation of a u quark and a d antiquark, forming the n*, into a W+
boson, propagation of the intermediate W, and creation of the lepton v, and the
antilepton u* in the final state (see Fig. 3.5). The coupling of the W bosons to the
leptons is given by
-
2V2
whereas their interaction with the quarks forming the Goldstone bosons is effec-
tively taken into account by inserting Eq. 1.166 into the Lagrangian of Eq. 3.77.

Let us consider the first term of Eq. 3.77 and set r, = 0 with, at this point, still
arbitrary /,.

Exercise 3.12 Using D, U = 0,U + iUl,, derive

L =- [WZVW”(H —ys)u+ W, (1 _’/S)Vu}a (3.81)

Fj I Tf-Fj uyt
4Tr[DHU(D U)]—zzTr(lﬂﬁUU)—F ,

where only the term linear in [, is shown.
If we parameterize

1M=21ﬂa%,

a=1

the interaction term linear in [, reads

8 2 8
F.
Lt = § Lia {iTOTr(iaﬁ”UTU)] = § Liad 1y (3.82)
a=1 a=1

where we made use of Eq. 3.48 defining J7,. Again, by using Eq. 3.41, we expand
JI' to first order in ¢,

F
Jia = 706"% +0(¢%), (3.83)

from which we obtain the matrix element
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(3.84)

(WL, (0)165 ) =22 009, (0) 5 (p)) = ~ip" 5.

Inserting [, of Eq. 1.166, we find for the interaction term of a single Goldstone

boson with a W
F F
Ly =5 Tr(1,09) = — R

5 TV T+, T )]

Thus, we need to calculate!”

V2nt

V2K*

[ /0 Vi Vi n’ + 2=
Tr(T.0'¢)=Tr|{ 0O 0 o0 |o*| V2r= -2+ %,7 V2KO
N0 00 VIKT V2R -2y
= VuaV20' T + Vi V20K,
/0 0 0 o+t Vot V2K
Te(T-"¢) =Tr| | Vi 0 0 || V2= —n'+=n V2K
Vis 00 V2K~ V2K° - \%11

= V,gV20" T + V, V20K

We then obtain for the interaction term

F
Py = —g70 [ (Vaa'n™ + Vigd"K) + W, (Viad' 1+ + V0K ™). (3.85)

Expanding the Feynman propagator for W bosons in Landau gauge,

—g + kuky Kk

nw 2 v

v 8w o), (3.86)
M, My \Mj

and neglecting terms which are of higher order in (momentum/MW)z7 the
Feynman rule for the invariant amplitude for weak pion decay has the form

“leptonic vertex x W propagator x hadronic vertex,”
| Fo .
[—82 Via(—ip )}

. 8 _ igpa
M=1i|——=0, V(1 = sy | =5~
2\/§ u/( VS) Au:| %/

= —GrViaFot,, p(1 = ys5)vue,

(3.87)

where p denotes the four-momentum of the pion and G is the Fermi constant of

Eq. 1.167. The corresponding decay rate is

T

r:
4z

1 GAV?
- =L FEMm,

2
2

)2.

(3.88)

17 Recall that the entries V4 and V,, of the Cabibbo-Kobayashi-Maskawa matrix are real.
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The constant Fy is referred to as the pion-decay constant in the (three-flavor)
chiral limit."® It measures the strength of the matrix element of the axial-vector-
current operator between a one-Goldstone-boson state and the vacuum (see
Eq. 3.29). Since the interaction of the W boson with the quarks is of V — A type
and the vector-current operator does not contribute to the matrix element
between a single pion and the vacuum, pion decay is completely determined by
the axial-vector current. The degeneracy of a single coupling constant Fy is
removed at next-to-leading order, ¥(¢*) [53], once SU(3) symmetry breaking is
taken into account. The empirical numbers for F, and Fx are 92.4MeV and
113 MeV, respectively [75].

Exercise 3.13 The differential decay rate for nt(p;) — v.(py) + 1 (p,) in the
pion rest frame is given by

1

_ dpy  dpy
2M,

dr '
2E,(2m)” 2E,(2m)

2
||

3 (277:)454(1771 —Dv— pu)'

Here, we assume the neutrino to be massless and make use of the normalization
u'u = 2E = vv. The invariant amplitude is given by Eq. 3.87. Neutrinos in the
Standard Model are left-handed and their spinors therefore satisfy

(a) Make use of the Dirac equation
ﬁvu (pV) ﬂv = 07
Pyt (Pus Su) = —myuvues (Pys Su),
and show
iy, (Pv) (P +Pu)p7p(ﬂ = 75)Vyer (Pys ) = —myity, (Dy) (1 + 25)vies (Pu Sy)-

Hint: {y?,7y5} = 0.

18 of course, in the chiral limit, the pion is massless and, in such a world, the massive leptons
would decay into Goldstone bosons, e.g., e~ — n~v,. However, at ()(¢*), the symmetry-
breaking term of Eq. 3.55 gives rise to Goldstone-boson masses, whereas the decay constant is
not modified at ((g?).



3.4 Effective Lagrangian and Power-Counting Scheme 99

(b) Verify, using trace techniques,
[, ()P + 22,78 = 75V, (i)

% [, 00 0y + ) 370 = 75 ()
- miﬁvﬂ( V(1 + VS)V;F (pwsﬂ)vu* (pmsu)(ﬂ - Vs)uvﬂ( v)

= mTefuy, (py)its, (o) (1 + 95)vis (P 0) s (s 530) (1 = 75)]

1 m? mypy - S
— 2102 u uv " dpu
4muMn[§<1_—Mz> Y7 ’\I,ZI]

Hints:

(0 =5y, (po)iay, (py) (V4 75) = (1= p5) #,(1+75),

_ 1495 5
Vi (Pys $1) Vs Py 50) = (B — my) %7

Tr(odd # of gamma matrices) = 0,

ys = product of 4 gamma matrices,

v =1,
Tr(d §) = 4a - b,
Tr(ys o ¥) = 0.

(c) Sum over the spin projections of the muon and integrate with respect to the
(unobserved) neutrino

1 m? dp
dU = — GEVEFom? M, | 1 — -5 / L 5(M, —E, — E,).
g2 ud” 07w M2 E,E, K

Make use of
dpy = prdpudQy

and note that the argument of the delta function implicitly depends on p, =
P, |- Moreover,

Ev+E,u:M7n
EV - |ﬁ\| - |ﬁ;t"
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The final result reads

1 212 1242 102 mi : mi
I = ? = GFVudF04mﬂMT[ - W 167TM7I ' W

= ||’

2
L 0,0 2 m,
= EGFVudF()m‘uMTL 1-— W . (389)

3.4.5 Application at Lowest Order: Pion-Pion Scattering

Now that the LEC Fj, has been identified with the pion-decay constant in the chiral
limit, we will show how the lowest-order Lagrangian predicts the prototype of a
Goldstone-boson reaction, namely, nr scattering.

Exercise 3.14 Consider the Lagrangian %, in the SU(2), x SU(2), sector with
ry=1,=0,

F? F?
¥y = T(Q,U0U1) + L Tr(xU' + Uy,

b : bV
U:exp<zf>, ¢:izl:¢ifi5<\/gn _:0 >

In the SU(2), x SU(2), sector it is common to express quantities in the chiral
limit without subscript 0, e.g., F and B. By this one means the SU(2), x SU(2),
chiral limit, i.e., m, = my = 0 but mj at its physical value. In the SU(3), x SU(3),
sector the quantities Fy and By denote the chiral limit for all three light quarks:
my, =my =mg; = 0.

where

o

X—ZBQW—2B<

m
0

E)

(a) Using the substitution U « U, show that %, contains only even powers of ¢,
L =LY+

(b) Since %, does not produce a three-Goldstone-boson vertex, the scattering of
two Goldstone bosons is described by a four-Goldstone-boson contact inter-
action. Verify

1
73 =
2 T 48F?

[Tr([p, 0.0)[p,0"P)) + 2BTr(M )]
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Fig. 3.6 Lowest-order Py, B
Feynman diagram for nn AN e
scattering. The vertex is \\\ (’
derived from .%;, denoted by AN ///
2 in the interaction blob \@
7z - N N
v R
A AL
7z - ’ h N
D 01 Py ©

by using the expansion

b 14" i¢® 14
U=1+i-—-5—— ==t
TFE TP T 6F T 24F
Remark Substituting F — Fy, B — By, and the relevant expressions for ¢ and
the quark-mass matrix .#, the corresponding formula for SU(3), x SU(3),

looks identical.

(c) Inserting ¢ = ¢,;7; and working out the traces, show that the interaction
Lagrangian can be written as
4 1 u u M?
L, = @(‘ﬁia $:0,b;b; — ¢:9,0,¢;0"¢;) +W¢i¢i¢j¢jv

()

(e)

where M? = 2B.

From ngd’, derive the Feynman rule for incoming pions with Cartesian isospin
indices a and b, and outgoing pions with isospin indices c,d (see Fig. 3.6):

. s — M? t — M? u— M?
M =i 5ab(sch + (Sacébd T + (SudébcT

- # (0abOcd + OacOba + Gaadpe)(Aa + Ap + Ac + Aa),  (3.90)

where Ay = p,% — M? and s,t, and u are the usual Mandelstam variables,

§ = (Pa +Ph)27 = ( a 7176)27 u= (pa *pd)z-

Using four-momentum conservation, show that the Mandelstam variables
satisfy the relation

s+t+u=p:+pi+p>+pl

The T-matrix element (.# = iT) of the scattering process 7,(p,) + 7 (ps) —

7e(pc) + ma(pa) can be parameterized as
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Tab;cd(Pa,Pb;Pc»Pd) = 5ab56dA(sa tv M) + 5acébdA(t7 s, I,t) + 5ad5bcA(ua tv S)a (391)

where the function A satisfies A(s,t,u) = A(s,u,t) [97]. Since the last line of the
Feynman rule of Eq. 3.90 vanishes for external lines satisfying on-mass-shell
conditions, at ()(¢?) the prediction for the function A is given by

2
s —M;

A(s,t,u) = 7
T

(3.92)

In Eq. 3.92 we substituted F, for F and M, for M, because the difference is of
0(q*) in T. Equation 3.92 illustrates an important general property of Goldstone-
boson interactions. If we consider the (theoretical) limit M2 s,t,u — 0, the T
matrix vanishes, T — 0. In other words, the strength of Goldstone-boson inter-
actions vanishes in the zero-energy and zero-mass limit.

Usually, nr scattering is discussed in terms of its isospin decomposition. Since
the pions form an isospin triplet, the two isovectors of both the initial and final
states may be coupled to I = 0, 1,2. For m,, = m; = m the strong interactions are
invariant under isospin transformations, implying that scattering-matrix elements
can be decomposed as

(I, BT\, I5) = T'6, 6, . (3.93)

For the case of nw scattering the three isospin amplitudes are given in terms of the
invariant amplitude A of Eq. 3.91 by [52]

T'0 = 3A(s,1,u) + A(r,u,5) + A(u, 5, 1),
TIZ1 = A([7 M,S) —A(M,S,[), (394)
T'=2 = A(t,u,s) + A(u, s,1).

For example, the physical 7t scattering process is described by T=2. Other
physical processes are obtained using the appropriate Clebsch-Gordan coefficients.

Evaluating the T matrices at threshold, one obtains the s-wave mrm-scattering
lengths

70|, = 32na), T'7?|,, = 32na;, (3.95)

where the subscript O refers to s-wave scattering and the superscript to the isospin.
(T"="|,, vanishes because of Bose symmetry.) The convention in ChPT differs
from the usual definition of a scattering length in the effective-range expansion by
a factor (—M;) [83]. The current-algebra prediction of Ref. [97] is identical with
the lowest-order result obtained from Eq. 3.92,

TM> M2
0 __ _ 2 _ _
d) = 3555 = 0159, aj= -5 = —0.0454, (3.96)
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where we made use of the numerical values F, = 92.4MeV and M, = M+ =
139.57 MeV.

Exercise 3.15 Verify Eq. 3.96.
Hint: Make use of sy, = 4M7zr and s +1t4+u= 4M121.

Equations 3.96 represent an absolute prediction of chiral symmetry. Once F, is
known (from pion decay), the scattering lengths are predicted. We will come back
to mw scattering in Sect. 3.5.4 when we also discuss corrections of higher order
[20, 21, 52].

Exercise 3.16 Sometimes it is more convenient to use a different parameterization
of U which is very popular in two-flavor calculations:'’
1

Ux) = F[o(x)ﬂ +iR(x) -7, o(x)=+F*—72%(x).

The fields of the two parameterizations are nonlinearly related by a field

transformation,
i (1P _d( 14
Fd)sm<F>F<l 6F2+ . (3.97)

Repeat the above steps with the new parameterization. Because of the equivalence
theorem of field theory [34, 42, 65], the results for observables (such as, e.g.,
S-matrix elements) do not depend on the parameterization. On the other hand,
intermediate building blocks such as Feynman rules with off-mass-shell momenta
depend on the parameterization chosen.

Exercise 3.17 The three-flavor calculation proceeds analogously to Exercise 3.14.
Using the properties of the Gell-Mann matrices and the results of Exercise 1.4,
show that in the isospin-symmetric case

1 21 + m,)B
$3¢ == 67,8¢aau¢b¢c6”¢dfahaﬁ~de + (36F§)0¢“¢”¢b¢b
(ﬁl — mS)BO

+ (5 s + bbb )

12/3F}
Hint:
dabefecd + dbcefead + dcaeff:bd = 07

1
dubedcde = g (5a05bd + 5ad 6bc - 5ab 5cd +facefbde +fadefbce ) .

1 We will refer to this parameterization as the square-root parameterization because of the
square root multiplying the unit matrix.
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3.4.6 Application at Lowest Order: Compton Scattering

Exercise 3.18 We will investigate the reaction y(q) + 7" (p) — y(¢') + n(p') at
lowest order in the momentum expansion [(¢(g?)].

(a) Consider the first term of ¥, of Eq. 3.77 and substitute

0 0

1o |, es0, Sa b
1

0 -3

ry=1l,=—es,Q, Q=

() O Wi

where .¢Z,, is a Hermitian (external) electromagnetic four-vector potential (see
Eq. 1.164). Show that

DU =3,U + iest |0, U],
(D"U)" = 0*UT + ie.t"[Q, UT].
Using the substitution U « U, show that the resulting Lagrangian consists of

terms involving only even numbers of Goldstone-boson fields.
(b) Insert the result of (a) into ¥, and verify

F? F? F? .
ZOTr[DuU(D“U)T] = TOTr[a#Ua“UT] —iest, 7°Tr(Q[a”U, )

2
- ezdﬂﬂ”%Tr([Q, U)o, U™).

Hint: U0"UT = —0*UU" and 0'U'U = —UTO'U.
The second term describes interactions with a single photon and the third term
with two photons.

(c) Using U = exp(i¢/Fo) =1 +idp/Fo — ¢*/(2F3) + - - -, identify those inter-
action terms which contain exactly two Goldstone bosons:

A _Mu%n(g[aw, o)),

S =L et/ T(0, 6110, 9]

(d) Insert ¢ expressed in terms of physical fields (see Eq. 3.37). Verify the
intermediate steps



3.4 Effective Lagrangian and Power-Counting Scheme 105
("¢, 9))y =2(@"n " —n"d'n” + KK — K"K ™),

([0"¢, P))y, = 2("n o — n dn* + 3*K°K® — K°O"K"),
([0"¢, P])33 = 2("K KT — K-O*K™* + 0"K°K° — K90*K"),

0 =nt KT
[0.¢]=V2{ —n= 0 0 |,
—-K= 0 0
ntn + KTK™ 0 0
[0, ¢][0, ] = —2 0 nnt KT
0 Knt KK

Now show
P = —of ie(O'ntn — 1t + KK — KTOMK ),
P =Pt (T + KTK).
(e) The corresponding Feynman rules read
3”372‘# = vertex for y(q,&) + nt(p) — 15 (p) : Fiee- (p +p'),
LA 5 vertex for y(q,€) + 1t (p) — 9(¢, ) + 7 () : 2iee” -,

and analogously for charged kaons. An internal line of momentum p is
described by the propagator i/(p?> — M? +i0"). Determine the Compton
scattering amplitude for y(q,¢) + nt (p) — y(¢', &) + ™ (p') :

q,€ q’ ¢’
- R@—»—@{: -
p

P+q p’ P

What is the scattering amplitude for y(g,¢) + n (p) — (¢, &) + 7 (p)?

(f) Verify gauge invariance in terms of the substitution ¢ — q.

(g) Verify the invariance of the matrix element under the substitution (g,¢) <
(—¢',¢*) (photon crossing).

A discussion of the scattering amplitude beyond leading order may be found in
Refs. [16, 93].

3.4.7 Dimensional Regularization

In the 1960s, when phenomenological Lagrangians were developed as an alter-
native to current-algebra techniques, it was the common understanding that such
Lagrangians should only be used at tree level [33, 42, 88, 98, 99]. For example, in
Ref. [88] Schwinger made the point that “it is not meaningful to question the use
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of the coupling terms “in lowest order”. That is the nature of a numerical effective
Lagrange function, which gives a direct description of the phenomena.” However,
with the pioneering work of Weinberg [100] it became clear that one can even
calculate quantum corrections to phenomenological Lagrangians. To quote from
Ref. [101]: “... the cancellation of ultraviolet divergences does not really depend
on renormalizability; as long as we include every one of the infinite number of
interactions allowed by symmetries, the so-called non-renormalizable theories are
actually just as renormalizable as renormalizable theories.” If we use the
Lagrangian of Eq. 3.77 beyond tree level, we will encounter ultraviolet diver-
gences from loop integrals. For the regularization of the loop diagrams we will
make use of dimensional regularization [69, 91, 92, 95], because it preserves
algebraic relations among the Green functions (Ward identities). As discussed in
Sect. 3.5.1, the infinities will be absorbed in a renormalization of the coupling
constants of the most general Lagrangian.

For the sake of completeness we provide a simple illustration of the method of
dimensional regularization. Let us consider the integral

B / d*k i
) en)t k=M +i0t

which appears in the generic diagram of Fig. 3.7. We introduce

a= \/l€2+M2>0

=M +i0" =k —F —M>+i0" =k —a® +i0" =k — (a—i0")?
= ko + (a — i0%)][ko — (a — i0")],

(3.98)

so that

and define
1
[ko + (a — i0F)][ko — (a — i0F)]

flko) =

In order to determine ffcoc dko f (ko) as part of the calculation of I, we consider f in
the complex ky plane and make use of Cauchy’s theorem

j{dzf(z) =0 (3.99)
c

for functions which are differentiable in every point inside the closed contour C.
We choose the path as shown in Fig. 3.8,

4
0= dzf(2),
;/ 2f(2)

and make use of
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Fig. 3.7 Generic one-loop
diagram: The black box
denotes some unspecified
vertex structure which is
irrelevant for the discussion

b

/ d2f(2) = / def (O (1)

7 a
to obtain for the individual integrals:

Ly =t y(t)=1 a=—-00, b=00

o0

/dzf(z)z /dtf(t),
N —00
2. ,(t) =Re", y5(1) =iRe", a =0, b="1%

/dzf(z) = leo]c/dtf(Re”)zRe” = 0, because 11m Rf(Re”) =0,

~

1
R
3. 95(t) = it, 95(t) =i, a =00, b= —oc:

—00

/dzf(z):i/ drf(it),

73 00

4. 9,(t) = Re", yj(1) =iRe", a=3n, b=m:

/dzf(z) = 0 analogous to 7,.

P4

The quarter circles at infinity do not contribute, because the function f(z)
vanishes sufficiently fast as |z| — oo. In combination with Eq. 3.99 we obtain the

so-called Wick rotation

7dtf(t):—i/ dtf(it)zi]odtf(it).

—00 o0 —00

As an intermediate result the integral of Eq. 3.98 reads

(3.100)

17 ' &l 1
——4i/dko/d3k ! :/ —
(@2m)* J (iko)> — K — M2+ i0* (2n)" 4+ M* —

0+’
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Fig. 3.8 Path of integration Im(k ) ‘:\\ L
in the complex ko plane ! T
! N2
! >
| \\
(a-i0+) " '
° 11 \
B et R — - - mm - m - - \
J >
“\ L a-i0+
! Re(k()
Y |
4] Y
17BN |

where I =12 + 5+ I3 + 2 denotes a Euclidian scalar product. In this special
case, the integrand does not have a pole and we can thus omit the —i0" which gave
the positions of the poles in the original integral consistent with the boundary
conditions. Performing the angular integration in four dimensions (see Exercise
3.20) and introducing a cutoff A for the radial integration, the integral I diverges
quadratically for large values of [ (ultraviolet divergence):

A

1 P A? M? M?
I(A) =— = 1
() 8n2/ e (47r)2+(47r)2 n<A2+M2>
0
M* T1
=—— |+ In(x? —ln1+x2}, 3.101
o [ () 1+ 3101

where x> = M?/ A* = 0as A — co. The degree of divergence can be estimated by
simply counting powers of momenta. If the integral behaves asymptotically as
[a*l/, [a*l/P, [d*l/I* the integral is said to diverge quadratically, linearly,
and logarithmically, respectively.

Various methods have been devised to regularize divergent integrals. Unlike in
Eq. 3.101 where we used a cutoff A, we will make use of dimensional regulari-
zation. Note that the degree of divergence of the integral depends on the number of
dimensions. The method of dimensional regularization relies on the fact that the
ultraviolet degree of divergence decreases with a decreasing number of dimen-
sions. Here we will make use of dimensional regularization because it also pre-
serves algebraic relations among Green functions (Ward identities) if the
underlying symmetries do not depend on the number of space-time dimensions.

In dimensional regularization, we generalize the integral from four to n
dimensions and introduce polar coordinates
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I = lcos(6y),
I, = Isin(0;) cos(6),

I3 = Isin(0;) sin(6,) cos(63),
(3.102)

In—1 = Isin(6;) sin(6s). . . cos(6,-1),
I, = Isin(6;) sin(6,). . . sin(6,—1),
where 0<1/, 0; € [0,n] (i=1,...,n—2), and 0,_, € [0,27]. A general integral is
then symbolically of the form
2n b1 n

/d”l... :/du"-'/d@n,l/den,z sin(en,z).../del sin"2(0;). . ..
0 0 0

0
(3.103)

If the integrand does not depend on the angles, the angular integration can be
carried out explicitly. To that end one makes use of

2L (mtl
/d@ sin”(0) = %,

0 2

i

which can be shown by induction (see Exercise 3.21). We then obtain for the
angular integration

2n -
in"~ Var() vars)  var(s)
... [ dOysin">(0r) =27 2
[ e f s 00 =2 T g
(n — 2) factors (3.104)
:27Tﬁ:2 n

rE TE

We define the integral for n dimensions (n integer) as

d'k i
I,(M?*, 12 = 4*"/ 3.105
(M7, p°) = p onf & M0 (3.105)

where the scale ¢ ('t Hooft parameter, renormalization scale) has been introduced
so that the integral has the same dimension for arbitrary n. (The integral of
Eq. 3.105 is convergent only for n = 1.) After the Wick rotation of Eq. 3.100 and
the angular integration of Eq. 3.104 the integral formally reads

o0
n

LM, ) = ] / a "
n 5 F(%) (Zﬂ)n / 2 +M2 .
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For later use, we investigate the (more general) integral

s ln—] 1 3 ln—l x ——l
dl = dl ——— M2 = ar 3.106
/ (2 + M2)” (Mz)"‘/ (L4 1) / )" (3.106)

0 0 M 0
where we substituted t = I*/M*. We then make use of the Beta function
I () )

B(x,y)= [ dt - = , 3.107
(6,) / I+ Tty (3.107)

where the integral converges for x > 0, y > 0 and diverges if x <0 or y <0. For
nonpositive values of x or y we analytically continue in terms of the Gamma
function to define the Beta function and thus the integral of Eq. 3.106.%° Setting
x=n/2,x+y=ua,and y = o — n/2 our (intermediate) integral reads

oo

/ dl — lz i M2 %(M2)§*1 r(g)ll:((;)_ g) ’ (3.108)
0

which, for o = 1, yields for our original integral

? 11, L. THr(1-%
1,(M?, 12) = @*" T L et 2B 2
(M, 17) = i X0 a2 ™M) (1)
—— ——
angular integration =1 (3.109)
4—n
= ! F(l —3).
 (4m)? 2

Since I'(z) is an analytic function in the complex plane except for poles of first
order in 0, —1,—2,..., and @* = exp[In(a)z], a € R*, is an analytic function in C,
the right-hand side of Eq. 3.109 can be thought of as a function of a complex
variable n which is analytic in C except for poles of first order for n = 2,4,6, .. ..
Making use of

f = P R = MR, () = (4n)(dn)

we define (for complex n)

M?*  [Anp? 272 n
I(M?, 1> n) = — r(1r-—=).
ot =t () T(-5)

For n — 4 the Gamma function has a pole and we want to investigate how this
pole is approached. The property I'(z + 1) = zI'(z) allows one to rewrite

20 Recall that T'(z) is single-valued and analytic over the entire complex plane, save for the
points z = —n, n =0, 1,2, ..., where it possesses simple poles with residue (—1)"/n!.
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t=3  (1=90@-3) D=9

where we defined ¢ = 4 — n.”' Making use of a* = exp[In(a)x] = 1 + In(a)x +
O(x?), we expand the integral for small &,

I(M2, 12, n) = 1A6/122 {H;l (4;;’2‘)+0( )}

X (— ;) {1 +§+ 0(82)} [I\(/ll+§r/(1) + 0(82)]

—|=Z-T'(1) = 1 —In(4n) +1n<];IZ) + O(e )]

F<1_g>7r(1—§+1)_ r2-24+1)  T(1+%

where —I"'(1) = yz = 0.5772... is Euler’s constant. We finally obtain

M? M?
2 2 B
I(M?, 1%, n) = 62 {R+ln(ﬂ ﬂ +0(n—4), (3.110)
where

R =

o 4—[1n(47z)+1"’(1)+1]. (3.111)
The comparison between Eqs. 3.110 and 3.101 illustrates the following general
observations: in dimensional regularization power-law divergences are analyti-
cally continued to zero and logarithmic ultraviolet divergences of one-loop inte-
grals show up as single poles in ¢ =4 — n.

Using the same techniques, one can easily derive a very useful expression for
the more general integral (see Exercise 3.22)

d'k ®Y o L o LT (@ —p - %)
/ Gy @@= mEriory ) (4) ey Fz(’%)F(q) B

NI:

(3.112)

In the case of integrals containing more than one propagator, one can combine
these to obtain integrals of the type of Eq. 3.112 with M? replaced by A — i0*,
where A is a real number. In this context it is important to consistently deal with
the boundary condition —i0*" [95]. To that end, one expresses a complex number z
in its polar form z = |z| exp(i¢@), where the argument ¢ of z is uniquely determined
if, in addition, we demand —=n < ¢ < 7. For example, let us consider a term of the
type In(A — i0"). For A > 0 one simply has In(A — i0") = In(A). For A<O0 the
infinitesimal imaginary part indicates that —|A| is reached in the third quadrant

2! Note that the convention & = 2 — 5 is also commonly used in the literature.
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from below the real axis so that we have to use ¢ = —n. We then make use of
In(ab) = In(a) + In(b) and obtain
In(A —i0") = In(|A]) +In(e”™) = In(|A|) — in, A<O.
Both cases can be summarized in a single expression
In(A —i0") = In(|A]) — in®(—A) for A €R. (3.113)

The preceding discussion is of importance for consistently determining imaginary
parts of loop integrals.

Let us conclude with the general observation that (ultraviolet) divergences of
one-loop integrals in dimensional regularization always show up as single poles in
e=4—n.

The following five exercises are related to dimensional regularization.

Exercise 3.19 We consider the integral

1_/ d*k i
) @en)t kR —M?+i0t

=
Introduce a = \/ k + M? and define

flko) = :

ko + (a — i0%)][ko — (a — i0T)]

In order to determine ffooo dko f (ko) as part of the calculation of I, we consider f in
the complex ky plane and choose the paths

() =t, tp=-00, =00 and 7y,(f)=Re", =0, t=rm

(a) Using the residue theorem, determine

%dzf(z) = /dzf(z) +1}LI210/dzf(z) = 2miRes(f(z), —(a — i07)].
c 71 2
Verify

/ dko f (ko) = i

. Vi + M2 — o+

(b) Using (a), show

/ 'k i B / &k I
Y2 M0t 2 30 :
(27) o @) R+ m2— o+
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(c) Now consider the generalization from 4 — n dimensions:

d 'k 1 -2
/2 n—1 2 , k :k%+k§+"'+kﬁfl-
VI SV

We can omit the —i0", because the integrand no longer has a pole. Introduce
polar coordinates in n — 1 dimensions and perform the angular integration to
obtain

e¢)
/ k1 [P / P
= T r .
e e 20 e v

(d) Using the substitutions t = /M and y = ¢, show

7 2 1 r(5)r(n—1)
d —:—M"izg.
0/ VR 2 )

Hint: Make use of the Beta function

Y R 1)) )
B(x’y)_o/dt 1+ Tx+y)’

(e) Now put the results together to obtain

/ d"k i 1 M”_ZF(I—E)
(2m)" k2 — M2 + 00" (4g)} 2)’

4—n

which agrees with the result of Eq. 3.109 once the factor u*~" is taken into

account.

Exercise 3.20 Consider polar coordinates in four dimensions:

Iy = lcos(0y),
I, = Isin(0;) cos(0s),
I3 = Isin(0;) sin(0,) cos(053),
Iy = Isin(0;) sin(6,) sin(65),
where | =/l +5+5+13, 0, €[0,7], 0, € [0,7], and 05 € [0,27]. The tran-

sition from four-dimensional Cartesian coordinates to polar coordinates introduces
the determinant of the Jacobi or functional matrix
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an an,
o Tt 003
J = . .
o 003
Show that
det(J) = P sin*(6,) sin(0,),
and thus
dlydhdlydly, = Pdlsin®(0,) sin(0,)d0,d0,d0s,
=dQ
with

/dQ = 27°.

Exercise 3.21 Show by induction

s

/d@ sin™(0) = %

0

form>1.
Hints: Make use of integration by parts. I'(1)=1,T(1/2) = /n, x['(x) =
Ix+1).

Exercise 3.22 Show that in dimensional regularization

4k (kz)/’ . g 1 i F(p + E)]"(q —p— Q)
/ (2n)" (k2 — M2 +i0+)7 i(-) W(Mz) ;(%)F(q) 2

We first assume M> >0, p=0,1,...,g=1,2,..., and p<gq. The last condition
is used in the Wick rotation to guarantee that the quarter circles at infinity do not
contribute to the integral.

(a) Show that the transition to the Euclidian metric produces the factor i(—)"".
(b) Perform the angular integration in n dimensions. Perform the remaining radial
integration using

o0

o, T (- 1)
/dl 2+ M?)* E(Mz) 2r(oc) =
0

What do you have to substitute for n — 1 and «, respectively?
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Now put the results together. The analytic continuation of the right-hand side is
used to also define expressions with (integer) g < p in dimensional regularization.

Exercise 3.23 Consider the complex function

f(z) =a* =exp(ln(a)z) = u(x,y) +iv(x,y), a€R, z=x+iy.

(a) Determine u(x,y) and v(x,y). Note that u,v € C*(R?).

(b) Determine Ou/0x, Ou/0y,dv/0x, and Ov/dy. Show that the Cauchy-Riemann
differential equations Ou/0x = Ov/Qy and Ou/0y = —Ov/0Ox are satisfied. The
complex function f is thus holomorphic in C. We made use of this fact when
discussing 1(M?, i?,n) as a function of the complex variable n in the context
of dimensional regularization.

3.4.8 The Generation of Counter Terms

Regularization, such as dimensional regularization discussed in the previous sec-
tion, is a method to systematically separate divergences that appear in loop dia-
grams from finite contributions. We now briefly discuss renormalization, i.e., how
to absorb the divergences in the parameters of the Lagrangian (see Ref. [43] for
details).* For simplicity, we consider a toy-model Lagrangian for two massive
scalar degrees of freedom,

1 . 1 A
& = E(aud)Ba/ ¢p — Méqﬁé) + E(auq)Ba'uq)B - mé‘ﬂ%}) - ZB(JS%;Q’%, (3.114)

where the subscripts B indicate bare quantities. By expressing the bare fields and
parameters in terms of renormalized quantities, one generates counter terms which
are responsible for the absorption of all divergences occurring in the calculation of
loop diagrams. We first introduce renormalized fields ¢ and ¢,

d)B =/ Z¢¢7 Pp = Z(/?(/’7

and then rewrite the field renormalization constants /Z, and /Z, as well as the
remaining bare quantities in terms of renormalized parameters:

22 More generally, renormalization is simply the process of expressing the parameters of the
Lagrangian in terms of physical observables, independent of the presence of divergences [51].
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Zy =1+ 0Zy(M,m,1,v),
Zy=1+0Zy(M,m,1,v),
M: = M?*(v) + OM*(M,m, J.,v),
may = m*(v) + om*(M,m, 2, v),

g = A(v) + OAM,m, A, v).

The parameter v indicates the dependence on the choice of a renormalization
prescription. For example, we could require the masses M and m to be the physical
masses of ¢ and ¢, respectively. The freedom of choosing the renormalization
condition will play a crucial role in baryonic ChPT. With these substitutions the
Lagrangian takes the form

Y = Prasic + L, (3]15)

with the so-called basic and counter-term Lagrangians, respectively,
1 1 A
gbasic = E(au¢aﬂ¢ - M2¢2) + E(au(/)aﬂqo - m2§02) - Z ¢2(,027 (31 16)

Lo = %5Z¢6H¢6“¢ - %5{M2}¢2 + %52(,,6#@6“(/) - %5{m2}(p2

_5{7” 22, (3.117)

where we have introduced the abbreviations

S{M?} = 0ZyM* + Z,5M?,
5{m2} = 52(/,m2 + Z(/,(sz,
A} = 02ZyZy + A(0Zy + 0Zy + 0Z40Z,).

Expanding the counter-term Lagrangian of Eq. 3.117 in powers of the renormal-
ized couplings generates an infinite series. By suitably adjusting the expansion
coefficients, the individual terms are responsible for the subtraction of divergences
appearing in loop diagrams. In the following, whenever we speak of renormalized
diagrams, we refer to diagrams which have been calculated with a basic
Lagrangian and to which the contributions of the counter-term Lagrangian have
been added.

2 Note that Ref. [43] uses a slightly different convention which corresponds to the replacement
(0ZyM? + Zy6M?) — SM?; analogously for ém?.
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3.4.9 Power-Counting Scheme

An essential prerequisite for the construction of effective field theories is a
“theorem” of Weinberg stating that a perturbative description in terms of the most
general effective Lagrangian containing all possible terms compatible with
assumed symmetry principles yields the most general S-matrix consistent with the
fundamental principles of quantum field theory and the assumed symmetry prin-
ciples [100]. The corresponding effective Lagrangian contains an infinite number
of terms with an infinite number of free parameters. Turning Weinberg’s theorem
into a practical tool requires two steps: one needs some scheme to organize the
effective Lagrangian and a systematic method of assessing the importance of
diagrams generated by the interaction terms of this Lagrangian when calculating a
physical matrix element.

In the framework of mesonic chiral perturbation theory, the most general chiral
Lagrangian describing the dynamics of the Goldstone bosons is organized as a
string of terms with an increasing number of derivatives and quark-mass terms,

Leti =L+ Ls+ Lo+, (3.118)

where the subscripts refer to the order in the momentum and quark-mass expan-
sion. The subscript 2, for example, denotes either two derivatives or one quark-
mass term (see Eq. 3.77). In terms of Feynman rules, derivatives generate four-
momenta. A quark-mass term counts as two derivatives because of Egs. 3.59-3.61
(M? ~m,) in combination with the on-shell condition p> = M. We will generi-
cally count a small four-momentum—or the corresponding derivative—and a
Goldstone-boson mass as of ()(g). The chiral orders in Eq. 3.118 are all even
[0(¢*), k> 1], because Lorentz indices of derivatives always have to be con-
tracted and quark-mass terms count as (/(g?).

Besides the knowledge of the most general Lagrangian, we need a method to
assess the importance of different renormalized diagrams contributing to a given
process. For that purpose we analyze a given diagram under a simultaneous re-
scaling of all external momenta, p; — tp;, and the light-quark masses, m, — t*m,
(corresponding to M? — >*M?). As we will show below, this results in an overall
rescaling of the amplitude .# of a given diagram,

M (1piy Pmg) = 1O (piymy). (3.119)

Equation 3.119 defines the chiral dimension D of the diagram. The chiral
dimension is given by

D = nN, — 2N + ) 2kNy (3.120)
k=1
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Gl e
D=4.2-2.342-2=6. D=42-2.342-144-1=8. D=4.4-2.5+2-2=10.

Fig. 3.9 Application of the power-counting formula of Eq. 3.120 in n = 4 dimensions

D=2+ (n-2)N.+ > 2(k—1)Ny (3.121)
k=1

> 72 in four dimensions,

where n is the number of space-time dimensions, N, the number of independent
loops, N; the number of internal Goldstone-boson lines, and N,; the number of
vertices from %;.>* Going to smaller momenta and masses corresponds to a
rescaling with O <z<1. Clearly, for small enough momenta and masses con-
tributions with increasing D become less important and diagrams with small D,
such as D = 2 or D = 4, should dominate. Of course, the rescaling of Eq. 3.119
must be viewed as a mathematical tool. While external three-momenta can, to a
certain extent, be made arbitrarily small, the rescaling of the quark masses is a
theoretical instrument only. Note that loop diagrams are always suppressed due to
the term (n — 2)N, in Eq. 3.121. It may happen, though, that the leading-order tree
diagrams vanish and therefore the lowest-order contribution to a certain process is
a one-loop diagram. An example is the reaction yy — n%7° [16].

Equation 3.121 establishes a relation between the momentum and loop
expansions, because at each chiral order the maximum number of loops is bounded
from above. In other words, we have a perturbative scheme in terms of external
momenta and masses which are small compared to some scale A. With the aid of
Eq. 3.110, we can estimate the so-called chiral-symmetry-breaking scale A, to be
A, =4nF; = O(1GeV) [73]. In a loop correction every endpoint of an internal
Goldstone-boson line is multiplied by a factor 1/Fj, since the SU(N) matrix of
Eq. 3.41 contains the Goldstone-boson fields in the combination ¢/F;. On the
other hand, external momenta g or Goldstone-boson masses produce factors of ¢>
or M* as, e.g., in Eq. 3.110. Together with the factor 1/(167%) of Eq. 3.110
remaining after integration in four dimensions they combine to corrections of the

order of [¢/(4nFy)]* for each independent loop. Examples of the application of the
power-counting formula are shown in Fig. 3.9.

24 Note that the number of independent momenta is not the number of faces or closed circuits
that may be drawn on the internal lines of a diagram. This may, for example, be seen using a
diagram with the topology of a tetrahedron which has four faces but Ny =6 — (4 — 1) =3
(see, e.g., Chap. 6-2 of Ref. [63]).
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0 fork =0,
2fork=1.

0 for k=0,

D:0,0+2k:2k={ 4 fork=1.

D=4-2-242-(2k)=4k= {
Fig. 3.10 The loop diagram is only suppressed if kpmi, > 0

In order to prove the power-counting formula, we start from the Feynman rules
for evaluating an S-matrix element and investigate the behavior of the individual
building blocks. Internal lines are described by a propagator in n dimensions which
under rescaling behaves as

/ d'k i / d'k i
—
(2n)" k* — M? +i0t (2r)" 2(k2 /12 — M? +i07)

k=tk' o [ d"K i
= /(27‘5)" T 3122)

Vertices with 2k derivatives or k quark-mass terms rescale as
511(q)q2k — t2k7n5n (6])6]2k,

since pr—tp if ¢ is an external momentum, and k = ¢k’ if ¢ is an internal
momentum (see above). These are the rules to calculate S~ 6" (P).#. We need to
add n to compensate for the overall momentum-conserving delta function.
Applying these rules, the scaling behavior of the contribution to .# of a given
diagram reads

o0
D=n+(n—2)N;+ > Ny(2k —n).

k=1
The relation between the number of independent loops, the number of internal
lines, and the total number of vertices Ny = Z,fc:l Ny, is given by Np =
N; — (Ny — 1). The product of Ny momentum-conserving delta functions contains
overall momentum conservation. Therefore, one has Ny — 1 rather than Ny
restrictions on the internal momenta. Applying

o0
—nY Ny =—nNy =n(N, — N, — 1)
k=1
results in Eq. 3.120:

o0
D = nN; — 2N; + Z 2kNyy.
k=1



120 3 Chiral Perturbation Theory for Mesons

On the other hand, applying

—n;Nzk = —2;N2k +(n—=2) (N, =N, — 1),

results in Eq. 3.121:

D=2+ 2(k—1)Ny+ (n—2)N,.
k=1

In the discussion of loop integrals we need to address the question of convergence,
since applying the substitution k' = k in Eq. 3.122 is well-defined only for con-
vergent integrals. As discussed above, we regularize loop integrals by use of
dimensional regularization. We therefore need to introduce a renormalization scale
1 which also has to be rescaled linearly. However, at a given chiral order, the sum
of all diagrams does not, by construction, depend on the renormalization scale.

Finally, note that a minimal k£ > 0 is important. Otherwise, an infinite number
of diagrams containing vertices from %, would have to be summed (see
Fig. 3.10). This is for example the case when dealing with the nucleon-nucleon
interaction.

3.5 Beyond Leading Order

Already in 1967 it was shown by Weinberg [98] that an effective Lagrangian is a
convenient tool for reproducing the results of current algebra in terms of tree-level
calculations. In the purely mesonic sector, ¥, of Eq. 3.77 represents the corre-
sponding Lagrangian. It was noted by Li and Pagels [72] that a perturbation theory
around a symmetry which is realized in the Nambu-Goldstone mode, in general,
leads to observables which are nonanalytic functions of the symmetry-breaking
parameters, here the quark masses. In 1979 Weinberg initiated the application of
an effective-field-theory program beyond tree level allowing for a systematic
calculation of corrections to the chiral limit [100]. When calculating one-loop
graphs, using vertices from %, one generates ultraviolet divergences which in the
framework of dimensional regularization appear as poles at space-time dimension
n = 4. The loop diagrams are renormalized by absorbing the infinite parts into the
redefinition of the fields and the parameters of the most general Lagrangian. Since
%> is not renormalizable in the traditional sense, the infinities cannot be absorbed
by a renormalization of the coefficients Fy and By. According to Weinberg’s power
counting of Eq. 3.121, one-loop graphs with vertices from %, are of ((q*).
Therefore, one needs to construct the most general Lagrangian ¥4 and adjust
(renormalize) its parameters to cancel the one-loop infinities originating from .%#5.

Beyond the quantum corrections to processes already described by .#», at next-
to-leading order we encounter another important feature, namely, the effective
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Wess-Zumino-Witten (WZW) action [102, 103]. The WZW action provides an
effective description of the constraints due to the anomalous Ward identities. In
general, anomalies arise if the symmetries of the Lagrangian at the classical level
are not supported by the quantized theory after renormalization.

3.5.1 The 0(q*) Lagrangian of Gasser and Leutwyler

Applying the ideas outlined in Sect. 3.4.3, it is possible to construct the most
general SU(3), x SU(3),-invariant Lagrangian at (/(¢*). Here we only quote the
result of Gasser and Leutwyler [53]:

Py =L {Tr[D,l U(DU)] }2+L2Tr [DuU(D\,U)q Tr [D” U(DVU)T}
4 LyTr [DMU(DﬂU)TDVU(D" U)T} 4 LTy [DuU(D”U)"] Te(xU' + Uy)
4 LTy [D#U(DMU)T(XUT n UXT)] + Le[Tr(zUt + Uy
+ Ly [Tr (Ut — Ux)) P +LsTr (U Uy + 2UT3UT)
LTy {f,ﬁD” u(D'U) +fL (DU D’ U} + LloTr(Uff,UT f,’;")

LV
HTr (ffj,é‘" + fjufg”’) + HyTr ('), (3.123)

The numerical values of the low-energy constants L; are not determined by chiral
symmetry. In analogy to Fy and By of ¥, they are parameters containing infor-
mation on the underlying dynamics and should, in principle, be calculable in terms
of the (remaining) parameters of QCD, namely, the heavy-quark masses and the
QCD scale Agcp. In practice, they parameterize our inability to solve the
dynamics of QCD in the non-perturbative regime. So far they have either been
fixed using empirical input (see, e.g., Refs. [19, 25, 53]) or theoretically using
QCD-inspired models, meson-resonance saturation [47, 79], and lattice QCD (see
Ref. [76] for a recent overview and the report of the Flavianet Lattice Averaging
Group (FLAG) on the lattice determination of LECs for a detailed review [40]).

By construction, Eq. 3.123 represents the most general Lagrangian at ((q*),
and it is thus possible to absorb all one-loop divergences originating from %, by
an appropriate renormalization of the coefficients L; and H;:

I; A;
Li=Lf "R (i=1,...,10), H;=H' R (i=1,2), (3.124
l+32n2 (l ) 1+327_E2 (l ) ( )

where R has already been defined in Eq. 3.111:

R= 2 yie [In(4n) +T7'(1) + 1],

n—



122 3 Chiral Perturbation Theory for Mesons

Table 3.4 Renormalized

g Coefficient Empirical Value I;
low-energy constants L[ in I 04103 P
units of 1073 at the scale ! : ‘ 2
ft=M,, see Ref. [19]. L 135403 =
Ay =—1/8, A, =5/24. L, —-35+1.1 0
Recent preliminary results L —03+05 é
of a glob:all fit of the L 14405 3
renormalized LECs ? 811
L including 0(¢°) Lg —0.2+03 i
corrections are discussed L; —04+02 0
in Ref. [25] Ly 09+03 =
Ly 69+0.7 .
Ly —55+£0.7 ,%
with n denoting the number of space-time dimensions and y; = —I"(1) being

Euler’s constant. The constants I'; and A; are given in Table 3.4. Except for L3 and
L7, the low-energy constants L; and the “contact terms”—i.e., pure external-field
terms—H; and H, are required in the renormalization of the one-loop graphs.
Since H; and H, contain only external fields, they are of no physical relevance.
The idea of renormalization consists of adjusting the parameters of the counter
terms of the most general effective Lagrangian so that they cancel the divergences
of (multi-) loop diagrams. In doing so, one still has the freedom of choosing a
suitable renormalization condition. For example, in the minimal subtraction
scheme (MS) one would fix the parameters of the counter-term Lagrangian such
that they would precisely absorb the contributions proportional to 2/(n — 4) in R,
while the modified minimal subtraction scheme of ChPT (Mg) would, in addition,
cancel the term in the square brackets.”

The renormalized coefficients L] depend on the scale u introduced by dimen-
sional regularization (see Eq. 3.105) and their values at two different scales y; and
W, are related by

' I'; M
L =L ——In[— . 3.125
i (NZ) i (:ul) + 1672 n <u2> ( )

We will see that the scale dependence of the coefficients and the finite part of the
loop diagrams compensate each other in such a way that physical observables are
scale independent.

% In distinction to the MS scheme commonly used in Standard Model calculations, the MS

scheme contains an additional finite subtraction term. To be specific, in MS one uses multiples
of 2/(n—4) — [In(4x) + T'(1) + 1] instead of 2/(n — 4) — [In(4n) + I''(1)] in MS.
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Fig. 3.11 Self-energy -
diagrams at 0(¢*). Vertices !
derived from %, are \ /

denoted by 2n in the \

interaction blobs - - — - — - - — - —

3.5.2 Masses of the Goldstone Bosons at ((g*)

A discussion of the masses at ((¢*) is one of the simplest applications of chiral
perturbation theory beyond tree level and will allow us to illustrate various
characteristic properties:

1. The relation between the bare low-energy constants L; and the renormalized
coefficients L in Eq. 3.124 is such that the divergences of one-loop diagrams
are canceled.

2. Similarly, the scale dependence of the coefficients L] (x) on the one hand and of
the finite contributions of the one-loop diagrams on the other hand lead to scale-
independent predictions for physical observables.

3. A perturbative expansion in the explicit symmetry-breaking parameter with
respect to a symmetry that is realized in the Nambu-Goldstone mode generates
corrections which are nonanalytic in the symmetry-breaking parameter, here
the quark masses.

Let us consider ¥, + ¥4 for QCD with finite quark masses, but in the absence
of external fields. We restrict ourselves to the limit of isospin symmetry, i.e.,
m, = my = m. In order to determine the masses, we calculate the self energies
2(p?) of the Goldstone bosons.

Let

1
AF¢(p) )

- $=nK 3.126
p —M352+i0+, ¢ n? 3’/” ( )

denote the Feynman propagator containing the lowest-order masses of
Eqgs. 3.59-3.61,

T

2
M., =2Boin, My, =Bo(in+my), M;,= gBo(ﬁi +2my).

The subscript 2 refers to chiral order 2. The proper self-energy insertions,
—iZy (p?), consist of one-particle-irreducible diagrams only, i.e., diagrams which
do not fall apart into two separate pieces when cutting an arbitrary internal line. At
chiral order D = 4, the contributions to —i,4(p*) are those shown in Fig. 3.11.
In general, the full (unrenormalized) propagator may be summed using a geo-
metric series (see Fig. 3.12):
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- = @ @@+

Fig. 3.12 Unrenormalized propagator as the sum of irreducible self-energy diagrams. Hatched
and cross-hatched “vertices” denote one-particle-reducible and one-particle-irreducible contri-
butions, respectively

i
p2—M32+io++”'

i i
p? —Mﬁz +i0* +p2 —Mé_z +i0*
_ i
M S 0

iAy(p) = [=iZ4(p*)]

(3.127)
The physical mass, including the interaction, is defined as the pole of Eq. 3.127,
My — My, — Z4(M;) =0, (3.128)

where the accuracy of the determination of Mi depends on the accuracy of the

calculation of X.
For our particular application with exactly two external meson lines, the rele-
vant interaction Lagrangians can be written as

L = L3+ 27, (3.129)

where fig(b is given by (see Exercise 3.14)
1
z3 = B {Tr([¢, 0, ¢][¢h, 0" ¢]) + 2B Tr(.M *)}. (3.130)

The terms of %4 proportional to Lo, Lig, H;, and H, do not contribute, because
they either contain field-strength tensors or external fields only. Since 0,U =
O(¢), the Ly, Ly, and L; terms of Eq. 3.123 are O(¢*) and need not be considered.
The only candidates are the Ly — Lg terms, of which we consider the L4 term as an
explicit example,*®

. 2
LyTr(3,U*UNTr(yU" + Uy') = Ly = [0,m0"n + 0,0 n° + 20, n " n~
0
+20,KT 'K~ +20,K°"K° + O(¢*)]

X [4Bo (2 + my) + O(¢?)].

The remaining terms are treated analogously and we obtain for gi(’s

6 For pedagogical reasons, we make use of the physical fields. From a technical point of view, it
is often advantageous to work with the Cartesian fields and, at the end of the calculation, express
physical processes in terms of the Cartesian components.
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1
$i¢ = —E(annono + b0, 70" n ) —azmt T — bpdmt Ot
— agkK"K~ — bgd, K"K~ — axK°K® — bx0,K 0"K°
1
= 5’ + by0.nd"n), (3.131)

where the constants a4 and by are given by

6483 R X
an = on [(27;1 + my)mLg + mng],
0
16B
by = — — (27 + my)La + L),
Fy
3283 1
ag = {(Zm + my) (7 + my)Le + 2(m + ms)ng] ,
5
16B 1
b = ——> | (2 4 my) Ly + (7 + my)Ls |,
Nz 2
6483 X X 5 >, ,
ay = 3F2 {(2m + my) (i + 2myg)Le + 2(in — mg) "Ly + (m” + 2m>)Lg |,
16B, 1
by = — F20 {(2;%1 + mg)Ls + 3 (m+ 2m5)L5} . (3.132)
0

At O(g*) the self energies are of the form

£44(0) = Ag + Byp®, (3.133)

where the constants A4 and By receive a tree-level contribution from %4 and a
one-loop contribution with a vertex from ¥, (see Fig. 3.11). For the tree-level
contribution of ¥4 this is easily seen, because the Lagrangians of Eq. 3.131
contain either exactly two derivatives of the fields or no derivatives at all. For
example, the tree contribution for the 5 reads

o tree g1 L, . .
_12:1.4 (Pz) =2i _Ean - bni(lpu)(_lpl) = —i(ay + b,,pz),

where, as usual, 0, ¢ generates —ip,, and ip, for initial and final lines, respectively,
and the factor two takes account of two combinations of contracting the fields with
external lines.

For the one-loop contribution the argument is as follows. The Lagrangian .ff;“b
contains either two derivatives or no derivatives at all which, symbolically, can be
written as ¢p¢pd¢p0¢ and ¢*, respectively. The first term results in M2 (see below)
or p?, depending on whether the ¢ or the O¢ are contracted with the external fields.
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The “mixed” situation vanishes upon integration. The second term, ¢*, does not
generate a momentum dependence.

As a specific example, we evaluate the pion-loop contribution to the n° self
energy (see Fig. 3.13) by applying the Feynman rule of Eq. 3.90 for a =c =
3, pa =pc=p, b=d=j,and p, = pg = k:*’

1 [ d% . (p+k)* — M2 -M? (p—k)* — M?
/ i l53j53j L + 0330 Tz + 93053 —
SN—~— 0 N—~—

2] on)f Fg ; F
_L(g 03j 4 0330; + 0303) 2% + 2k* — AM? ;
382 3j03j + 0330j; + 0303 ) | 2P m2) | k2 — M72172+i0+
=5
_1/ d'k i (42 4k2+5M2) i
"2/ o 3p 7 )R =My, + 0t

(3.134)

where 1/2 is a symmetry factor.”® The integral of Eq. 3.134 diverges and we thus
consider its extension to n dimensions in order to make use of the dimensional-
regularization technique described in Sect. 3.4.7. In addition to the loop integral of
Eq. 3.110,

d'k i M? M?
I(M?, 1> n) = u*™" / = R+1In(— Oon—4
(M, 1°,n) = u S =l e by A (n—4),

(3.135)
where R is given in Eq. 3.111, we need
an. [ d'k K an. [ Ak K2 — M+ MP
M nl m =u " 7] )
2n) K2 — M2 1 i0* 2n)" 2 — M2 1 i0+
where we have added 0 = —M? + M? in the numerator. We make use of

d'k
4—n .
=~ _0

in dimensional regularization which is “shown” as follows. Consider the (more
general) integral

27 Note that we work in the three-flavor sector and thus with the exponential parameterization of U.
*® When deriving the Feynman rule of Exercise 3.14, we took account of 24 distinct
combinations of contracting four field operators with four external lines. However, the Feynman
diagram of Eq. 3.134 involves only 12 possibilities to contract two fields with each other and the
remaining two fields with two external lines.
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Fig. 3.13 Contribution of k,j
the pion loops (j = 1,2,3) to -
the 7° self energy N \
|
\
\ /
—_—— - - -
p,3 p,3

/dnk @y,

substitute k = Ak’ (1 > 0), and relabel k' = k,

/ d"k (K2 = jmt2 / d"k (K*). (3.136)

Since 4 > 0 is arbitrary and, for fixed p, the result is to hold for arbitrary n,
Eq. 3.136 is set to zero in dimensional regularization. We emphasize that the
vanishing of Eq. 3.136 has the character of a prescription. The integral does not
depend on any scale and its analytic continuation is ill defined in the sense that
there is no dimension n where it is meaningful. It is ultraviolet divergent for
n+ 2p >0 and infrared divergent for n + 2p <0.

We then obtain

d"k k?
4—n. _ 2 2 2
ﬂ l/(2n>n kz—M2+lo+_MI(M nu 7”)7

with I(M?, %, n) of Eq. 3.135. The pion-loop contribution to the 7¥ self energy is
thus
i

2 2 2 2
6F% (_4[7 +M7I,2)I(M7r,2’“ ,l’l),

which is indeed of the type discussed in Eq. 3.133 and diverges as n — 4.
After analyzing all loop contributions and combining them with the tree-level
contributions of Eqs. 3.132, the constants A4 and By of Eq. 3.133 are given by

Miz 1 2 1 2 1 2 -~ s
An = F% — EI(MEZ) — EI(M’Taz) - gl(MK,Z) +32[(2m + ms)BoL() + mBQLg] y

loop contribution
_2I(M%,) 11(Mg,) 16B,
"3 F} 3 F} F?

tree-level contribution

[(2r + my)Ly + iLs)],

Mg, (1 2 | Lo
AK = F(z) {1(M17,2) 7ZI(M7[,2) 7§I(MK72)

1
+32 |:(2ﬁl + ms)B()Lﬁ + E(ﬁ’l + ms)BoLg:| },
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1I(M$2) 1I(M;,)  11(Mg,) 1
_ ! — 2 — ’ 16— 21 5 L —(m s L )
A A I W F2 [( o)L 5 o+ ms) 5]
M2, 2 M, 1 1 1

= | 0] + R [0~ 102+ 5108 )

M?, 128 B2 (1 — my)*

Bx =

16M2 ,Lg + 32(2 s)BoL. 3L, + Lyg),
Fo[ ols + (m+m)oe]+9 P2 (3L7 + Ls)
I(Mi,) 16 M;,
=R R (211 4 my) 7 (3.137)

where, for simplicity, we have suppressed the dependence on the scale u and the
number of dimensions 7 in the integrals I(M?, u?,n) (see Eq. 3.135). Both the
integrals I and the bare coefficients L; (with the exception of L;) have 1/(n — 4)
poles and finite pieces. In particular, the coefficients Ay and By are not finite as
n — 4, showing that they do not correspond to observables.

The masses at (/(¢*) are determined by solving Eq. 3.128 with the predictions
of Eq. 3.133 for the self energies,

M = Mj, + Ay + ByM;,
from which we obtain

, Mi_z +Ay

—_ A2 (0

because Ay = 0(g*) and {Bd)aM(Zp‘z} = ((g*). Expressing the bare coefficients L;
in Eq. 3.137 in terms of the renormalized coefficients by using Eq. 3.124, the
results for the masses of the Goldstone bosons at ((g*) read [53]

]M2 M2 M2 M2
M72r 4= M721 1+ m2 | —%2) — 2, | 212
’ ’ 32n2F(2, u2 96n2F3 2

(3.138)
16 r r A~ r r
F2 [(27 4+ my)By(2Lg — L}) + mBo(2L§ — LY)] }
M? M?
2 2 n,2 n,2
MK?4 = MK,z{l +48n2F(2) ln< #2 >
(3.139)

16, . 1
+ ﬁ {(Zm + mS)Bo(ng — LZ) + E(m + ms)Bo(ZLg — Lg):| },
0
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M2 M2 M? M?
M24 = M22 1+ K’22 In K21 _ 12 5 In 12
n 1 167%F} u? 241°F uz

16 . r oM
0 0

+ Myzz,z

v <M> oM <M> LM (Mﬂ
96m2F} U2 32n%F; w2 48n2F} U2
128 B3 (in — m)*
90(%)(3L; + Lg). (3.140)
First of all, we note that the expressions for the masses are finite. The infinite parts
of the coefficients L; of the Lagrangian of Gasser and Leutwyler exactly cancel the
divergent terms resulting from the integrals. This is the reason why the bare
coefficients L; must be infinite. Furthermore, at (/(¢*) the masses of the Goldstone
bosons vanish if the quark masses are sent to zero. This is, of course, what we
expected from QCD in the chiral limit but it is comforting to see that the self
interaction in ¥, (in the absence of quark masses) does not generate Goldstone-
boson masses at higher order. At (/(¢*), the squared Goldstone-boson masses
contain terms which are analytic in the quark masses, namely, of the form mé
multiplied by the renormalized low-energy constants L. However, there are also
nonanalytic terms of the type mé In(m,)—so-called chiral logarithms—which do
not involve new parameters. Such a behavior is an illustration of the mechanism
found by Li and Pagels [72], who noticed that a perturbation theory around a
symmetry which is realized in the Nambu-Goldstone mode results in both analytic
as well as nonanalytic expressions in the perturbation. Finally, the scale depen-
dence of the renormalized coefficients L] of Eq. 3.124 is by construction such that
it cancels the scale dependence of the chiral logarithms. Thus, physical observ-
ables do not depend on the scale u.

Exercise 3.24 We want to verify this statement by differentiating Eq. 3.138 with
respect to u.

(a) Using Eq. 3.125, show

diLi(p) T
du — lem?u’
(b) Verify
e,
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Hints: Make use of Eqs. 3.59-3.61 and the values of the coefficients I'; of
Table 3.4.

Exercise 3.25 In this exercise we want to familiarize ourselves with the con-
ventions of the two-flavor sector of ChPT. Moreover, it will serve as an illustration
of the equivalence theorem of field theory [34, 42, 65] beyond tree level: results for
observables (such as, e.g., S-matrix elements) do not depend on the parameteri-
zation of the fields. In the discussion of nm scattering we have already seen an
example at tree level.

In the two-flavor sector two different parameterizations of the SU(2) matrix
U(x) are popular,

(3.141)

1
Ulx) = 7 [6(x)1 4+ i7(x) - T], o(x) =/ F?—7&2(x), (3.142)
where the pion fields of the two parameterizations are nonlinearly related (see
Eq. 3.97). Furthermore, independent of the parameterizations of Egs. 3.141 and
3.142, at (O(q*) two Lagrangians are commonly used, namely, those of Gasser and
Leutwyler [52] and of Gasser, Sainio, and Svarc [54], respectively:

2 .
oL = %‘ {Tr[DuU(DHU)W} +%Tr[DHU(D‘,U)T]Tr[D“U(D”U)T]

I3

l
& [T+ U] 4 T U (D) + Dy (DU

* 4

v 1 v v
+ 5 |:Tl‘(lem Uff UT) — ETr(leﬂff +fR,uv jg ):|
I .
+ igTr[fRMD”U(D" U)' + fi,0(D"U) DU

I
- 1i6 [Tr(zUt — UyH)]?

h+h hy —h
+%Tr(xﬁ)—|— 116 3{[Tr(;(UT—I—U;(T)f

+[Tr(XUT — U}(T)]272Tr(xUT;{UT + UXTUXT)}

— ZhZTr(fL,u»fiuv +mef1éw)a (3143)



3.5 Beyond Leading Order 131

Ul

GSS
L= 1

{Tr[DﬂU(D”U)T} }2+%Tr[DHU(DV U)Te[D"U(D'U) ]

i+
16

) I .
[Tr(zU" + UXT)]2+§“Tr[D,,U(DﬂU)WTr(;(UT + Uy

nY l v v
+ IsTr(fru UF U + ngr[wa.D“U(D U)" + fL,0(D'U) DU

I hy+hy —1
— L [Tr(U" = U]+ = ()
16 4
hy—hy—1 '
LT { [Tt + U] + [Tt - U]’
Ahy +1 . .
—2Tr(xU' U + Uy U} — %Tr(fmf[‘ + frufr)-

(3.144)

When comparing with the three-flavor version of Eq. 3.123 we first note that
Egs. 3.143 and 3.144 contain fewer independent terms. This follows from the
application of certain trace relations which reduce the number of independent
structures for 2 x 2 matrices in comparison with 3 x 3 matrices. The expressions
proportional to (hy — h3) and (h; — h3 — ly) in Z$" and Z$55, respectively, can
be rewritten so that the U’s completely drop out, i.e., they contain only external
fields. The trick is to use

2Te(yU U + Ux' Uy = [Tr(x Ut + UZNP + [Te(xUT — UxN) + Te(ti) Tr (zi)
+Tr(tiy) Tr(tir") — [Tr(x)]” — [Tr(x)).

In terms of a field transformation [86] the two Lagrangians #$- and .#$%° can be
shown to be equivalent (see App. D.1 of Ref. [87] for details). In principle, we are
free to combine any of the two parameterizations for U with any of the two
Lagrangians #4. The outcome for physical observables should not depend on the
specific choice.

Remark Like in Eq. 3.124, the bare and the renormalized low-energy constants /;
and [] are related by

. R
W=l g

where R =2/(n —4) — [In(4n) + T’(1) + 1] and

12 1 1 1

[ — q :2 = — — 9 = — — 9 :O
73 >’ V4 y Vs 6’ Y6 3’ V7

In the two-flavor sector one often uses the scale-independent parameters /; which
are defined by
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Fig. 3.14 Self-energy k,c
diagrams at 0(¢*). Vertices -
derived from %>, are ,/ \
denoted by 2n in the !
interaction blobs \ /
- - - - - = - - -
D,a »,b p,a »,b
v, [- M?
l{:32');2 [lH—ln(F)}, i=1,...,6, (3.145)

where M? = 2Bri. Since In(1) = 0, the [; are proportional to the renormalized low-
energy constants at the scale u = M.

We will now turn to the calculation of the squared pion mass at (/(g*). For the
two-flavor calculation of the Goldstone-boson self energies at (/(¢g*) we need the
interaction Lagrangian

L = L3+ 2.

Setting the external fields to zero and inserting y = 2Bm, derive $i¢ for
Egs. 3.143 and 3.144 for both parameterizations of U.

Exercise 3.26 Using isospin symmetry, at (/(g*) the pion self energy is of the
form

Zha(p?) = du(A + Bp?).

The constants A and B (not to be confused with the low-energy constant related to
the quark condensate) receive a tree-level contribution from .#4 and a one-loop
contribution from ¥, (see Fig. 3.14). Their numerical values depend on the
parameterization of U and the version of #Z,.

(a) Using the results of Exercises 3.14 and 3.25, derive the expressions of
Table 3.5 for the self-energy coefficients.
(b) Using

, M, +A

MTL,4_ 1—B :Mi2(1+B)+A+@(q6)7

derive the squared pion mass at ((g*):

L

M2, =M*—
4 3212 F?

M* + O(M"),

where M? = 2Brin. Note that the result for the pion mass is, as expected,
independent of the Lagrangian and parameterization used. On the other hand,
the constants A and B are auxiliary mathematical quantities and thus depend
on both Lagrangian and parameterization.
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Table 3.5 Self-energy coefficients and wave function renormalization constants. / denotes the
dimensionally regularized integral 1 = I(M?, 12, n) = L [R +1In <A:—;>] +0(n—4),R=-2—

— 16n2
[In(4n) + T’(1) + 1], M?> = 2Brn. The abbreviations GL and GSS refer to the Lagrangians of
Eqgs. 3.143 and 3.144, respectively, exponential and square-root to the parameterizations of U of
Egs. 3.141 and 3.142, respectively

Lagrangian and parameterization A B

GL, exponential _ %/;1_22 I+2h llFL; 2L

GL, square-root %/;’72] +24 /\%’ —&

GSS, exponential ,%%1+2(13 + 14)1\F4_24 %%,2141\;1_22
GSS, square-root %%1+2(13 +14)1\§ —ﬁ—Zb%z

3.5.3 The Effective Wess-Zumino-Witten Action

The Lagrangians discussed so far have a larger symmetry than QCD [103]. For
example, if we consider the case of “pure” QCD, i.e., no external fields except for
o = 2Bo.# with the quark-mass matrix of Eq. 3.53, the two Lagrangians ¥, and
%, are invariant under the substitution ¢(x)— —¢@(x). As discussed in
Sect. 3.4.1, they contain interaction terms with an even number of Goldstone
bosons only, i.e., they are of even intrinsic parity. In other words, they cannot
describe, e.g, K* K~ — n"n~ 7. Analogously, %> and %, including a coupling to
electromagnetic fields cannot describe the decay 7° — 7y.

These observations lead us to a discussion of the effective Wess-Zumino-Witten
(WZW) action [102, 103]. Whereas normal Ward identities are related to the
invariance of the generating functional under local transformations of the external
fields (see Sects. 1.4.1 and 1.4.4), the anomalous Ward identities [2-4, 11, 15],
which were first obtained in the framework of renormalized perturbation theory,
give a particular form to the variation of the generating functional [52, 102].
Wess and Zumino derived consistency or integrability relations which are satis-
fied by the anomalous Ward identities and then explicitly constructed a func-
tional involving the pseudoscalar octet which satisfies the anomalous Ward
identities [102]. In particular, Wess and Zumino emphasized that their interaction
Lagrangians cannot be obtained as part of a chirally invariant Lagrangian.

Witten suggested to add to the lowest-order equation of motion the simplest
term possible which breaks the symmetry of having only an even number of
Goldstone bosons at the Lagrangian level [103]. For the case of massless
Goldsztgone bosons without any external fields the modified equation of motion
reads

?® In order to conform with our previous convention of Eq. 3.35, we need to replace U of Ref.
[103] by U'. Furthermore, F, of Ref. [103] corresponds to 2F,. Finally, Q*uUt — U*Ut =
20, (2"UU).
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F2
3, (70 U@“UT> + &P UD,U'UD,U'UD,U'Ud,U' = 0, (3.146)

where A is a (purely imaginary) constant and &;»3 = 1. Substituting U < U in
Eq. 3.146 and subsequently multiplying from the left by U and from the right by
U, we verify that the two terms transform with opposite relative signs. Recall that
a term which is even (odd) in the Lagrangian leads to a term which is odd (even) in
the equation of motion. For the purpose of writing down an action corresponding
to Eq. 3.146, we extend the domain of definition of U to a hypothetical fifth
dimension,

Uy) = exp(ioc—qSng)), Y=, i=0,...,4 0<a<l, (3.147)
0

where Minkowski space is defined as the surface of the five-dimensional space for

o = 1. Let us first quote the result of the effective Wess-Zumino-Witten (WZW)

action in the absence of external fields (denoted by a superscript 0) [103]:

Szw = -3 40 — / do / d T (U LU LU kU U 1), (3.148)
where the indices i,...,m run from 0 to 4, ys = y* = o, &jum is the completely
antisymmetric tensor with gg234 = —e”'?** = 1, and %;; = UTOU Joy'.

Exercise 3.27 Consider the action®

S = 52+S

ano’

where S, is the action corresponding to the Lagrangian of Eq. 3.42 and S0 =
nSY,w is the anomalous action, with 7 an integer still to be determined.

(a) Using the ansatz

U'®y) =1 +iAWUG), AR) =) A0,

verify

OSno = 4872 do / d* MM T (U0 (oA U 1jU U 11 W 1) -

Hint: Make use of permutation symmetries.
(b) Make use of integration by parts, the boundary conditions A(X, 1) =
A(X, 1) = 0 for the test functions, and the permutation symmetries to obtain

30 The subscript ano refers to anomalous.
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6Sgno - 487 Q2 d uvpaTr(AﬁkRu%Rv%Rp%Ra)a

where g, = U0, U t. In combination with the result for S, (see Sect. 3.4.3),
this yields

F2
/d4anTr{)m [1 (Quu' — vou’) + 487r H‘pr%R¢%R‘%RpJ”RJ:|} =0
(3.149)

for arbitrary test functions A,. Using JUU' — UOUT = —20,(Ud*U") and
the fact that the expression inside the square brackets is traceless, Eqs. 3.146
and 3.149 are equivalent provided that the constants A and n are related by
/.= in/(487%).

A rather unusual and surprising feature of Eq. 3.148 is that the action functional
corresponding to the new term cannot be written as the four-dimensional integral
of a Lagrangian expressed in terms of U and its derivatives. Expanding the SU(3)
matrix U(y) in terms of the Goldstone-boson fields, U(y) =1 + iag(x)/Fo +
O(¢?), one obtains an infinite series of terms, each involving an odd number of
Goldstone bosons, i.e., the WZW action S%,, is of odd intrinsic parity. For each
individual term the o integration can be performed explicitly resulting in an
ordinary action in terms of a four-dimensional integral of a local Lagrangian. For
example, the term with the smallest number of Goldstone bosons reads

v = 330073 / s [ s (0, (00)0) (08 04 (8 0 (9)0 39)

240n2F5/ s [ s R Tl (18)2u (18)01(39)0n 1)

240n2F8/d &P Tr(¢p0,$0,¢$0,¢0:¢). (3.150)

In the last step we made use of the fact that exactly one index can take the value 4.
The term involving i = 4 has been integrated with respect to o, whereas the other
four possibilities cancel each other because the ¢ tensor in four dimensions is
antisymmetric under a cyclic permutation of the indices, whereas the trace is
symmetric under a cyclic permutation. In particular, the WZW action without
external fields involves at least five Goldstone bosons [102]. Once the constant 7 is
known, it allows, e.g., for the description of the process K* K~ — ntnn°.
Using topological arguments, Witten showed that the constant n appearing in
Eq. 3.148 must be an integer. However, it was pointed out in Ref. [12] that the
traditional argument relating n with the number of colors N, is incomplete. The
connection to N, is established by introducing the coupling to electromagnetism
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[102, 103]. In the presence of external fields there will be an additional term in the
anomalous action,

Sano - SO + Sext - ”(S(\)VZW + S:{(/tzw), (3151)

ano ano

given by (see, e.g., Ref. [18])
i PG
S%[ZW = _M/(ﬂxg#‘ﬂ Tr(zuvpa) (3.152)

with

Zyvps

1 . .
=5 ULU'nUL, U'ry + ULLLUr, — U'r,ryr,Ul,
+ iU L1, U ry — iU, 1,1, Ul, + 0,1, UL, U ry — i0,0,U'r, Ul,
— iU U, Uly + iU gy, ULU g — iU Ll Lyl + iU gyryryprs

1
+ 5(%4 U'd,r,Uly — U U, U'ry + U1, U'r,Udyl, — U, ULU',ry)

1 1
— U U, U, Uly + U, U, UL U 1y + 3 Wi 1plo = 5 Urury UrpTs
+ U1 vOpls — WURurvOpre + UruOvlple — URuOVFpTs
— i%L#WlLv%Lplo' + i%Rﬂ/RV%RprJ,
(3.153)
with the abbreviations %, = UTGHU and #g, = U0, U f,

As a special case, let us consider the coupling to external electromagnetic four-
vector potentials by inserting

ry =1, =—es,0,

where Q is the quark-charge matrix. The terms involving three and four electro-
magnetic four-vector potentials vanish upon contraction with the totally anti-
symmetric tensor &''#?, because their contributions to Z,,,, are symmetric in at
least two indices, and we obtain

2
., . he
I/lg%lzw = —en,;z/HJ’ + 1@8"””@‘,&/!,%0
x Tr2Q*(Ud,U" — U'3,U) — QU'Q0,U + QUQOJ,U'|.  (3.154)

We note that the current
ghvpa

I =
48n2

Tr(Qd,UU'0,UUTD,UU" + QU'D,UU',UU,U), ey = 1,
(3.155)
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by itself is not gauge invariant and the additional terms of Eq. 3.154 are required
to obtain a gauge-invariant action. The standard procedure of determining  is to
investigate the interaction Lagrangian which is relevant to the decay 7° — 7y by
expanding U = 1 + idiag(n°, —n°,0)/Fy + - - - . However, as pointed out by Bér
and Wiese [12], when considering the electromagnetic interaction for an arbitrary
number of colors one should replace the ordinary quark-charge matrix in the
Standard Model by

0 0 Wtz O
0

0=

S Owin
W=

0 —

1
3

Exercise 3.28 From Eq. 3.154, derive the corresponding effective Lagrangian for
¥ — 9y decay,
70

Fy’

2
n e
P =L E oz
vy w pe -
4 N, 32n?

Hint: Make use of integration by parts to shift the derivative from the pion field
onto the electromagnetic four-vector potential.

The corresponding invariant amplitude at tree level reads

n 2

M= i—
lNC47'E2F0

e 1,481,925 (3.156)

Exercise 3.29 Sum over the final photon polarizations and integrate over phase
space to obtain the decay rate (see Exercise 3.13)

o*M3, n? n\?
T, ———m ™ _76evx (L), 3.157
"1 T G4 L N2 ¢ (N) (3.157)

where o = ¢?/(4n) denotes the fine-structure constant.

Hints: Let &;,(41)é,(42)M"" denote the invariant amplitude of a general process
involving two real photons. As a consequence of electromagnetic current con-
servation, q;,M"" = 0 and g,,M"" = 0, the sum over photon polarizations is given
by

Z leru(21) 82y (22) MM [P = MMM,
AyAa=1
Finally, make use of

Suvacﬂgﬂvpa = 72(g1pgﬁg - gotagﬁp)'
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Equation 3.157 is in good agreement with the experimental value (7.7 +
0.6) eV for n = N.. However, the result is no indication for N. = 3 [12]. Bir and
Wiese conclude from their analysis that one should rather consider three-flavor
processes such as n — "~y or Ky — K7 to test the expected N, dependence in a
low-energy reaction. For example, the Lagrangian relevant to the decay n —
ntny is given by

Loy = (4~ Q)" D0, O,
T 12V/302F e

where the quark-charge difference O, — Q; = 1 is independent of N.. However,
by investigating the corresponding # and 1’ decays up to next-to-leading order in
the framework of the combined 1/N, and chiral expansions, Borasoy and Lipartia
have concluded that the number of colors cannot be determined from these decays
due to the importance of sub-leading terms which are needed to account for the
experimental decay widths and photon spectra [28].

3.5.4 Chiral Perturbation Theory at (0(q°)

Mesonic chiral perturbation theory at (/(¢*) has led to a host of successful
applications and may be considered a full-grown and mature area of low-energy
particle physics. For the time being, calculations at (/(¢%) are state of the art (see
Ref. [24] for an overview). Calculations in the even-intrinsic-parity sector start at
0(q?), and two-loop calculations at /(%) are thus of next-to-next-to-leading order
(NNLO). The corresponding effective Lagrangian %4 was constructed in Refs.
[22, 49] and contains, in its final form, 90 terms in the three-flavor sector (plus four
contact terms analogous to the H; terms of #4). The odd-intrinsic-parity sector
starts at ((g*) with the anomalous WZW action, as discussed in Sect. 3.5.3. In this
sector next-to-leading-order (NLO), i.e. one-loop, calculations are of (Q(qﬁ). It has
been known for some time that quantum corrections to the WZW classical action
do not renormalize the coefficient of the WZW term [6, 17, 44] (D. Issler, 1990,
SLAC-PUB-4943-REV, unpublished). The counter terms needed to renormalize
the one-loop singularities at ((¢®) are of a conventional chirally invariant struc-
ture. In the three-flavor sector, the most general odd-intrinsic-parity Lagrangian at
0(g®) contains 23 independent terms [23, 46]. For an overview of applications in
the odd-intrinsic-parity sector, we refer to Ref. [18].

Although an explicit calculation at the two-loop level is beyond the scope of
these lecture notes, we want to discuss the results for the s-wave mr-scattering
lengths a) and @} of Eq.3.95. The s-wave nn-scattering lengths have been
calculated at next-to-leading order [52] and at next-to-next-to-leading order
[20, 21]. Let us have a closer look at the individual contributions to ag as reported
in Ref. [20]:
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O0G) Oq*) : +28% 0@q®) : +8.5% total
9 =10.156 +0.039 +0.005 +0.013 + 0.003 +0.001 = 0.217 3.158
ay = 0.156 +0.039 +0.005 +0.013 4-0.003 +0.001 = 0.217 . (3.158)
L anal. k; L anal.

The corrections at (/(g*) consist of a dominant part from the chiral logarithms (L)
of the one-loop diagrams and a less important analytical contribution (anal.)
resulting from the one-loop diagrams as well as the tree graphs of #4. The total
corrections at ()(g*) amount to 28% of the ()(¢?) prediction. At (/(¢®), one obtains
two-loop corrections, one-loop corrections, and Z¢-tree-level contributions. Once
again, the loop corrections (k;, involving double chiral logarithms, and L) are more
important than the analytical contributions. The influence of ¥ was estimated via
scalar- and vector-meson exchange and found to be very small. The result of
Eq. 3.158 reveals a nice convergence and is in excellent agreement with the
empirical data to be discussed below. Due to the relatively large strange-quark
mass, the convergence in three-flavor calculations is usually slower.

By matching the chiral representation of the scattering amplitude with a dis-
persive representation [7, 85], the predictions for the s-wave nr-scattering lengths
are [35, 37]

a) = 0.220 +0.005, aj = —0.0444 4+ 0.0010. (3.159)

The empirical results for the s-wave nr-scattering lengths have been obtained from
various sources. In the K4 decay K™ — ntn e'v,, the connection with low-
energy mm scattering stems from a partial-wave analysis of the form factors
relevant for the K 4 decay in terms of nm angular momentum eigenstates. In the
low-energy regime, the phases of these form factors are related by (a general-
ization of) Watson’s theorem [96] to the corresponding phases of I = 0 s-wave and
I = 1 p-wave elastic scattering [36]. Using effective-field-theory techniques, iso-
spin-symmetry-breaking effects, generated by real and virtual photons and by the
mass difference of the up and down quarks, were discussed in Ref. [39]. Per-
forming a combined analysis of the Geneva-Saclay data [84], the BNL-E865 data
[80, 81], and the NA48/2 data [13] results in [39]

a = 0.217 + 0.008xp + 0.0064, (3.160)

which is in excellent agreement with the prediction of Eq. 3.159. The n*p —
nfntn reactions require an extrapolation to the pion pole to extract the nm
amplitude and are thus regarded as containing more model dependence,
a = 0.204 + 0.014 (stat) + 0.008 (syst) [67]. The DIRAC Collaboration [1]
makes use of a lifetime measurement of pionium to extract |a) — a3| =
0.264f8:8§8. Finally, in the K* — n7%7° decay, isospin-symmetry breaking leads
to a cusp structure ~ ay — a, in the 7°7° invariant mass distribution near s0,0 ~
4M§+ [31, 32]. Based on the model of Ref. [32], the NA48/2 Collaboration extracts
a) — a3 = 0.268 £ 0.010 (stat) £ 0.004 (syst) £ 0.013 (ext). A more sophisticated
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analysis of the cusps in K — 37 within an effective-field-theory framework can be
found in Refs. [26, 27, 38].

In particular, when analyzing the data of Ref. [80] in combination with the Roy
equations, an upper limit [l3] <16 was obtained in Ref. [36] for the scale-
independent low-energy constant of the two-flavor Lagrangian %, (see
Eq. 3.145). The great interest generated by this result is to be understood in the
context of the pion mass at (/(¢*) (see Exercise 3.26),

2
M2 =M* — i M* + (M), (3.161)

where M? = 2/nB. Recall that the constant B is related to the scalar quark con-
densate in the chiral limit and that a nonvanishing quark condensate is a sufficient
criterion for spontaneous chiral symmetry breakdown in QCD. If the expansion of
M? in powers of the quark masses is dominated by the linear term in Eq. 3.161, the
result is often referred to as the Gell-Mann-Oakes-Renner relation [56]. If the
terms of order /m”> were comparable or even larger than the linear terms, a different
power counting or bookkeeping in ChPT would be required [68]. The estimate
|I3] < 16 implies that the Gell-Mann-Oakes-Renner relation is indeed a decent
starting point, because the contribution of the second term of Eq. 3.161 to the pion
mass is approximately given by
7.2
_641571—]‘;[“}7%]‘/[" = —0.054M, for I3 =16,

i.e., more than 94 % of the pion mass must stem from the quark condensate [36].

As our final example, let us discuss a constraint provided by chiral symmetry,
relating the electromagnetic polarizabilities of the charged pion and radiative pion
beta decay. In the framework of classical electrodynamics, the electric and mag-
netic polarizabilities o and f§ describe the response of a system to a static, uniform,
external electric and magnetic field in terms of induced electric and magnetic
dipole moments [62]. In principle, empirical information on the pion polariz-
abilities can be obtained from the differential cross section of low-energy Compton
scattering on a charged pion, y(q) + 77 (p) — y(¢') + 7" (p’) (see Exercise 3.18),

do (o 2 g2 A
dQ[abi w 475Mn 475Mn 2

w;d {(“ﬁ)ﬁ(l +2)%+ (=), (1 —z)z}}+...7

where z=¢-¢' and o'/ow =[1 + (1l —z)/M,]. The forward and backward
differential cross sections are sensitive to (« + ), and (¢ — f8) .., respectively.
Within the framework of the partially conserved axial-vector current (PCAC)
hypothesis and current algebra the electromagnetic polarizabilities of the charged
pion are related to the radiative charged-pion beta decay 7t — etv,y [89, 90].
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The result obtained using ChPT at leading nontrivial order [¢(¢g*)] [16] is equiv-
alent to the original PCAC result,
) -
e 1 ZA
O(n+ - — t == 2—7—,
b AT (47F, )M, 6

where [y = (76 — 75) is a linear combination of scale-independent parameters of
the two-flavor Lagrangian %4 (see Eq. 3.145). At ((q*), this difference is
related to the ratio y = Fa/Fy of the pion axial-vector form factor F4 and the
vector form factor Fy of radiative pion beta decay [52], y = A /6. Once this ratio
is known, chiral symmetry makes an absolute prediction for the polarizabilities.
This situation is similar to the s-wave mrm-scattering lengths of Eq. 3.96 which
are predicted once F, is known. Using the most recent determination y =
0.443 +0.015 by the PIBETA Collaboration [50] (assuming Fy = 0.0259
obtained from the conserved vector current hypothesis) results in the (g
prediction o+ = (2.64 +0.09) x 10~*fm?, where the estimate of the error is
only the one due to the error of y and does not include effects from higher orders
in the quark-mass expansion.

Corrections to the leading-order PCAC result have been calculated at (¢)(¢°) and
turn out to be rather small [30, 55]. Using updated values for the LECs, the
predictions of Ref. [55] are

(2 +p), =0.16 x 107* fm?, (3.162)
(¢ —B) = (574 1.0) x 10~*fm?. (3.163)

The corresponding corrections to the ((g*) result indicate a similar rate of con-
vergence as for the nr-scattering lengths [20, 52]. The error for (o + f3) .. is of the
order 0.1 x 10~* fm®, mostly from the dependence on the scale at which the ¢/(¢®)
low-energy coupling constants are estimated by resonance saturation.

As there is no stable pion target, empirical information about the pion polar-
izabilities is not easy to obtain. For that purpose, one has to consider reactions
which contain the Compton scattering amplitude as a building block, such as, e.g.,
the Primakoff effect in high-energy pion-nucleus bremsstrahlung, n~Z — n~Zy,
radiative pion photoproduction on the nucleon, yp — yn'n, and pion pair pro-
duction in e*e” scattering, eTe” — eTe m" . Unfortunately, at present, the
experimental situation looks rather contradictory (see Refs. [5, 55] for recent
reviews of the data and further references to the experiments).

In terms of Feynman diagrams, the reaction yp — yn*n contains real Compton
scattering on a charged pion as a pion pole diagram (see Fig. 3.15). This reaction
was recently investigated at the Mainz Microtron MAMI with the result [5]

(= B) e = (11.6 £ 1.5 % 3.0y5 & 0.5m0a) X 107* fm?. (3.164)
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Fig. 3.15 The reaction yp —
yntn contains Compton

scattering on a pion as a sub- o
diagram in the ¢ channel, PRI
where 1 = (p, — p,)° /g T
d- 7
T
/
P n

A similar result was obtained at Serpukhov using the Primakoff method [8],
(= B) v = (13.6 £ 2.84a £ 2.4gy) x 107 fm?, (3.165)

in agreement with the value from MAMI. Recently, also the COMPASS Collab-
oration at CERN has investigated this reaction [61] but a final result is not yet
available. Unfortunately, the third method based on the reactions ete™ — yy —
ntn, has led to even more contradictory results (see Ref. [55]).

Comparing the empirical results of Eqs. 3.164 and 3.165 with the ChPT result
of (5.7 & 1.0) x 10~* fm?, we conclude that the electromagnetic polarizabilities of
the charged pion remain one of the challenging topics of hadronic physics in the
low-energy domain. Chiral symmetry provides a strong constraint in terms of
radiative pion beta decay and mesonic chiral perturbation theory makes a firm
prediction beyond the current-algebra result at the two-loop level. Both the
experimental determination as well as the theoretical extraction from experiment
require further efforts.
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Chapter 4
Chiral Perturbation Theory for Baryons

In this chapter we will discuss matrix elements with a single baryon in the initial
and final states. With such matrix elements we can, e.g., describe static properties
such as masses or magnetic moments, form factors, or, finally, more complicated
processes, such as pion-nucleon scattering, Compton scattering, pion photopro-
duction etc. Technically speaking, we are interested in the baryon-to-baryon
transition amplitude in the presence of external fields (as opposed to the vacuum-
to-vacuum transition amplitude of Sect. 1.4.4),

C

F (@ Fiv,a,s,p) = (5, oulp,in)S,,, . B#P,

determined by the Lagrangian of Eq. 1.151,

— 1 1 N — .
<= $0QCD T Lo = g(())CD g <Vﬂ + g"fs) + Vsa!>q —q(s — iysp)q-

In the above equation, |j7,in) and |5, out) denote asymptotic one-baryon in- and
out-states, i.e., states which in the remote past and distant future behave as free
one-particle states of momentum j and ', respectively. The functional % consists
of connected diagrams only (superscript c). For example, the matrix elements of
the vector and axial-vector currents between one-baryon states are given by

q o 0 o
@,‘Vg(‘x)‘p> 215\/ (x)'g@/’p;v7a7svp) 9
ap v=0,a=0,s=.4 p=0
0
(P'|AL(x)|p) = ———F (P, B; v, a,5,p)
‘ 10dtqy,(x) T a0t g0

where ./ = diag(m,, my, my) denotes the quark-mass matrix and

a

VI = a0 R a(), L) = 4007452 ().
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146 4 Chiral Perturbation Theory for Baryons

As in the mesonic sector the method of calculating the Green functions associated
with the above functional consists of an effective-Lagrangian approach in com-
bination with an appropriate power counting. Specific matrix elements will be
calculated applying the Gell-Mann and Low formula of perturbation theory [29].

4.1 Transformation Properties of the Fields

The group-theoretical foundations of constructing phenomenological Lagrangians
in the presence of spontaneous symmetry breaking were developed in Refs.
[13, 15, 63]. The fields entering the Lagrangian are assumed to transform under
irreducible representations of the subgroup H which leaves the vacuum invariant,
whereas the symmetry group G of the Hamiltonian or Lagrangian is nonlinearly
realized (for the transformation behavior of the Goldstone bosons, see Sect. 3.3).

Our aim is a description of the interaction of baryons with the Goldstone bosons
as well as the external fields at low energies. To that end we need to specify the
transformation properties of the dynamical fields entering the Lagrangian. Our
discussion follows Refs. [26, 30].

To be specific, we consider the octet of the %+ baryons (see Fig. 3.4). With each

member of the octet we associate a complex, four-component Dirac field which we
arrange in a traceless 3 x 3 matrix B,

. B+ A =t p
Ba/lu - 1 v0 1
a=l 5 =0 _2A
- - V6

where we have suppressed the dependence on x. For later use, we have to keep in
mind that each entry of Eq. 4.1 is a Dirac field, but for the purpose of discussing
the transformation properties under global flavor SU(3) this can be ignored,
because these transformations act on each of the four components in the same way.
In contrast to the mesonic case of Eq. 3.37, where we collected the fields of the
Goldstone-boson octet in a Hermitian traceless matrix ¢, the B, of the spin-1/2
case are not real (Hermitian), i.e., B # Bf.

Exercise 4.1 Using Eq. 4.1, express the physical fields in terms of Cartesian
fields.

Now let us define the set
M = {B(x)|B(x) complex, traceless 3 x 3 matrix}, (4.2)

which under the addition of matrices is a complex vector space. The following
homomorphism is a representation of the abstract group H = SU(3),, on the vector
space M (see also Eq. 3.38):
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o:H— oH), V—@(V) where p(V): M — M,

B(x) — B'(x) = ¢(V)B(x) = VB(x)VT. %3

B'(x) is again an element of M, because Tr[B'(x)] = Tr[VB(x)V] = Tr[B(x)] = 0.
Equation 4.3 satisfies the homomorphism property,

(V1) p(V2)B(x) = o(Vi)VaB(x)V] = ViVaB(x)VIV] = (ViVa)B(x)(Vi Va)!
= (V1 V2)B(x),

and is indeed a representation of SU(3), because

@(V)[A1B) (x) + 2By (x)] = V[AiB1(x) + aBa(x)]V! = 4, VB (x)V' + 2, VB, (x) V!
= 219(V)B1(x) + A29(V)By(x).

Equation 4.3 is just the familiar statement that B transforms as an octet under
(the adjoint representation of) SU(3)V.1

Let us now turn to various representations and realizations of the group
SU(3), x SU(3),. We consider two explicit examples and refer the interested
reader to the textbook by Georgi [30] for more details. In analogy to the discussion
of the quark fields in QCD, we may introduce left- and right-handed components
of the baryon fields (see Eq. 1.37):

B, = P;B; + PrB{ = B, + Bg. (44)

We define the set M| = {(B.(x), Bg(x))} which under the addition of matrices is a
complex vector space. The following homomorphism is a representation of the
abstract group G = SU(3), x SU(3), on M;:

(BL,Bg) — (B}, By) = (LB.L', RBgR"), (4.5)

where we have suppressed the x dependence. The proof proceeds in complete
analogy to that of Eq. 4.3.
As a second example, consider the set M, = {B,(x)} with the homomorphism

By B, = LB,L, (4.6)

i.e., the transformation behavior is independent of R. The mapping defines a
representation of the group G = SU(3), x SU(3), although the transformation
behavior is drastically different from the first example. However, the important
feature which both mappings have in common is that under the subgroup H =
{(V, V)|V € SUQB)} of G both fields B; transform as an octet:

! Technically speaking the adjoint representation is faithful (one-to-one) modulo the center Z of
SU(3), which is defined as the set of all elements commuting with all elements of SU(3) and is
given by Z = {1, exp(27i/3)1, exp(4ni/3)1}.
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By = By +Bg v VBV + VBrV = VB, VT,
B, &5 VB,V

We will now show how in a theory also containing Goldstone bosons the
various realizations may be connected to each other using field redefinitions. Here
we consider the second example, with the fields B, of Eq. 4.6 and U of Eq. 3.41
transforming as

B, — LB,L', U~ RUL',
and define new baryon fields by
- 1
B=UB, — §Tr(UB2),

so that the new pair (B, U) transforms as
~ 1
B— RUB,L' — 5Tr(RUBzLT), U RUL'.

Note in particular that B still transforms as an octet under the subgroup
H = SUQ)y.

Given that physical observables are invariant under field transformations we
may choose a description of baryons that is maximally convenient for the con-
struction of the effective Lagrangian [30] and which is commonly used in chiral
perturbation theory. We start with G = SU(2); x SU(2)x and consider the case of

G = SU(3), x SUQR); later. Let
_(pr
¥ = <n> (4.7)

denote the nucleon field with two four-component Dirac fields for the proton and
the neutron, and U the SU(2) matrix containing the pion fields. We have already
seen in Sect. 3.3.2 that the mapping U+ RUL' defines a realization of G. We
denote the unitary square root of U by u, u*(x) = U(x), and define the SU(2)-
valued function K(L,R, U) by

u(x)—u'(x) = VRUL' = RuK~'(L,R, U), (4.8)
ie.,
—1
K(L,R,U) =u''Ru = VRUL' RVU.

The following homomorphism defines an operation of G on the set {(U,V)}:

0@ (9)(9) = (e o) (49)

because the identity leaves (U, W) invariant and
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<P(gl)¢(82)(‘l{],> = <P(g1)<K(Li2;Z'2U)\P)
R\RULIL!
- (K(LI,RI,RZUL;)K(LZ,RZ,U)‘P)
_ ( RiRU(LiLy)' )
K(LiLy,R\Ry, U)¥
= @(8182)(5)-

Exercise 4.2 Consider the SU(N)-valued function (N = 2,3)

-1
K(L,R,U) = VRUL" RVU.
Verify the homomorphism property
K(Ll,Rl,RzUL;)K(Lz,RZ, U) =K|[(LL,), (RiR), U].

Note that for a general group element g = (L, R) the transformation behavior of ¥
depends on U. For the special case of an isospin transformation, R = L =V, one
obtains u' = VuV', because

U =u? = vuvivuvt = vitvt = vouvt.

Comparison with Eq. 4.8 yields K~'(V,V,U) =Vl or K(V,V,U) =V, ie., ¥
transforms linearly as an isospin doublet under the isospin subgroup H = SU(2)y,
of SU(2); x SU(2)g. A general feature here is that the transformation behavior
under the subgroup which leaves the ground state invariant is independent of U.
Moreover, as already discussed in Sect. 3.3.2, the Goldstone bosons ¢ transform
according to the adjoint representation of SU(2)y, i.e., as an isospin triplet.

For the case G = SU(3); x SU(3); one uses the realization

o(e): <g> ~ (g’/> - <K(L,R, Uliglg(L,R, U))’ (4.10)

where K is defined in complete analogy to Eq. 4.8 after inserting the corre-
sponding SU(3) matrices.
4.2 Baryonic Effective Lagrangian at Lowest Order

Given the dynamical fields of Eqs. 4.9 and 4.10 and their transformation proper-
ties, we will now discuss the most general effective baryonic Lagrangian at lowest
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order. As in the vacuum sector, chiral symmetry provides constraints among the
single-baryon Green functions. Analogous to the mesonic sector, these Ward
identities will be satisfied if the Green functions are calculated from the most
general effective Lagrangian coupled to external fields with a local invariance
under the chiral group (see Sect. 1.4).

Let us start with the construction of the nN effective Lagrangian & S\), which we
demand to have a local SU(2); x SU((2)z x U(1)y symmetry. The transformation
behavior of the external fields is given in Eq. 1.163, whereas the nucleon doublet
Y and U transform as

U(x) Ve(x)U(x)V] (x)
— . . (4.11)
P(x) )7\ expl—i@WIKIVL(x). Valx), UW)¥()
The phase factor exp[—i®(x)] is responsible for the U(1)y transformation of the
nucleon field (see Eq. 1.162 for the corresponding transformation behavior of the
quark fields). The local character of the transformation implies that we need to

introduce a covariant derivative D,'¥ with the usual property that it transforms in
the same way as WV:

DY (x) — [D,¥(x)] = exp[—i®(x)|K[VL(x), Vr(x), U(x)]D,¥(x).  (4.12)

Since K not only depends on V; and Vg but also on U, we may expect the
covariant derivative to contain « and u' as well as their derivatives.

The so-called chiral connection (recall d,uu’ = —ud,u'),
1, . . . +
r,= E[u' (O —ir)u+u(0, — ll”)MIL (4.13)

is an integral part of the covariant derivative of the nucleon doublet:
DY = (8, + T, — ) ). (4.14)
What needs to be shown is

D = [0, + T, —i(v) — 2,0)
- exp(—i(a)K(a,, F T, — ). (4.15)
To that end, we make use of the product rule,
0,[exp(—i®)KY] = —i0,® exp(—i®)KY + exp(—i®)0,KY + exp(—i®)K0, "V,
in Eq. 4.15 and multiply by exp(i®), reducing it to
0K = KT, — K.

Using Eq. 4.8,
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_ — — — i il — v,
K=u"Veu=uu' ' Veu =u'U'"Veu =u'Vy U' VpVeu=uViu',
=1 ot =
we find
2(KT, - T'K)
= K[u (0, — ir,)u] — [:ﬁ(au — Vg,V + VR0V | K
+ (R — Lyry — lyyu e ul,u )
= W Vr@uu — iru) — w0’ K+ id'Ver, VWK —uTVg0, V) WK
= u'TVyu =u = Vgu
+(R— Lyry — Lyyu e ulu e ul)
= u/"Vg0yuu — it 'Vir,u — u'T0,u'u" Veu + it 'Vgr,u — u'f VRG,,V,EVR u
S—— ——
— _a'uu’T = —G,LVR
+(R— Lyry — Lyyu e ul,u )
= u'TVRa,,u + 6uu’TVRu + u’TaﬂVRu +(R— Lu+~ ul ,ul — u'h)
=0, (' \Vgu + u'Viu') = 20,K,

i.e., the covariant derivative defined in Eq. 4.14 indeed satisfies the condition of
Eq. 4.12. At ((q), another Hermitian building block exists, the so-called chiral
vielbein,

Uy = i[uT(aﬂ —ir)u —u(0, — ilu)uT]7 (4.16)
which under parity transforms as an axial vector:

Uy, & i[u(@ — iMYut — u (0 — iryu] = —u".

Exercise 4.3 Using
W = Veukt = KuVj,
show that, under SU(2); x SU(2)g x U(1)y, u, transforms as
u, — Ku, K.

The most general effective nN Lagrangian describing processes with a single

nucleon in the initial and final states is then of the type YOV, where O isan operator
acting in Dirac and isospin space, transforming under SU(2); x SU(2)r x U(1)y

2 The power counting will be discussed below.
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as KOK'. As in the mesonic sector, the Lagrangian must be a Hermitian Lorentz
scalar which is even under the discrete symmetries C, P, and 7.

The most general such Lagrangian with the smallest number of derivatives is
given by [26]

L= ‘T’(ilz —m+ %V”Vsuu)‘l’- (4.17)

It contains two parameters (LECs) not determined by chiral symmetry: m, the
nucleon mass in the chiral limit, and g,, the axial-vector coupling constant in the
chiral limit. We denote the physical values of these two quantities by my and g4,
respectively. The physical value of g4 is determined from neutron beta decay and
is given by g4 = 1.2694 £0.0028 [47]. The overall normalization of the
Lagrangian is chosen such that in the case of no external fields and no pion fields it
reduces to that of a free nucleon of mass m.

Exercise 4.4 Consider the lowest-order /N Lagrangian of Eq. 4.17. Assume that

there are no external fields, [, = r, = v,(f) =0, so that
1
r,= E(ufaﬂu + ud,u'),  u, = i(u'd,u — ud,u').

By expanding

- o )
b7 b7 P
u:exp(;zF :ﬂ+1277ﬁ+...7

derive the interaction Lagrangians containing one and two pion fields,
respectively.

Exercise 4.5 Consider the two-flavor Lagrangian
Leir = 35111\3-5-327
where
L= ‘?(ID —m+ g;"v“%%)‘ﬂ
2

F . F?
Ly = ZTr[D,,U(D“U)T] + ZTr(;gUT + Uy").

(a) We would like to study this Lagrangian in the presence of an (external)
electromagnetic four-vector potential .o,,. For that purpose we need to insert
for the external fields (see Eq. 1.165)

13

rﬂ = l’u = —e&i,,E, w = §¢
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Derive the interaction Lagrangians & ,wn, v, L nvn, and .. Here, the
nomenclature is such that &£,y denotes the interaction Lagrangian describing
the interaction of an external electromagnetic four-vector potential with a
single nucleon in the initial and final states, respectively. For example, &, vy
must be symbolically of the type W¢.o7\P. Using Feynman rules, these four
interaction Lagrangians would be sufficient to describe pion photoproduction
on the nucleon, yN — =nN, at lowest order in ChPT.

(b) Now we would like to describe the interaction with a massive charged weak

boson W', = (W1, F i )/ V2 (see Eq. 1.166),

_&

V2

where H.c. refers to the Hermitian conjugate and

0 Vv
T+—<O Od)

Here, V,; denotes an element of the Cabibbo-Kobayashi-Maskawa quark-
mixing matrix,

=0, l,= (W;n +H.c.),

|V.a| = 0.97425 + 0.00022.

At lowest order in perturbation theory, the Fermi constant is related to the
gauge coupling g and the W mass by

2
Gr = V25— —1.16637(1) x 10° GeV 2.
8M3,

Derive the interaction Lagrangians Zyyy and Ly ;.
(c) Finally, we consider the neutral weak interaction (see Eq. 1.168),

ra=e tan(HW)Q”M%,

8 73 T3
l,=—>—%,— tan(Oy)Z ,—,
# cos(Ow)” "2 + e tan(Oy) )
(S) o e tan(@W) ;
v, = — Z o,

where Oy is the weak angle, e = g sin(fy ). Derive the interaction Lagrangians
& ZNN and &% Zn-

Since the nucleon mass my does not vanish in the chiral limit, the zeroth
component &° of the partial derivative acting on the nucleon field does not produce
a “small” quantity. We thus have to address the new features of chiral power
counting in the baryonic sector. The counting of the external fields as well as of
covariant derivatives acting on the mesonic fields remains the same as in mesonic
chiral perturbation theory (see Eq. 3.69). On the other hand, the counting of
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bilinears W'V is probably easiest understood by investigating the matrix elements
of positive-energy plane-wave solutions to the free Dirac equation in the Dirac
representation:

Yy (& 1) :exp(—ip-x)\/E—i-mN(a_»,};(%), (4.18)

E+my
where y denotes a two-component Pauli spinor and p = (E,p) with E =

A/ ]32 + m3,. In the low-energy limit, i.e., for nonrelativistic kinematics, the lower

(small) component is suppressed as |p|/my in comparison with the upper (large)
component. For the analysis of the bilinears it is convenient to divide the 16 I
matrices into even and odd ones, & = {1, v, ys7;, 05} and O = {ys,y57,7:, Gio}
[19, 23], respectively, where odd matrices couple large and small components but
not large with large, whereas even matrices do the opposite. Finally, i0* acting on
the nucleon solution produces p* which we write symbolically as p =

(my,0) + (E — my, B), where we count the second term as (/(q), i.e., as a small
quantity. Therefore, § — m counts as (/(g).” We are now in the position to sum-
marize the chiral counting scheme for the (new) elements of baryon chiral per-
turbation theory [40]:

¥, = 0(¢q°), DY = 0(q°), (i —m)¥ = O(q),

. (4.19)
170 V5V 0 = O(q°), 95 = O(q),

where the order given is the minimal one. For example, 7, has both an 0(4°) piece,
0. as well as an O(q) piece, 7,. A rigorous nonrelativistic reduction may be
achieved in the framework of the Foldy-Wouthuysen method [19, 23] or the
heavy-baryon approach [5, 37] (see Sect. 4.6.1).

The construction of the SU(3), x SU(3), Lagrangian proceeds similarly except
for the fact that the baryon fields are contained in the 3 x 3 matrix of Eq. 4.1
transforming as KBK. Analogously to the mesonic sector, the building blocks are

written as products transforming as K...K' with a trace taken at the end. The
lowest-order Lagrangian reads [30, 40]

_ D F
P\ = Tr[B(i]p — My)B] — ETr(By"%{uu,B}) - ETr(By‘ pslu, B]),  (4.20)

where M, denotes the mass of the baryon octet in the chiral limit. The covariant
derivative of B is defined as
D,B=0,B+[I',,B], (4.21)

with ', of Eq. 4.13 (for SU(3), x SU(3);). The constants D and F may be
determined by fitting the semi-leptonic decays B — B’ + ¢~ + , at tree level [9]:

* The quantity my — m is of ((¢?) as we will see in Sect. 4.5.3.
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D =080, F=0.50. (4.22)

Exercise 4.6 Consider the three-flavor Lagrangian of Eq. 4.20 in the absence of
external fields:

1 .
D,B =0,B+ E[u]taﬂu + ud,u',B), u, = i(u'd,u — udul).

Using
B, - By
B— e p_"2b0b

V2 V2

show that the interaction Lagrangians with one and two mesons can be written as
1 1 ) _
g;};B = F_O(dabcD + U(‘abc‘F)Bby/LVSBctaud)ca

1 i _—_—
Z Eba)sBB = —FfabafcdeBw‘ By 04y
0

Hint: uTG,Lu + u@,LuT = uTG,,u — a,,mﬁ = [uf, 0,u]. Make use of Eqs. 1.10 and 1.12.

4.3 Applications at Lowest Order

4.3.1 Goldberger-Treiman Relation and the Axial-Vector
Current Matrix Element

We have seen in Sect. 1.3.6 that the quark masses in QCD give rise to a non-
vanishing divergence of the axial-vector current operator (see Eq. 1.112). Here we
will discuss the implications for the matrix elements of the pseudoscalar density
and of the axial-vector current evaluated between single-nucleon states in terms of
the lowest-order Lagrangians of Eqgs. 3.77 and 4.17. In particular, we will see that
the divergence equation

(N(P"[0,A7 (0)IN(p)) = (N(p')|Pi(0)IN(p)), (4.23)

where m = m, = my, is satisfied in ChPT.
The nucleon matrix element of the pseudoscalar density can be parameterized

4
as

M?F,
M2 —1t

(N (p")|Pi(0)IN(p)) = Gun ()i (p')sTiu(p), (4.24)

* In the following, spin and isospin quantum numbers as well as isospinors are suppressed.
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where t = (p' — p)*. Equation 4.24 defines the form factor Gy (f) in terms of the
QCD operator 7P;(x). The operator mP;(x)/(M2F,) serves as an interpolating
pion field and thus G.y(¢) is also referred to as the pion-nucleon form factor (for
this specific choice of the interpolating pion field). The pion-nucleon coupling
constant gy is defined as g,y = Gy (t = M2).

The Lagrangian JS\), of Eq. 4.17 does not generate a direct coupling of an
external pseudoscalar field p;(x) to the nucleon, i.e., it does not contain any terms
involving y or y'. At lowest order in the chiral expansion, the matrix element of the
pseudoscalar density is therefore given in terms of the diagram of Fig. 4.1, i.e.,
the pseudoscalar source produces a pion which propagates and is then absorbed by
the nucleon. The coupling of a pseudoscalar field to the pion in the framework of
%, is given by

F’B
Loxt = iTTr(pUT — Up) = 2BFpip; +- - -. (4.25)

When working with the realization of Eq. 4.9 it is convenient to use the expo-
nential parameterization

U(x) = exp li W} ,

because in that case the square root is simply given by

$(x) - f]
2F '

u(x) =exp|i

According to Fig. 4.1, we need to identify the interaction term of a nucleon with a
single pion. In the absence of external fields the chiral vielbein of Eq. 4.16 is odd
in the pion fields,

wy = i[u'Ouu — ud,u'] Gnial i[udut — u'du) = —u,. (4.26)
Expanding u and u' as

u:ﬂ+i%+0(¢2), ul =1 —i%+0(¢2), (4.27)

we obtain

0, -7

+0(¢?), (4.28)

Uy, = —

which, when inserted into 3;11\3 of Eq. 4.17, generates the following interaction
Lagrangian (see Exercise 4.4):
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Fig. 4.1 Lowest-order contribution to the single-nucleon matrix element of the pseudoscalar

density. The mesonic and baryonic vertices derived from ¥, and 5/5;,3, respectively, are denoted

by the numbers 2 and 1 in the interaction blobs

14, - .
Lo = —= A 0,67 W, (4.29)
——

2 F
= 04y
(Note that the sign is opposite to the conventionally-used pseudovector

pion-nucleon coupling.’) The Feynman rule for the vertex of an incoming pion
with four-momentum ¢ and Cartesian isospin index i is given by

(19 ’ . lg
l<_EFA> V95750 (—ig,) = _EFA dysti. (4.30)
On the other hand, the chiral connection of Eq. 4.13 with the external fields set to
zero is even in the pion fields,

1 i i1
r,= E[ulfa#u + uaﬂut] ¢ — ¢ E[uauuT + uTaﬂu] =TIy, (4.31)

i.e., it does not contribute to the single-pion vertex.
We now put the individual pieces together and obtain for the diagram of
Fig. 4.1

. i 1g mg | .
8y (% s Julp) = MR L ),
where we used M? = 2Bsi and the Dirac equation to show i ¢fysu = 2mii)su.
At O0(q*), F, = F and M2 = M? so that, by comparison with Eq. 4.24, we can read
off the lowest-order result

294, (4.32)

GnN(t) = F

i.e., at this order the form factor does not depend on ¢. In general, the pion-nucleon
coupling constant is defined at # = M2 which, in the present case, simply yields

5 1In fact, also the definition of the pion-nucleon form factor of Eq. 4.24 contains a sign opposite
to the standard convention so that, in the end, the Goldberger-Treiman relation emerges with the
conventional sign.
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m
=—0,- (4.33)

8nN = GnN(M;%) F

Equation 4.33 represents the famous Goldberger-Treiman relation [32, 48] which
establishes a connection between quantities entering weak processes, F, and g4 (to
be discussed below), and a typical strong-interaction quantity, namely the
pion-nucleon coupling constant g,y. The numerical violation of the Goldberger-
Treiman relation, as expressed in the so-called Goldberger-Treiman discrepancy
(501,

myga

A=1-— ,
annN

(4.34)
is at the percent level,® although one has to keep in mind that all four physical
quantities move from their chiral-limit values g, etc. to the empirical ones g4 etc.

Using Lorentz covariance and isospin symmetry, the matrix element of the
axial-vector current between initial and final nucleon states—excluding second-
class currents [61]—can be parameterized as’

@ -p)"

(NGO () = ) [ Galr) + L

Gr(1) [ 55u(p),  (435)

where t = (p/ — p)?, and G, () and Gp(r) are the axial and induced pseudoscalar
form factors, respectively.

At lowest order, an external axial-vector field a;, couples directly to the nucleon
as

_ T;
Lext = gALPtuSElPaiu‘F T (436)

which is obtained from 25?5[11\), with u, = (r, —I,)+--- =2a,+---. A second
contribution results from the coupling of an external axial-vector field to the pion,
propagation of the pion, and subsequent absorption of the pion by the nucleon. The
coupling of an external axial-vector field to pions is obtained from ¥, with
ry=—l,=ay,

gext = _F6H¢[aiu+ ) (437>

which gives rise to a diagram similar to Fig. 4.1, with /p; replaced by a;,,.

S Using my = (my 4+ my)/2 =938.92 MeV, g4 = 1.2695(29), F,=92.42(26) MeV, and
gov = 13.2110:01 [56], one obtains Ay = (2.3770%) %.

7 The terminology “first and second classes” refers to the transformation property of
strangeness-conserving semi-leptonic weak interactions under % conjugation [61] which is the

product of charge symmetry and charge conjugation ¥ = % exp(inQy2). A second-class
contribution would appear in terms of a third form factor Gr contributing as

y
oqy T

Gr(Da(p')is—=1s 5“(]’)

ZmN

Assuming perfect ¥-conjugation symmetry, the form factor Gy vanishes.
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The matrix element is thus given by
_ T; 1g i .
u(p) {gAVMVSEI + {E FA(%— ﬂ)?sfi] m(—quﬂ)}”(P)a
from which we obtain, by applying the Dirac equation,

Ga(t) = gy, (4.38)

_4ngA

Gp(l) = PR V7R

(4.39)

At this order, the axial form factor does not yet show a t dependence. The
axial-vector coupling constant is defined as G4(0), which is simply given by g,.

We have thus identified the second new parameter of % 2\3 besides the nucleon
mass m. Both quantities refer to the chiral limit. The induced pseudoscalar form
factor is determined by pion exchange, which is the simplest version of the so-
called pion-pole dominance. The 1/(t — M?) behavior of Gp is not in conflict with
the book-keeping of a calculation at (’(g), because, according to Eq. 3.69, the
external axial-vector field a, counts as (/(¢), and the definition of the matrix
element contains a momentum (p’ — p)" and the chirality matrix y5 (see Eq. 4.19)
so that the combined order of all elements is indeed (O(g).

It is straightforward to verify that the form factors of Egs. 4.32, 4.38, and 4.39
satisfy the relation

t M?F,
2myGa(t) + ——Gp(t) = 2—L— Gy (2 4.40
my A()+2mN p(2) M2 (1), (4.40)

which is required by the divergence equation of Eq. 4.23 with the parameteriza-
tions of Eqs. 4.24 and 4.35 for the matrix elements. In other words, only two of the
three form factors G4, Gp, and G,y are independent. Note that this relation is not
restricted to small values of 7 but holds for any 7.

Exercise 4.7 According to Eq. 1.112, the divergence of the axial-vector current in
the two-flavor sector is given by

0,A (x) = mPy(x), i=1,2,3,

where we have assumed m = m, = m,. Let |A) and |B) denote some (arbitrary)
hadronic states which are eigenstates of the four-momentum operator P with
eigenvalues ps and pp, respectively. Evaluating the above operator equation
between |A) and (B| and using translational invariance, one obtains

(B0, AL (1) = 0, (BIAL(0]A) = 0, (Bl AL (0)e " a)]
= o[ BlAY(0)1A)] = igyet (BIAL(0) )
= (P (0)]4),
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where we introduced ¢ = pg — p4. Dividing both sides by ¢'7* # 0, we obtain

iqu(B|A; (0)|A) = m(B|P(0)|A).

(a) Make use of the parameterizations of Eqs. 4.24 and 4.35 for the nucleon
matrix elements and derive Eq. 4.40.
Hint: Make use of the Dirac equation.

(b) Verify that the lowest-order predictions

_4ngA

Ga(t) =9s, Gp(t) = PRYZY

m
GnN(t) - FgAa

indeed satisfy this constraint. Note that my = m + O(g?).

4.3.2 Pion-Nucleon Scattering

As another example, we will consider pion-nucleon scattering and show how the
effective Lagrangian of Eq. 4.17 reproduces the Weinberg-Tomozawa predictions
for the s-wave scattering lengths [60, 62]. We will contrast the results with those of
a tree-level calculation within pseudoscalar (PS) and pseudovector (PV) pion-
nucleon couplings.

Before calculating the nN scattering amplitude within ChPT, we introduce a
general parameterization of the invariant amplitude .# = iT for the process
a(q) + N(p) = my(q) + N(p') [14]:°

1 1 _
Tow(p.q;p'4) = >l T (P, g0’ d) + <[, Wl T~ (. 4P, 4)

2
=0T (P, 4;0',q') — ieapet T (P, q;P' ), (4.41)
where
1
Ti(l% C]éP’a q/) = ﬁ(p/) Ai(w VB) + E(% + ql)Bi(v7 VB) M(p) (442)

The amplitudes A* and B are functions of the two independent scalar kinematical
variables

8 One also finds the parameterization
1
T=ua(p)(D—-—I4, 4B
) (D o 1o 18 ()

with D = A 4 vB, where, for simplicity, we have omitted the isospin labels.
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s—u_(p+p)-q (P+p)-q

_ _ _ 4.43
Y 4mN ZmN 21’1’!1\/ ’ ( )
q-q - 2M2
= 4.44
VB 2mN 4mN ’ ( )

where s = (p+q)*, t = (p' —p)%, and u = (p' — ¢)* are the usual Mandelstam
variables satisfying s + ¢ + u = 2m3, + 2M>2. From pion-crossing symmetry,

Ta(p.q;P'.q") = Tralp, —4';1', —4),

we obtain for the crossing behavior of the amplitudes:

Al = ), A (v = A

vV, Vp
B (=v,vg) = —B*(v,vg), B (—v,vg) =B~ (v,v3).

As in 7wrm scattering, one often also finds the isospin decomposition as in
Exercise 3.14,

(I'\L|T|I, 1) = T'6, 6, ;.

In this context we would like to point out that our convention for the physical pion
fields (and states) (see Exercise 3.5) differs by a factor (—1) for the n from the
spherical convention which is commonly used in the context of applying
the Wigner-Eckart theorem. Taking into account a factor of (—1) for each n™ in
the initial and final states, the relation between the two sets is given by [18]

TP =T" 42T,

. (4.46)

S

To verify Eqgs. 4.46, we consider

N 1
77— ST =T + Ty + ) =T — 577,
1
" = NG (T13+iTy) = 14T,

where 7. = (t; % it)/v/2. We then evaluate the matrix elements

(pr*|Tpn*") =T = T",
(pr°|T|nm*) = V2T

A comparison with the results of Exercise 4.8 below,
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3 —
o (| T|pn ) gy = T2 = (= 1) (pr* | Tpn*) = T+ — T,

V2
o (P T|n7 ") gy, = 5-(TF = T3) = (=) {pr|T|nn”) = V2T~
results in Eq. 4.46. (The subscript sph. serves to distinguish the spherical con-
vention from our convention.)

Exercise 4.8 Consider the general parameterization of the invariant amplitude
M = iT for the process m,(q) + N(p) — ny(q') + N(p’) of Egs. 4.41 and 4.42
with the kinematical variables of Eqs. 4.43 and 4.44.

(a) Show that
s —my =2my(v—vg), u—my=—2my(v+vp).

Hint: Make use of four-momentum conservation, p + g = p’ + ¢/, and of the
mass-shell conditions, p* = p”?> = m3, ¢* = ¢*> = M>.
Derive the threshold values
M2
_ n
sz '

V|thr = M7[7 VB|thr:

(b) Show that from pion-crossing symmetry,
T, a;P'.d') = Toa(p, —4'sp'. —),

we obtain the crossing behavior of Eq. 4.45.
(c) The physical =N channels may be expressed in terms of the isospin eigenstates
as (a spherical convention is understood)

33
§’§>’
0 213 1 111
)= \335) + Jal 1)
1131 211
In = ﬁ'zi> - \[5 > 5>,

_ 113 1 211 1
lpm >_ﬁ’§’_§>+\£ 57‘5>>
0 \Fs 1 1] 1
In) = §§"5>‘7§§"z>>
_ 3 3
|nn™) = ’5’ —§>

(I'LIT|1, 1) = T’5,1/5,3,§,

lpn") =

Using

derive the expressions for (pn’|T|nn™), (pn°|T|pn°), and (na*|T|nn*). Verify
that
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1
(prITIp) — (e Tin) = —(pr[ Tl

Exercise 4.9 Consider the so-called pseudoscalar pion-nucleon interaction’
PS . T, 7 o
Lo = 18 ¥ysd - TY.

The Feynman rule for both the absorption and the emission of a pion with
Cartesian isospin index a is given by

—&nNYV5%a-

Derive the s- and u-channel pole contributions to the invariant amplitude of
pion-nucleon scattering (see Fig. 4.3). A t-channel pion-pole contribution does not
exist, because a triple-pion vertex does not exist.

Remark The Feynman propagator of a nucleon with mass m (in the chiral limit)
reads

. i
SeP) = o

where the unit matrix in isospin space has been omitted.

Let us turn to the tree-level approximation to the nN scattering amplitude as

obtained from & 512 of Eq.4.17. In order to derive the relevant interaction
Lagrangians from Eq. 4.17, we reconsider the chiral connection of Eq. 4.13 with
the external fields set to zero and obtain

i

L=gm

¢ x 0, -7+ 0(¢*). (4.47)
The linear pion-nucleon interaction term was already derived in Eq. 4.29 so that
we obtain the following interaction Lagrangian:

1

lg 3~ U
Line = — 5250, 1Y — iF?

Pyl G x0T W (4.48)
2 F N —

= gcded)da,u ¢efc

The first term is the pseudovector pion-nucleon coupling and the second the
contact interaction with two factors of the pion field interacting with the nucleon at
a single point. The Feynman rules for the vertices derived from Eq. 4.48 read

1. for an incoming pion with four-momentum ¢ and Cartesian isospin index a:

° For easier comparison with the result of ChPT we have chosen the sign opposite to the standard
convention of Eq. 1.70. See also Sect. 4.3.1.
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Fig. 4.2 Contact ¢.a q\b
contribution to the S P
pion-nucleon scattering LN v
amplitude ~ :: i
P P’
Fig. 4.3 s- and u-channel . ¢ a q,b ~aa q',b
pole contributions to the \ / ~. -7
pion-nucleon scattering ‘ /l a < v
amplitude \ i RON
P Pty i p p—d 4
1 9
2% (4.49)

2. for an incoming pion with ¢,a and an outgoing pion with ¢, b:
!

. 1 . ‘ N
l<—4F2> V”Scde {501(156;;1421 + 5’”’59‘1(_qu):| T, = L

4F2 EabcTe- (450)

The latter gives a contact contribution to .# (see Fig. 4.2),

ql
cont = M(P ) 4F2

EabeTe u(p)—lfu(P)%(ﬂiJr ¢1) [t5, Ta]u(p).

—— 2F?
= i% [th, Ta)
(4.51)
We emphasize that such a term is not present in a conventional calculation with
either a pseudoscalar or a pseudovector pion-nucleon interaction.
For the s- and u-channel nucleon-pole diagrams the pseudovector vertex
appears twice (see Fig. 4.3) and we obtain

Moy = 4F2u(pl)( )/Sﬁ/_’_ q,_ qysrbfau(p)

(= )ystatou(p). (4.52)

1
"t(p )q/ 5 q _
The s- and u-channel pole contributions are related to each other through pion
crossing a < b and g < —¢'. In what follows we explicitly calculate only the s
channel and make use of pion-crossing symmetry at the end to obtain the
u-channel result. We perform the manipulations such that the result of a pseudo-
scalar coupling may also be read off. To that end, we need to apply the Dirac
equation where, to the given accuracy, we make use of my = m + ()(¢*). Using
the Dirac equation, we rewrite

4F2
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drsup) = (P + f —m+m— p)ysu(p) = (F + 4 —m)ysu(p) + 2mysu(p)

and obtain

syiéi;«ﬂ+quwn+%mﬂmw@>

25980 (o) + (o)

My = lm a(p')(—o)
/Sﬂ/‘i’ q,i 2ml)5 beau(p)
We repeat the above procedure

a(p')f'ys = u(p')[=2mys — ys(# + ¢ —m)],
yielding

My = z—u(p)[( d)+am*ys———r—

4F2 ——————s + 2m|tpTu(p), (4.53)

Ry
PS coupling

where, for the identification of the PS-coupling result, one has to make use of the
Goldberger-Treiman relation (see Sect. 4.3.1)

91 _ 9w
F m’

where g, denotes the pion-nucleon coupling constant in the chiral limit.
Since we only work at lowest-order tree level, we now replace m — my, g, — 8a
etc. Using

s — m]2V = 2my (v — vp),
we find

)= w>fﬁfi4l
P d—my P +q) —m

! [—EMﬂxg+-¢wu»]

- 2my(v — vp)

a(p')ys ysu(p)

where we again made use of the Dirac equation. We finally obtain for the
s-channel pole contribution

2 iy
My = ig—AIT{(p’) 2my +%(¢1‘ + q’) (1 _ 2_ VB>:| ‘L'b'[au(p). (454)

v

As noted above, the expression for the u channel results from the substitution
a< band g — —¢,
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Table 4.1 Tree-level contributions to the functions A* and B* of Eq. 4.42

Amplitude/origin PS APV Contact Sum
AT 0 gimy 0 gmy
F i

A~ 0 0 0 0

Bt _ & myy 0 0 & myy
F2v2—2 FZy2—v2

B~ _é myvp _i 21? 1-¢3 _ é myvg
F2v2—y2 2F2 n 2F2 F2y2—y2

The second column (PS) denotes the result using the pseudoscalar pion-nucleon coupling (using
the Goldberger-Treiman relation). The sum of the second and third column (PS + APV) repre-
sents the result of the pseudovector pion-nucleon coupling. The contact term is specific to the
chiral approach. The last column, the sum of the second, third, and fourth columns, is the lowest-
order ChPT result

2 2
My = ifTA%ﬁ(p’) 2my -l-%(ﬂ +4) <1 - _TI\\}]B>] TaTpu(p). (4.55)

We combine the s- and u-channel pole contributions using

1 1 1 1
TpTa = E{Tb» Ta} + E[Tb; Ta)y  TaTh = E{Tb; Ta} — =[Th, Ta)s

2
{Zv}
1 1 2v
n _ B

v—vg v4+vg -3’

and

and summarize the contributions to the functions A* and B* of Eq. 4.42 in
Table 4.1 (see also Eq. A.26 of Ref. [26]).
In order to extract the scattering lengths, let us consider threshold kinematics,

S o M?
p,u :pl,u = (vao)v qﬂ = q/ll = (Mmo)a V|thr = M, VB|thr: 72771'
my
(4.56)
Together with'”
o) = v (£). al) — (0
we find for the threshold matrix element
T|thr = szX/T [5ab(A+ + MnB+) — ieapeTe (AT + MnBi)Lth' (4.57)

Using

10 Recall that we use the normalization u = 2my.
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2
2 21 _ g2 K M o 1
(1), petesd

we obtain

2 2
_ s 8AMN 84 \MN 1
Tlhr_sz/{||:5”b< F2 +Mn<_ﬁ>ml_#_z)
T T 4

PS
ChPT =PV
) 1 gi gf‘ 1 1
— i&abcTeMy (ﬁ _ﬁ _ﬁ —5 m e (4.58)
T Y T 4
S~—_—— —
PS
PV
ChPT

where we have indicated the results for the various coupling schemes.

Let us discuss the s-wave scattering lengths resulting from Eq. 4.58. Using the
above normalization for the Dirac spinors, the differential cross section in the
center-of-mass frame is given by [18]

do _Wal( 1) g (4.59)
@ 13 \8nvs) T '

which, at threshold, reduces to

do
dQ

1 S )
. (MWW+MH)MY (4.60)

The s-wave scattering lengths are defined as''

1 1
* - TF =——— [A% M,TBi . 4.61
Ao+ 87r(mN +Mn) |thr 47.[(1 + 'u)[ + ]thr ( )

""" The threshold parameters are defined in terms of a multipole expansion of the 7N scattering

amplitude [14]. The sign convention for the s-wave scattering parameters a((i) is opposite to the
convention of the effective-range expansion.
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The subscript 04 refers to the fact that the n/N system is in an orbital s wave

(I =0) with total angular momentum 1/2 =0+ 1/2. Inserting the results of
Table 4.1, we obtain at Lf/(q),]2

_ M, gf,,uz 1 M, .
N ! = 1+0 4.62
Ao, 8TC(1+,u)F7%< + 4 1_%2 87T(1+/1)F%[ +0(q )], ( )

2
+ gAMTf H =0 2 4.63

where we have also indicated the chiral order. Taking the linear combinations a =

ag, +2ay, and @ = af, — ag, (see Eq. 4.46), we see that the results of Eqs. 4.62
and 4.63 at ()(q) indeed satisfy the Weinberg-Tomozawa relation [60, 62]:"

. M, 3
a = —W{I(1+ D=3~ 2], (4.64)

where I denotes the total isospin of the pion-nucleon system. As in 77 scattering,
the scattering lengths vanish in the chiral limit reflecting the fact that the inter-
action of Goldstone bosons vanishes in the zero-energy limit. The pseudoscalar
pion-nucleon interaction produces a scattering length g, proportional to my
instead of uM, and is clearly in conflict with the requirements of chiral symmetry.
Moreover, the scattering length a,, of the pseudoscalar coupling is too large by a
factor g4 in comparison with the two-pion contact term of Eq. 4.51 (sometimes
also referred to as the Weinberg-Tomozawa term) induced by the nonlinear
realization of chiral symmetry. On the other hand, the pseudovector pion-nucleon
interaction gives a completely wrong result for a;, , because it misses the two-pion
contact term of Eq. 4.51.
Using the values

g1 = 1.267, F,=92.4MeV,

(4.65)
my =m, = 9383MeV, M, =My = 139.6MeV,

the numerical results for the scattering lengths are given in Table 4.2. We have
included the full results of Eqgs. 4.62 and 4.63 and the consistent corresponding
prediction at O)(q). The empirical results quoted have been taken from low-energy
partial-wave analyses [39, 43] and precision X-ray experiments on pionic hydro-
gen and deuterium [56]. For a discussion of N scattering beyond tree level, see,
e.g., Refs. [4, 21, 45].

12 We do not expand the fraction 1/(1 4 ), because the u dependence is not of dynamical
origin.

'3 The result, in principle, holds for a general target of isospin T (except for the pion) after
replacing 3/4 by T(T + 1) and u by M, /Mr.
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Table 4.2 s-wave scattering lengths ag,

Scattering length ag, [MeV1] ay, [MevV™']
Tree-level result —6.80 x 1072 +5.71 x 107

ChPT 0(q) 0 15.66 x 1074

PS —1.23x 1072 +9.14 x 1074

PV —6.80 x 1073 +5.06 x 107°
Empirical values [39] (=7+£1) x 1073 (6.6 +0.1) x 107*
Empirical values [43] (2.04 £1.17) x 1073 571 £0.12) x 1074

(
(5.92+0.11) x 107*
(

Experiment [56] (—2.7£3.6) x 1073 +6.59 £+ 0.30) x 10~*

4.4 The Next-to-Leading-Order Lagrangian

The next-to-leading-order pion-nucleon Lagrangian contains seven low-energy
constants ¢; [22, 26],

2 T (&) I v
PP = o\ Tr(y, )PV — 1,2 T0(0) (PD'D'Y + Hee)

c - Cavi 4y - 1
+ %Tr(uﬂu,,)‘l—"}’ - f‘{’y”y‘[uﬂ, w, |V + sV {;@r - ETI(XJF)} v

I v Co 7 K
4 Pt b o Evfﬂ?] ¥, (4.66)

where H.c. refers to the Hermitian conjugate and

Yr = uTqu + uxTu,

vif‘) =9, — 6‘,\/!(1‘),

f;t\r = MfL,uvuJr + quRuvuv
fL;tv = aulv - avl,u - i[lw lv]a

fRuv = aurv - avru - i[r,uarv]-

In order to be able to make predictions for physical quantities, the values of the c;
have to be determined from comparisons with experiments. A first estimate of the
low-energy constants ci, . . .,c4 may be obtained from a tree-level fit [3] to the N
threshold parameters of Koch [39]:

1 =—09my', 2 =25my', 3 =—-42my', s =23my'.  (4.67)

In general, once calculations are performed beyond tree level and LECs are fitted
to empirical data, it is necessary to specify the renormalization prescription to
which the given values of the LECs refer. We will come back to this point in
Sect. 4.5.3. When considering the chiral expansion of an observable, the coeffi-
cient at a given order does not depend on the renormalization scale u (see
Sect. 3.5.2 for an illustration in terms of the Goldstone-boson masses).
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In particular, if a renormalization scheme is set up such that renormalized loop
contributions start at ((q>) (see Sect. 4.5.2) this means that the renormalized
coefficients of 37(12]\), do not depend on y in this scheme.

Combining the analyses of several sources, the following estimates for the c;

have been compiled in Ref. [44] (values in GeV~!):
c1=-09703, ©=33+02, c3=-477% =350  (4.68)

The constant cs is related to the strong contribution to the neutron-proton mass
difference and has been estimated to be ¢s = —0.09 £ 0.01 [7].

Finally, the constants c¢¢ and c; are related to the isovector and isoscalar
magnetic moments of the nucleon in the chiral limit. This is seen by considering
the coupling to an external electromagnetic four-vector potential by setting

: 1
ry=1,= fe,sz{lt%, vfj) = fei.szfﬂ.
We then obtain
O g, Fa=0 )
Vi = _eif/p,uw /,uv = ,uﬂv - v&{,u.a
. ~ 3
fL/lV = aulv - avlu —1 [l'u, lv] = —e M\!? :fRuvv
——
=0
and thus
f/j—\r = 1/‘](‘L,uvl'¢Jf + quR,uvu :fLuv +fRuv +o = —6?/7#\,‘[3 + -

Inserting these terms into the Lagrangian we see that the contributions without
pion fields are given by

e 1
_E\P()"w (C6T3 + §C7> Tgﬂ"'

Comparing with the interaction Lagrangian of a magnetic field with the anomalous
magnetic moment of the nucleon,

€ 3 wl ] v T
—M‘PG’ E(K(é) + & )r3>‘I’J’W,

we obtain
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o (s) o (v)
K K

= 6‘6:—
2m’ 4m’

7
where o denotes the chiral limit. The physical values read

| 1/
Ky = Q(K(” +K0) = 1793, 1, = E(K(é) — k) = 1913,
and thus k) = —0.120 and ") = 3.706. The results for x*) and k) up to and
including ¢(¢*) [6, 201,

k) =) 1 O(g*),

) _ MnmNg,%

v = VoA
* 4nF?

+ 0(q"),

Ko

are used to express the parameters cg and c¢7 in terms of physical quantities. Note
that the numerical correction of —1.96 (parameters of Eq. 4.65) to the isovector
anomalous magnetic moment is substantial.

4.5 Loop Diagrams: Renormalization and Power Counting

For the applications in Sects. 4.3.1 and 4.3.2 we only considered contributions at
leading order, which meant that only tree-level diagrams had to be taken into
account. To go beyond leading order, we will have to calculate loop diagrams as
well. In Sect. 3.4.9 we saw that in the purely mesonic sector contributions of n-loop
diagrams are at least of ()(¢g*"*?), i.e., they are suppressed by ¢*" in comparison
with tree-level diagrams. An important ingredient in deriving this result was the fact
that we treated the squared pion mass as a small quantity of order ¢*>. Such an
approach is motivated by the observation that the masses of the Goldstone bosons
must vanish in the chiral limit. In the framework of ordinary chiral perturbation
theory M2 ~m, (see Eqs. 3.59 and 3.161), which translates into a momentum
expansion of observables at fixed ratio m, / g*. On the other hand, there is no reason
to believe that the masses of hadrons other than the Goldstone bosons should vanish
or become small in the chiral limit. In other words, the nucleon mass entering the
pion-nucleon Lagrangian of Eq. 4.17 should—as already anticipated in the dis-
cussion following Eq. 4.17—not be treated as a small quantity of, say, 0(q).

Before discussing how this affects the calculation of loop diagrams and the
construction of a consistent power counting, we recall the principles of renor-
malization. As we will see, the choice of a renormalization condition is intimately
connected with the power counting.

!4 The calculations were performed in the heavy-baryon approach (see Sect. 4.6.1) in which the
¢; are renormalization-scale independent.



172 4 Chiral Perturbation Theory for Baryons

4.5.1 Counter Terms of the Baryonic ChPT Lagrangian

In Sect. 3.4.8 we discussed how to renormalize a toy model by expressing all bare
fields and parameters in terms of renormalized quantities. The procedure results in
counter terms which are used to absorb divergences appearing in loop diagrams.
We also pointed out that one is free to specify a renormalization condition,
determining which finite parts of the loop integrals are absorbed in the counter
terms. As this freedom to choose a renormalization condition plays a crucial role in
baryon chiral perturbation theory, we briefly want to discuss the counter terms
appearing in 32\),, for simplicity only considering the free part in combination
with the ©N interaction term with the smallest number of pion fields. In terms of
bare fields this part of the Lagrangian reads

- 1
A= o170, o~ Sty o 46)
B

After introducing renormalized fields as

¥ du
\/Z_\p’ i \/Z7¢7

we express the field redefinition constants for the nucleon and pion fields as well as
the bare quantities in terms of renormalized parameters:

(4.70)

Z\P =1+ 5Z‘P(m7gA7giav)v
Z¢ =1+ 5Z¢(mng7givv)7

4.71
my = m(s) + om(m, Gy, 5,7), 7
8ap = 94 (v) + 694 (m, 9y, 81, V),
where g;, i = 1,...,00, collectively denote all the renormalized parameters which

correspond to bare parameters g;; of the full effective Lagrangian. As before, the
dependence on the renormalization prescription is contained in the parameter v.
Here we choose the renormalized mass parameter to be the nucleon mass in the
chiral limit, m(v) = m. We emphasize that our choice is only one among an infinite
number of possibilities. The basic and counter-term Lagrangians are given by

_ 1
Prasic = ¥ <iy"6u —m— 3 g%y“ysﬁuzj)iri) v, (4.72)

Lo = ZePiy"d, ¥ — S{m} PY — %5{9%}%%5@#%\?, (4.73)

where we introduced the abbreviations
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o{m} = 6Zym + Zyom,
o{I) = o200/ 7y + 2 (S8 - 90 7y 1 Oz ),
F F Fp F F

As previously explained (see Sects. 3.4.4, 3.4.5, 42, and 4.3.1), m, g4, and F
denote the chiral limit values of the physical nucleon mass, the axial-vector
coupling constant, and the pion-decay constant, respectively. Divergences
appearing in loop diagrams can be absorbed by expanding the counter-term
Lagrangian of Eq. 4.73 in powers of the renormalized coupling constants and by
suitably adjusting the expansion coefficients.

4.5.2 Power Counting

Our goal is to obtain a power counting for tree-level and loop diagrams of the
(relativistic) EFT for baryons which is analogous to that for mesons given in
Sect. 3.4.9. It is important to note that the power counting applies to renormalized
diagrams, i.e., the sum of diagrams generated with the basic Lagrangian and the
corresponding contributions from the counter-term Lagrangian. The counter-term
contribution not only absorbs any potential divergence, we can also implement
different renormalization conditions by adjusting the finite pieces of the counter
terms. Choosing a suitable renormalization condition will allow us to apply the
following power counting: a loop integration in n dimensions counts as ¢", pion
and fermion propagators count as ¢~ and ¢~ ', respectively, vertices derived from

Py and Ji’j\), count as g** and ¢, respectively. Here, g generically denotes a small
expansion parameter such as, e.g., the pion mass. In total this yields for the power
D of a diagram the standard formula [17, 64]

o0 8]
D=nN, =20 —Iy+ > 2kN3 + > KN}, (4.74)
k=1 k=1

where Ny, I, Iy, N3, and NY¥ denote the number of independent loop momenta,
internal pion lines, internal nucleon lines, vertices originating from %y, and

vertices originating from gfs\),, respectively. We make use of the relation'”

Nyo=I,+Iy—N,—Ny—+1

!5 This relation can be understood as follows: For each internal line we have a propagator in

combination with an integration with measure d*k/ (2n)*. Therefore, there are I, + Iy
integrations. However, at each vertex we have a four-momentum conserving delta function,
reducing the number of integrations by N, + Ny — 1, where the —1 is related to the overall
four-momentum conserving delta function &*(P; — P;).
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Fig. 4.4 One-loop contributions to the nucleon self energy

with N, and Ny the total number of pionic and baryonic vertices, respectively, to
eliminate I;:

D=(n—2N +Ix+2+Y 2(k— N5+ (k—2)N}.
k=1 k=1

Finally, for processes containing exactly one nucleon in the initial and final states
we have'® Ny = Iy + 1 and we thus obtain

D=1+(n-2)N,+> 2(k— N5+ (k—1)NY (475
k=1 k=1
> 1 in four dimensions.

According to Eq. 4.75, one-loop calculations in the single-nucleon sector should
start contributing at ()(¢"~!). For example, let us consider the one-loop contri-
bution of the first diagram of Fig. 4.4 to the nucleon self energy. According to
Eq. 4.74, the renormalized result should be of order

D=n-1-2-1-1-141-2=n-1. (4.76)

We will see below that a renormalization scheme that respects this power counting
is more complex than in the mesonic sector.

4.5.3 One-Loop Correction to the Nucleon Mass

In the mesonic sector, the combination of dimensional regularization and the
modified minimal subtraction scheme (see Eq. 3.124) leads to a straightforward
correspondence between the chiral and loop expansions. By studying the one-loop
contributions of Fig. 4.4 to the nucleon self energy, we will see that this corre-
spondence, at first sight, seems to be lost in the baryonic sector.

16 In the low-energy effective field theory there are no closed fermion loops. In other words, in
the single-nucleon sector exactly one fermion line runs through the diagram connecting the initial
and final states.
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Exercise 4.10 In the following we will calculate the mass my of the nucleon up to
and including ((g*). As in the case of pions, the physical mass is defined through
the pole of the full propagator (at p = my for the nucleon). The full unrenor-
malized propagator of the nucleon is defined as the Fourier transform

Sg(p) = / d*e?*Sp(x) (4.77)
of the two-point function
Sp(x) = —i{0|T[¥5(x)¥5(0)]]0), (4.78)
where Wp denotes the bare nucleon field. We parameterize
Splp) == (479
p—mg—Xp(p)  p—m—X(p)

where myp refers to the bare mass of Eq. 4.69 and Zj is the self energy calculated in
terms of bare parameters. On the other hand, m is the nucleon mass in the chiral
limit and Eq. 4.79 defines the quantity X. Here, Xp(p) and X(p) are matrix
functions [36] which, using gy = p?, can be parameterized as

Zp(x) = —xfp(x?) + mpgp(x’)
with an analogous expression for . To determine the mass, the equation
my —mg — Zp(my) =my —m — Z(my) =0 (4.80)
has to be solved, so the task is to calculate the nucleon self energy X(p).

According to the power counting specified above, we need to calculate the two
types of one-loop contributions shown in Fig. 4.4 together with the corresponding
counter-term contribution and a tree-level contribution. After renormalization, we
would like the first loop diagram to be of chiral order D=n-1—-2-1—-1-1+
2-1=n—1, and the second loop diagram of order D=n-1-2-1+
l1-1=n—-1.

(a) The nN Lagrangian at ((¢*) is given in Eq. 4.66. Which of these terms
contain only the nucleon fields and therefore give a tree-level contribution to

the self energy? Determine —iX5°(#) from z<‘i‘|$7(§\),|‘l’>

Remark There are no tree-level contributions from the Lagrangian LS\),

(b) By using the expansion of gf;& up to two pion fields (see Exercise 4.4), verify

the following Feynman rules:'’

7 Note that we work with the basic Lagrangian.
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k. (L*
7297; kYSTa
p P
‘\iif.:,a E',b'r,’ 1
e o D,
J2 g

(c) Use the Feynman rules to show that the second diagram in Fig. 4.4 does not
contribute to the self energy.
(d) Use the Feynman rules and the expressions for the propagators,
i

iAr(p)

:pz—M2+iO+7
. . P+m
Sp(p) =i—r T
l F(p) lpz_ 2+i0+’

to verify that in dimensional regularization the first diagram in Fig. 4.4 gives
the contribution

_istoon() = 2% 4 / (d"k Kb —m— WK

gt 20)" [(p — k)* — m2 + 0] (k2 — M2 + i0+)
(4.81)

(e) Show that the numerator can be rewritten as
~(B+m)( = M) = (B -+ mM 4 (P = m = [(p— k) —m?| K, (4:82)

which, when inserted in Eq. 4.81, gives

TP () = %{—(7‘ Fm)t i / (;{n]; -k —1 m? + i0*
— (P +mMPt i / (;i:;" (p— k2 —m+ i(1)+](k2 — M2 +i0")
- m2>“4_ni/ (ZIZ;" [(p —k)* —m? + i(f+](k2 — M? +i0%)
7“47}1'./ (j:;” e Mé n io+}' )

Hint: {V;N yv} = 2gl“’1]’ {y/u ')}5} = 07 VsVs = 1]7 k2 = kz - M2 + MZ'
(f) The last term in Eq. 4.83 vanishes since the integrand is odd in k. We use the
following convention for scalar loop integrals:
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IN.Nnu.(pl; gl )

d"k 1
4—n:
=H l/ n ; ; :
20)" [(k +p1)* — m? +i0%]. . [(k+ q1)* — M? +i0+]. ..

To determine the vector integral use the ansatz

&k k
A / _ ! " = p.C. (4.84)
21)" [(p — k)* — m2 + i0+]) (k> — M2 + i0+)

Multiply Eq. 4.84 by p* to show that C is given by

1
C= E[IN — L+ (p> —m* + M) Iy (—p,0)]. (4.85)

Using the above convention, the loop contribution to the nucleon self energy
reads

2
S8 () = — S5 (5 + m)ly + ( + m)M Iz (5, 0)
—(p* - mz);{z[lN — L+ (p* —m* + M*)Iy:(—p,0)]}.  (4.86)

The explicit expressions for the integrals are given by
M? ] M?
Ii=——|R+In(—)],
T (/ﬂﬂ
m? | m?
Iyv=——|R+In{—
=ten ()]

1] m? ZomP—M* (M\ 2mM

(4.87)

where R is given in Eq. 3.111, Q is defined as

Q:pz_mz_M27
2mM
and
\/92—1111(—9—\/92—1), Q< —1,
F(Q) = q V1 — Q% arccos(—Q), -1<Q<1,

\/92—11n(g+\/92—1) VP 1, 1<Q.

(g) The result for the self energy contains divergences as n — 4 (the terms pro-
portional to R), so it has to be renormalized. The counter-term Lagrangian must
produce structures which precisely cancel the divergences, as otherwise the
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Fig. 4.5 Renormalized one- k
loop self-energy diagram .- N
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result for the nucleon mass will not be finite. For convenience, choose the
renormalization parameter ¢ = m. In the modified minimal subtraction scheme
MS all contributions proportional to R are canceled by corresponding contri-
butions generated by the counter-term Lagrangian of Eq. 4.73, as well as by
counter-term Lagrangians resulting from higher-order terms of the most general
effective 7N Lagrangian. Operationally this means that we simply drop all terms
proportional to R and indicate the MS-renormalized coupling constants by a
subscript r. Again, this is possible because we include in the Lagrangian all of the
infinite number of interactions allowed by symmetries [65]. The renormalized
diagramis depicted in Fig. 4.5, where the cross generically denotes counter-term

contributions. The MS-renormalized self-energy contribution then reads

2
Tl () — %{w ML (~p,0)

/4
—(p* - mz)ﬁ

(07— 00 (. 0) -] | (459
where the superscript » on the integrals means that the terms proportional to R
have been dropped. Writing g+ m = 2m + (p — m) and comparing the first
term of Eq. 4.86 with Eq. 4.88, we note that, among other terms, the MS
renormalization involves (even in the chiral limit) an infinite renormalization
yielding the relation between the bare and the renormalized mass [26]
393,
32n%F?
Using the definition of the integrals, show that Eq. 4.88 contains a term of
0(g*). What does the presence of this term indicate about the applicability of
the MS scheme in baryon ChPT?
Hint: What chiral order did the power counting assign to the diagram from
which we calculated X'°°P?
(h) We can now solve Eq. 4.80 for the nucleon mass,

my = m+ 5 (my) + TP (my) = m — de i, M? + Z1° (my). (4.89)

mR+---.

mp =m—+

We find my — m = ((¢?). Since our calculation is only valid up to @(g*),"®

determine X!°°P(my) to that order. Check that you only need an expansion of
I}, which, using

'8 For brevity, we use the expression “up to (/(¢")” to mean “up to and including ¢(¢")” in the
following.
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arccos (—Q) =

verify to be

1 M
L, =—-1+—+---). 4.90
N 167‘[2( + m + ) (4.90)
Show that this yields

3gi,M>  3g;,M°

m— . 491
R2mF2 32nF? (491)

my = m — dei,M* +

(i) The solution to the power-counting problem is the observation that the term
violating the power counting (the third on the right of Eq. 4.91) is analytic in
small quantities and can thus be absorbed in counter terms. In addition to the

MS scheme we have to perform an additional finite renormalization. Rewrite
Clr = C1 —+ 56‘1 (492)

in Eq. 4.91 and determine dc; so that the term violating the power counting is
absorbed, which then gives the final result for the nucleon mass at ((g>),

3giM?
32nF?’

my =m — 4cM* — (4.93)

Note that the renormalized LECs of Eq. 4.93 are, in general, different from

those in the MS scheme, as they correspond to a renormalization scheme that
does not violate the power counting.

We have seen in the exercise above that, for the case of the nucleon self energy,
the expression for loop diagrams renormalized by applying dimensional regular-
ization in combination with the MS scheme as in the mesonic sector contained
terms not consistent with the power counting. The appearance of terms violating

the power counting when using the MS scheme is a general feature of loop
calculations in baryonic chiral perturbation theory [26].

4.6 Renormalization Schemes

In the calculation of the nucleon mass, a subtraction of suitable finite terms in

addition to the MS scheme leads to expressions for loop diagrams consistent with
the power counting of Sect. 4.5.2. The question arises whether this procedure can
be generalized. We will discuss three approaches that solve the power-counting
problem: the so-called heavy-baryon approach [5, 37], the infrared regularization
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of Becher and Leutwyler [3], and the extended on-mass-shell scheme of Ref.
[24, 27]. The heavy-baryon formalism consists of an additional expansion of the
Lagrangian in powers of the inverse nucleon mass in the chiral limit, 1/m, similar
to a Foldy-Wouthuysen expansion [23]. Both the infrared regularization and the
extended on-mass-shell scheme are manifestly Lorentz-invariant approaches that
result in a consistent power counting.

4.6.1 Heavy-Baryon Approach

The nucleon mass is not expected to vanish in the chiral limit, and it is roughly of
the same size as the chiral-symmetry-breaking scale 4nF which appears in the
calculations of pion loop contributions. This complicates the expansion of
observables in powers of momenta, as the energy component of the nucleon four-
momentum p is not small compared to 4nF, i.e.,

0
p

P 4.94
4nF ( )

and thus the ratio of Eq. 4.94 is not a good expansion parameter. The basic idea of
heavy-baryon chiral perturbation theory (HBChPT) consists of separating the
nucleon four-momentum p into a large piece close to on-shell kinematics and a
soft residual contribution &,

pl=mt + k. (4.95)

The four-vector v has the properties
v=1, W>1, (4.96)
and is often taken as v* = (1,0,0,0) for convenience. Note that

k2 i (1,00,0)
viky = =y = E—m<m. (4.97)

In addition, the relativistic nucleon field is decomposed into two velocity-depen-
dent fields,

W(x) = e ™A (x) + A, (x)], (4.98)
where

Ny =etm™Ip W, = TP W, (4.99)
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and we have defined the projection operators'®

Py = %(1] £ ). (4.100)

Exercise 4.11 Using Eq. 4.96, show that

Pv++PV7:IH7 P‘z;i:Pv:k:y PV:I:PVI:O-
Use these results to verify that
YNy =Ny VI, = =K. (4.101)

Starting from the relativistic leading-order Lagrangian of Eq. 4.17,
2N =P(ip—m+ %y”ysu#)‘l’, (4.102)

we now derive the leading-order Lagrangian of HBChPT. While it is possible to
employ the path-integral formalism [5, 42], we follow a different method using the
equations of motion that does not require detailed knowledge of functional
integrals.

Exercise 4.12 Our aim is to derive the leading-order Lagrangian in the heavy-
baryon formalism.

(a) Use the Euler-Lagrange equation for the nucleon field,

1 1
0L 0L _

O TN
"00,¥ T 0¥

to derive the equation of motion (EOM)

(il)—m+%‘ﬂy5)‘{! —0. (4.103)

(b) Insert the decomposition of the nucleon field of Eq. 4.98 into the EOM, use
the properties of Eq. 4.101, and multiply the result with ™% to obtain

(ip + %ﬂws)mv + (iD —2m+ %AW/S)JKV =0. (4.104)

(c) In order to separate the P,, and P,_ components, use the algebra of gamma
matrices, y*y" 4 9y'p* = 2g*1, to verify the relations:

!9 Note that P,. do not define orthogonal projectors in the mathematical sense, because they
do not satisfy PI . = P,,, with the exception of the special case v* = (1,0,0,0).
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P, AP, . =v-AP,.,
Py APy = A P =P A,
P,_AP,_ = —v-AP,_,
P, AP, = A P,y =P, A,
Py BysPyy = B ysPoy,
P, BysP,_ =v-BysP,_ =v-BP,7s,
Py BysPv = B ysP-,
P, BysP, = —v-BysP,. = —v-BP, s, (4.105)

where A and B are arbitrary four-vectors and
A=A —v AV v-AL =0, A=Ay,

(d) We can now separate the projections onto the P, and P,_ parts of the EOM.
Show that, using Eq. 4.105, the relations

(iv D+ %WMS)JVV + (1'10L + %Av : uyS)%v -0, (4.106)

(ip. - %Av wjs) A+ (=iv D —2m + 97/‘ Wovs) =0, (4107)

hold.

(e) In the next step, we isolate the EOM for the so-called light component ./",. To
this end, formally solve Eq. 4.107 for 2, and insert the result into Eq. 4.106.
Show that the resulting EOM for 4", reads

(iv -D +97Aﬂ1_)’5)‘/1/v + (iDJ_ + %V : ”VS)

-1
X <2m +iv-D— %lﬂ%) (iDL - %V : MVS)'/VV =0.

(4.108)

Equation 4.108 represents the EOM for the field ./",. The same EOM can be
derived by applying the variational principle to the Lagrangian

Lt =N\ (iV D+ gz—Al'{Ns)/Vv + A (iDL + gz—Av : uys)

x (Zm Yiv-D— %ufﬂs) o (ipl - %Av : uyS)./VV. (4.109)

Note that the nucleon mass only appears in the denominator of the second term.
This second term is therefore suppressed relative to the first term.*

20 Because of Eq. 4.99, a partial derivative acting on .4", produces a small four-momentum.
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While the above Lagrangian achieves the objective of isolating the field .47, it
is not in the form commonly used in HBChPT. It is convenient to introduce the
spin matrix S, defined as

i

St =
VT2

vV 1 ’
750" vy = =Y = v, ST =508 (4.110)

Exercise 4.13 Show that, in four dimensions, S! obeys the relations

1
v-S, =0, {$,8}= E(v“vV —g"), [Sh,S)] = ie""P v, 8. (4.111)
Hint:
; g g gﬂ/f
7507 = _ESGT“ﬁGaﬁa tois =1, & =det| g7 g7 g

g g™ gp/f

The spin matrix S% allows us to rewrite the 16 combinations N, LA, where
T e {1,9%,9°,9"°,6"}, as”

(NAN Yy = N AN,,)
«/Vv“/stv =0,
NN = VEN Ny,
Ny Ny = 2N, SEN,,
N yGM Ny = 261y, A, ST N,

(4.112)

NGy Ny = (AL SEN = VA SEN).

Exercise 4.14 Show that the relations of Eq. 4.112 hold.
Hint: Use Eq. 4.101. For example,

N s Ny = N yps YNy = oo

Equations 4.112 result in a nice simplification of the Dirac structures in the
heavy-baryon approach, because only two groups of 4 x 4 matrices, the unit
matrix and S, instead of the original six groups on the left-hand side of Eq. 4.112
appear.

To obtain the final form of the leading-order Lagrangian in HBChPT, we
formally expand Eq. 4.109 in inverse powers of the nucleon mass,

2! We include the combination ¢*'y5 for convenience.
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Fig. 4.6 s-channel pole

g q
diagram of 7N scattering AN /)
X\ /4
e
» Pty i
9 !
— i v JA . "
geff - JVV (lv D + ) V/LVS)'/VV + ; (2m>n$etf7n; (4113)

and apply Eq. 4.112. The result for the leading-order term reads

—(1 _

P = iv-D+ g8, u) N, (4.114)
where the symbol ~ indicates the heavy-baryon formalism. The nucleon mass
has disappeared from the leading-order Lagrangian, in contrast to the relativ-
istic Lagrangian of Eq. 4.17. It only appears in the terms of higher orders as
powers of 1/m. In the power-counting scheme @2& counts as ((g), because
the covariant derivative D, and the chiral vielbein u, both count as ((g). The
heavy-baryon Feynman propagator derived from the free part of the Lagrangian
of Eq. 4.114 is given by

Pv+

Gl = a0

(4.115)

The expansion of the Lagrangian of Eq. 4.109 generates terms that are sup-
pressed by powers of 1/m. In addition to these 1/m corrections, the Lagrangian at
higher orders also contains terms that stem from additional chiral structures that do
not contain inverse powers of the nucleon mass. The complete Lagrangian up to
and including order ¢* is given in Ref. [22]. A wide variety of processes has been
calculated in the heavy-baryon scheme. We refer the reader to Ref. [6] for a
comprehensive overview.

While the heavy-baryon approach results in a consistent power counting and,
similar to the mesonic sector, allows for the application of dimensional regulari-

zation in combination with the MS scheme, the complete 1/m expansion can
create difficulties with analyticity under specific kinematics. To illustrate this
point, consider the example of pion-nucleon scattering [2]. The invariant ampli-
tudes have poles at s = mlz\, and u = m,z\, which, at tree level, can be understood in
terms of the relativistic propagator (see Fig. 4.6),

1 1
(p+aq)f—my 2-q+M;

(4.116)

The propagator of Eq. 4.116 has a pole at 2p - ¢ = —M?, which is equivalent to a

pole at s = m3%. An analogous pole appears in the u-channel diagram at u = m3,.
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Despite not being in the physical region of pion-nucleon scattering, analyticity of
the invariant amplitudes requires both these poles to be present (see Sect. 4.3.2).

In the heavy-baryon approach, the relativistic propagator is expanded in inverse
powers of my. Choosing p = myv for simplicity,

S U R (4117)
2p-q+M%_2va.q+%_2va-q 2myv - q . .

To any finite order in the heavy-baryon expansion, poles appear at v - ¢ = 0 instead
of v-q = —M?/(2my) being a single pole. Without summing an infinite number
of diagrams, the heavy-baryon approach therefore does not generate the correct
nucleon pole structure of the invariant amplitudes.

We saw in Exercise 4.10 that applying dimensional regularization in combi-

nation with the MS scheme does not produce a consistent power counting. The
solution was to subtract the finite terms that violated the power-counting rules,
which was possible since the relevant terms were analytic in small quantities. We
will now present two methods that remove the terms that violate the power
counting while keeping the analytic structure of amplitudes in the low-energy
region intact, the infrared regularization of Ref. [3] and the extended on-mass-shell
scheme of Ref. [24].

4.6.2 Infrared Regularization

The method of infrared regularization relies on the analytic structure of loop
integrals in n dimensions, in particular on infrared singularities which arise for
small momenta. To illustrate the existence of these infrared singularities consider
the integral

d"k 1
2m)" [(k — p)* — m? + i0+] (k2 — M? + i0*)

H(p*,m*,M*;n) = —i/

[ dk 1
B _l/ 2n)" k2 = 2p -k + (p* — m?) + i0+] (k> — M? + i0*)’
(4.118)

where, compared to the definition of Iy, of Exercise 4.10, we are using the sign
convention of Ref. [3] and have dropped the factor u*~". We consider nucleon
momenta close to the mass shell, p> = m?, which means that p?> — m? is counted as
a small quantity of ¢(g). By counting powers of the loop momentum, we see that
the integral converges for n<4. In the chiral limit M — 0, however, the integral
becomes infrared singular when going to smaller n. For n = 3, the integral is
infrared regular as long as p? # m?, but exhibits an infrared singularity for

p? = m?, since the integrand behaves as k*>/k®. For any smaller value of n, the
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integral is infrared singular even for p> # m?. The infrared singularity stems from
small loop momenta k = ((g). In this momentum region, the first factor of the
integrand is of order ¢! for both p? =m? and p?> # m?, since we count
p? —m? = ((q), while the second factor is (/(¢~2). For n <3, the chiral expansion
of the integral H(p?,m?> M?;n) therefore contains an infrared-singular term of
O(¢"3) in the chiral limit.

Exercise 4.15 Verify by explicit calculation at threshold, ie., p?> =p3 =
(m+M)?, that in the limit M — O the integral H(p?,m*,M*;n) of Eq. 4.118
develops an infrared singularity for n < 3.

(a) Use the Feynman parameterization

1

O/dzaz-i-b T (4.119)

with a = (k — p)*> —m? +i0% and b = k> — M? + 0™, to show that the inte-
gral can be written as

1
d'k 1
H(p?, m*, M?; :—'/d/ 4.120
(p 7m I ,}’l) lo 74 (27'[)” [k2 —A(Z) +i0+}27 ( )

with
A(2) = 22p* — z(p* — m* + M?) + M*.

Hint: Use the shift of variables k — k + zp.
(b) The integral can be further simplified by use of the formula (see Exercise 3.22)

/ dnkn () _ i(—)P:q r(p+§)r(q—P—%)(A oy,
@2n)" (K2 —A+i0")"  (4n)? (4 (q)
Show that
1
H(p*,m* ,M*;n) = ( — T /dz — 0t (4.121)
2
0

(c) Show that the squared threshold momentum p3_= (m + M)* corresponds to
A(z) = [z(m + M) — M]*. Split the integration interval into two parts,
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1 20 1
[=]+]
0 0 2
with zo = M/(m + M), to show that for n > 3 the integral over A(z) is given
by

1
1 n—3 n—

Why can the small imaginary part, —i0", be neglected? What is the sign of
A(z) in the considered z interval [0,1]?
(d) The result for arbitrary n can be obtained through analytic continuation and is

given by
Mn73 mn73
. 4.122
(m +M + m+ M> ( )

re-y
(4m)*(n —3)

The first term in Eq. 4.122, proportional to M"~3, is called the infrared-sin-
gular part of H, while the second term, proportional to m"3, is the infrared-
regular part. Show that for noninteger values of n the expansion of the
infrared-singular part in small quantities contains only noninteger powers of
M, while the expansion of the infrared-regular part only contains nonnegative
integer powers of M.

H((m +M)2,m2,M2;n) _

The example above introduces the concept of infrared-singular and infrared-
regular parts. We now turn to the formal definition of these terms for arbitrary
momenta p close to the mass shell [3]. Let us introduce the dimensionless variables

2 2 2
p-—m —M 0
Q=-_ " " 0 =—=2{0"0(qg). 4.12
v 0q’), « 0(q) (4.123)

In terms of these variables the integrand A(z) in Eq. 4.120 is given by
A(z) = m’[ = 20Qz(1 — 2) + 2 (1 — 2)°] = m’C(2),
and the integral H can be written as (see Eq. 4.121)

1
H(p*,m*, M?;n) —Kmn/& — 0], (4.124)

[=}

with

re-:
RS /ey (4.125)
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If we consider M — 0, which in the new dimensionless variables corresponds to
o — 0, infrared singularities arise for small values of z, as the integrand C(z)
vanishes. Since we require both z and o to be small we perform the substitution
z = ax. The upper integration limit z = 1 then becomes x = 1/a — oo as o — 0.
We can define a new integral I that has the same infrared singularities as H. It is
identical to H with the exception that the upper integration limit is oo even for
finite values of o:

1 = x(m;n) / dz[C(z) — 0% = Ke(m;n)a"3 / dx[D(x) — 072, (4.126)
0 0

where
D(x) = 1 —2Qx + x* + 20x(Qx — 1) + o?x%.

The difference between H and [ is the infrared-regular part R,

R = —«(m;n) / dz|C(z) — 072, (4.127)

so that
H=1+R. (4.128)

Exercise 4.16 We now show that these more general definitions of the infrared-
singular and infrared-regular parts reproduce the behavior of the threshold integral
of Eq. 4.122.

(a) Show that Qy, = 1, and thus

n

T = K(ms )3 /OO dx{[(l +oa)x— 1] — 0" }7_2.
0

For which values of n does the integral converge?
(b) Verify that the integrand can be rewritten as

2 (I4+a)x—1 d -2

{[(1 o — 17— i0+} - ma{[(l o — 17— i0+}§

Using integration by parts, show that
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/dx{[(] pap- 1Pt}
TSI Of)zfl : i){[(l +o)x— 17 — iO*}%_z]

1 i 4/ dx{[(l Fax— 1P — i0+}§72.
0

(c) Starting from n < 3, show that the integral can be analytically continued to give

oo

0

oo

O/ dx{[(l Foax— 17 - io+}§72: m

Verify that the obtained expression for Iy, agrees with the infrared-singular
part of Eq. 4.122.

(d) Show that Cy(z) = [z(1 + o) — o]*. Use this result to evaluate Ry, for n<3
and analytically continue to verify that the obtained expression agrees with the
infrared-regular part of Eq. 4.122.

As seen in Eq. 4.126, the infrared-singular part contains an overall factor of
"3, so that for noninteger n the chiral expansion of 7 only consists of noninteger
powers of the small expansion parameter,

I=0(")+ 0"+ 0(¢" )+, (4.129)

while the infrared-regular term only contains nonnegative integer powers,

R=0(")+ 0(g") + O(@)+---. (4.130)

The method can be extended to general one-loop integrals [3]. It suffices to
consider scalar integrals, as tensor integrals can be reduced to combinations of
integrals of the type

d"k 1 1
Hmn =—i n )
l/(2n) ai...ay, by...b,

where a; = (q; +k)° —M?>+i0" and b; = (p; — k)> —m> +i0" are inverse
meson and nucleon propagators, respectively. The four-momenta g; are (¢)(q), while

the four-momenta p; are close to the nucleon mass shell, i.e., p]z —m? = 0(gq). One

first combines all meson propagators and nucleon propagators separately. In the
case of the meson propagators, this can be done with use of the formula
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1 1
1 —1
- - 4.131
e (am) Jooo fandp e
0 0

where X = 1 for m = 2, while for m > 2 the numerator is given by

X =x(x3)% (o)™
The denominator is quadratic in the loop momentum k,
A=A—(k—gq)* —i0*,

where A is constant and g is a linear combination of the momenta ¢;. A can be
obtained with the recursion relation

A=A, Ai=a, A =xA,+1—-x)ap11, (p=1,...m—1).

An analogous calculation for the nucleon propagators gives

1 1
1 nl Y
- d dyp_ 1=, 4.132
by...by ( amZ) /y1 /y 'B ( )
0 0

with

2 n—
Y =y2(33)% ()"

and
B=B— (k—p)* —i0*,

where again B is constant and p is a linear combination of the external nucleon
momenta. The integrals H,,, can then be written as

1
a m—1 6 n—1 . dnk 1
0

where

1 1 1 1
/ /dxl. .. / d)Cm,1 /dyl .. / dynfl.
0 0 0 0

Since the denominators A and B have the same general form as single meson and
nucleon propagators, respectively, the integral over the loop momentum k can be
performed in complete analogy to the integral H considered above. One again
combines the two terms in the denominator using the Feynman parameterization of
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Eq. 4.119 and splits the original integral H,,, into an infrared-singular part /,,, and
an infrared-regular part R,,,,

Hyp = Ly + Ry (4.134)

Just as in the case of the nucleon self-energy integral H above, the infrared-
singular part I,,, is identical to the original integral H,,, with the exception of the
upper limit in the integration that combines the denominators A and B, with the
integration running to 1 for H,,, and to oo for I,,.

The chiral expansion of the infrared-singular part /,,, only contains noninteger
powers for noninteger n, while the infrared-regular term R,,,, can be expanded in an
ordinary Taylor series. The infrared-regular term can therefore be absorbed in the
counter terms of the most general Lagrangian. This is equivalent to replacing H,,,
with its infrared-singular part 7,,,, which is the infrared renormalization condition,

H == L.

mn

All terms violating the power counting are contained in R, [3], therefore the
renormalized expressions containing I, automatically satisfy the power counting.

Depending on the dimension n and the number of nucleon and meson propa-
gators, the integral H,,, might contain an ultraviolet (UV) divergence, e.g., the
integrand of Hy; for n = 4 scales as k°/k* in the UV limit, which results in a
logarithmic divergence upon integration. We can thus write

HUV _
n
Hmn = % + Hmm

where as before ¢ =4 — n. When separating the integral H,,, into its infrared-
singular and infrared-regular parts, these terms might contain additional diver-
gences that are not present in H,,, [3],
Iadd B RUV Radd N
Imn:ﬂ+lmi17 Rmn:ﬂ"i'%_FRmn;
where RUY corresponds to the original UV divergence. Since the additional
divergences are not present in the original integral H,,,, they have to cancel in the
sum of / and R, i.e.,
Iadd —_ Radd

mn mn *

The renormalized expression for H,,, is then given by

H = L.
While the infrared renormalization solves the power-counting problem, it would
not be useful if the resulting expressions violated chiral symmetry. This would be
manifest in a violation of the Ward identities of the theory. It can be shown,
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however, that chiral symmetry is preserved in infrared regularization [3].
Expressions containing the original integrals H,,, = L, + R, satisfy the Ward
identities since they are derived from a Lagrangian that is explicitly symmetric,
and since dimensional regularization preserves the symmetries of the Lagrangian.
As seen above, infrared-singular and infrared-regular parts differ in the analytic
structure of their chiral expansions. Since the expansion of I, (R,,,) only contains
noninteger (nonnegative integer) powers of the small quantity g for noninteger n,
infrared-singular and infrared-regular terms have to satisfy the Ward identities
separately. This means that replacing the original integral H,,, by its infrared-
singular part [,, preserves the Ward identities and thus chiral symmetry is
preserved.

4.6.3 Extended On-Mass-Shell Scheme

While infrared regularization offers one solution to the power-counting problem, it
is not the only one. We now turn to a different solution, the extended on-mass-shell
(EOMS) scheme. This approach was first motivated in Ref. [27] and has been
worked out in detail in Ref. [24]. In infrared regularization, the terms that violate
the power counting are contained in the infrared-regular part of an integral.
However, the chiral expansion of this infrared-regular part can also contain an
infinite number of terms that do nor violate the power counting. While the general
principles of renormalization allow us to subtract these terms by absorbing them in
counter terms in the Lagrangian, it is not necessary to do so. The idea behind the
EOMS scheme is to absorb only those terms that violate the power counting by

performing finite subtractions in addition to the MS scheme such that the resulting
expressions for renormalized diagrams satisfy the power-counting rules. As was
the case for infrared regularization, this procedure can be made systematic. It
offers the additional advantage of allowing for the application to multi-loop dia-
grams and diagrams containing additional degrees of freedom such as vector
mesons.

To illustrate the EOMS approach we consider the integral H in the chiral limit,

d"k 1
(2n)" [(k — p)* — m? + i0+] (k> + i0+)

H(p*, m*,0;n) = —i/

Going to the chiral limit simplifies the calculations while keeping the main fea-
tures of the method intact. According to the power-counting rules in Sect. 4.5.2,
the renormalized integral is supposed to be of order D =n — 1 — 2 = n — 3. Since
the nucleon momentum p is close to the mass shell, we define the small dimen-
sionless quantity
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2 2
—m
A=>

m2

= 0(q).
Introducing C(z,A) = z> — Az(1 — z) — i0*, the integral H(p*,m? 0;n) can be
written as

1
H(p*,m*,0;n) = K(m;n)/dz[C(z,A)}%fz, (4.135)

0

where k(m;n) is given in Eq. 4.125. To evaluate Eq. 4.135 we write

1

I

. 5 3 1+A N2
/dz[C(z,A)]2 2= (=A) 2/d1272<1 — —iA_ z> .
0 0

The integral on the right-hand side can be expressed in terms of the integral
representation of the hypergeometric function [1],

F(a,b;c;z) = r(c)/ di "' (1 = )71 (1 — 12) 7, Re(c) > Re(b) > 0.
0

We substitute a =235, b=5—1, c=35, and z= (1+A)/A, make use of
I'(1) = 1, and obtain

F(” ) 1_p nn nl+A
HpP m,05n) = w(m;ny -2 D (e F(z——,—— 1;—;—).
@) 227 72T A

We apply the transformation formula [1]

F(a,b;c;2) = (1 — z)“F(a,c — b;c;%)
71—

and the symmetry property F(a,b;c;z) = F(b,a;c;z) to obtain

rE—1) nn p?
2 2 0. — , 2 _nnp
H(p*,m”,0;n) = k(m;n) ) F(I,Z 2’2’m2>' (4.136)

For nucleon momenta close to the mass shell the last argument in the hypergeo-
metric function is close to unity, p?/m? ~ 1, and therefore not a good expansion
parameter. Fortunately, the properties of hypergeometric functions (see Eq. 15.3.6
of Ref. [1]) allow us to rewrite a hypergeometric function of argument z as a

combination of other hypergeometric functions of argument 1 — z. In our case, this
corresponds to
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2 2_ .2
Al SN
m m
Equation 4.136 then reads
n—4 T(2-2
H(pz,mz,O;n):m - MF(1,2—2;4—n;—A)
(4m) n—3 2

+(—A)”*3r(g - 1)r(3 - n)F(g —Ln—2n—2; —A)} .
(4.137)

Since A counts as a small quantity of (’(¢), we can now use the expansion of
F(a,b;c;z) for |z <1,

ab a(a+1)b(b+1)

2

Z
Fla,b;c;z) =1 +— TR 4.138
(a,b;c;2) +Cz+ et D) 2+ ( )

Since in our case z = —A, the expansion of the hypergeometric functions results in
terms with only nonnegative integer powers of A. While the second term of
Eq. 4.137 thus only contains terms of (/(¢"~*) and higher as dictated by the power
counting, we see that the first term contains a contribution which does not satisfy
the power counting, i.e., which is not proportional to ¢(¢) as n — 4. For n — 4 we

obtain
n—4 T(2 -1 2 2
PO LA Y (i P
(4m)i[ n—3 m? m?

+(1—5;>21n<1—5;)+~}, (4.139)

where . .. refers to terms which are at least of /(¢*) or O(n — 4). Terms of the type
—A In(—A) are counted as ((g), i.e., as a small quantity just as —A.

While Eq. 4.139 contains terms with logarithmic dependence on the nucleon
momentum, these terms satisfy the power counting. The term that violates the
power counting is local in the external momentum, which means that it is a
polynomial in p? (here of zeroth order), and can be absorbed in a finite number of
counter terms in the Lagrangian. We can thus subtract

et Ty

@ 13 (4.140)

Ol

from Eq. 4.139 to obtain the renormalized integral
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n—4 2 2
R(P , M, 7n) (47‘C)n/2 m2 n m2

+(1—Z—22>21n<1—2—22>+~-]. (4.141)

Exercise 4.17 Show that the only finite terms appearing in H up to (/(¢*) and
O(n — 4) as n — 4 are proportional to In(—A).

(a) Use Eq. 4.138 to show that the expansion of the first hypergeometric function
in Eq. 4.137 is given by
A 6—nA

n
—_ - —n, — = _— _ 0 3
F(1,2 2,4 n; A) 1 > ts—, 4+C(q )- (4.142)

Using the parameter ¢ = 4 — n introduced in Sect. 3.4.7, this expression is
rewritten as

A 24N 3
1 ——+ — 4+ 0(g%). 4.14

(b) Show that the expansion of Eq. 4.143 to order ¢ is given by

1 A+(2 )A2
2 %

(c) We see that the term independent of A reproduces the first term in Eq. 4.139.

4o (4.144)

For the terms proportional to A and A? we need to expand the coefficient of the
hypergeometric function about n = 4. Using I'(x + 1) = xI"(x), show that

re-% 2
— 2 =24 (1) 4 4.145
3 2+ (4.145)

(d) Using these results, show that the terms proportional to A and A? of the first
term in Eq. 4.137 are given by

_(é+ | +r/§1)>A+ (%Jr%—rlél))& (4.146)

(e) Show that

(A" = —A+eAIn(—A)+---. (4.147)

Recall: g = P n e,

(f) Performing an analysis for the second term in Eq. 4.137 analogous to the
calculation above, verify that all finite terms appearing in the expression for H
for n — 4 are proportional to In(—A).
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In order to identify and subtract the terms that violate the power counting, we have
explicitly calculated the integral H. While this did not pose too great of a problem for
the case of H in the chiral limit, our aim is to find a method to determine the
subtraction terms even in those cases where the explicit calculation of the integrals is
more difficult. As seen in Eq. 4.137, the result for H(p?, m?,0; n) is of the form

H~F(n,A)+A"3G(n,A), (4.148)

where F and G are proportional to hypergeometric functions that are analytic in A
for arbitrary n. The term of interest, i.e., the subtraction term, is contained in F.
Central to the development of a systematic scheme is the observation that the
expansion of F can be obtained by first expanding the integrand of H and then
exchanging integration and summation, i.e., integrating each term in the expansion
separately [28] (see Sect. 4.6.4 for an illustration of the general method). After

applying a conventional MS renormalization scheme we can identify and subtract
the terms that violate the power counting without having to calculate the complete
integral. In essence we work with a modified integrand which is obtained from the
original integrand by subtracting a suitable number of counter terms. To explain
what we mean by suitable consider the series

0\ 1
( 2p“ap ) (k2 — 2k - p + (p? — m?) +i0*](k2 4 i0T)
- 1
(k2 =2k p+i0T) (K2 +i07)] o

z@‘m

pr=m

1 1 1 1
2m? (k2 — 2k - p+i0+)  2m* (kK2 —2k-p +i0")(k2 +i0")

+ (p* —m?)

1
(k2 — 2k - p + i07)* (K2 4 i0*) .

. (4.149)

where [...] ._,» means that the coefficients of (p* — m?)! are considered only for
four-momenta p satisfying the on-mass-shell condition. While the coefficients in
this series still depend on the direction of p,, performing the integration over loop
momenta k and evaluating the corresponding coefficients for p> = m? results in a
series that is a function of only p®. In fact, it was shown in Ref. [28] that the
integrated series exactly reproduces the first term in Eq. 4.137.

The EOMS scheme is then defined as follows: We subtract from the integrand
of H(p* m?,0;n) those terms of the series of Eq. 4.149 that violate the power
counting. These terms are analytic in the small expansion parameter and do not
contain infrared singularities. In our example only the first term in Eq. 4.137 has to
be subtracted. All higher-order terms contain infrared singularities, such as gen-
erated by the last term in the second coefficient: for small & the integrand scales as
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k3 /k* for n = 4. The integral of the first term of Eq. 4.149 is given by Eq. 4.140,
and our result for the renormalized integral is

Hg = H — Hypr = 0(¢" ).

Since the subtraction point is p> = m?, the renormalization condition is denoted
“extended on-mass-shell” (EOMS) scheme in analogy with the on-mass-shell
renormalization scheme in renormalizable theories.

So far we have considered the special case of an integral in the chiral limit, but
the method can be generalized to the case of a finite pion mass. Instead of
Eq. 4.149 one now considers a simultaneous expansion in p> — m? and M?,

1
(k> =2k - p + i0%) (k2 + i07)

pr=m?

1 1
+ (P —m?) |—
v )2m2 (k2 — 2k - p +i0%)* L_mz
+ M? !
(K2 =2k p+i0%) (K2 +i0%)| ,_ .

Since all terms of order ¢ satisfy the power counting, the contribution resulting
from the first term is still the only one that is subtracted.

While the original formulation of the infrared regularization was specific to
one-loop integrals with pion and nucleon propagators, the EOMS scheme can be
straightforwardly extended to include other degrees of freedom, such as vector
mesons [25] or the A(1232) resonance [33], and it can be applied to multi-loop
diagrams [55].

Moreover, the infrared regularization can be reformulated in a form analogous
to the EOMS scheme and can thus be applied to multi-loop diagrams with an
arbitrary number of particles with arbitrary masses [54]. After combining the
meson and baryon propagators as explained in Sect. 4.6.2 and performing the
integration over the loop momentum, an arbitrary integral can be written as”>

HO/de(Z),

where f(z) is a function depending on the external momenta, masses, and the
space-time dimension n. The chiral expansion of the infrared-regular part R, with

oo

r=- [ &)

1

22 For notational convenience we suppress the subscripts m and n of Eq. 4.134.
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can be performed before the z-integration, resulting in integrals of the type
RY = — / dz 7", (4.150)
1

where i is a nonnegative integer. The integrals can be calculated by analytic
continuation from the domain of #n in which they converge,

n+i+1 | 1

Z
n+i+1

RO —

(4.151)

L ontit+ 1
One can reproduce the result of Eq. 4.151 without splitting the original integral
H into two parts. Instead, we perform the chiral expansion of the integrand in H
and interchange summation and integration. The result thus only contains terms
that are analytic in small parameters. However, since in most cases the original
integral H also contains nonanalytic terms, this procedure does not reproduce the
chiral expansion of H. Summation and integration only commute as long as H
converges absolutely. The series resulting from expanding the integrand of H and
integrating each term separately contains the same coefficients as the chiral
expansion of R, but the integrals R®) are replaced by integrals of the type

1
JO = / dz 7" (4.152)
0
Again performing an analytic continuation, the integrals are given by

nti+1l |1

(0 __*%
n+i+1

1
o nHi+l

(4.153)

Comparing Eqs. 4.151 and 4.153, we see that the chiral expansion of the infrared-
regular part R can be obtained by reducing H to an integral over Feynman
parameters, expanding the resulting expression in small quantities, and inter-
changing summation and integration.

Other approaches to the extension of infrared regularization are given in Refs.
[10, 11, 41].

4.6.4 Dimensional Counting Analysis

While we have been able to find closed-form expressions for the loop integrals we
have considered so far, analytic solutions to more complex integrals, such as two-
or multi-loop integrals containing two or more masses, are increasingly difficult to
obtain. Since we are often interested in the chiral expansion of observables, we can
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avoid having to analytically solve integrals and use the method of dimensional
counting analysis instead [28]. A closely related method of calculating loop
integrals is the so-called “method of regions” [57]. While particularly useful for
two- and multi-loop integrals, the advantage of dimensional counting analysis for
one-loop integrals lies in its applicability to dimensionally regulated integrals
containing several different masses, such as the pion mass and the nucleon mass in
the chiral limit. We provide an illustration of dimensional counting analysis in
terms of the one-loop integral of Eq. 4.118,

d"k 1 1

20)" k2 —2p -k +p* —m? + 0T k2 — M? + i0+
(4.154)

H(p*,m*,M*;n) = —i/(

One would like to know how the integral behaves for small values of M and/or
p2 — m? as a function of n. If we consider, for fixed p2 #* m?, the limit M — 0, the
integral H can be represented as

H(p*,m* M*;n) =Y~ MPF(p?, m*, M*;n), (4.155)

where the functions F; are analytic in M? and are obtained as follows. First, one
rewrites the integration variable as k = M%k, where «; is an arbitrary nonnegative
real number. Next, one isolates the overall factor of M# so that the remaining
integrand can be expanded in positive powers of M? and interchanges integration
and summation. The resulting series represents the expansion of F;(p?, m?, M?; n)
in powers of M?. The sum of all possible rescalings with subsequent expansions
with nontrivial coefficients then reproduces the expansion of the result of the
original integral.
To be specific, let us apply this program to H:

H(pz,mz,Mz; n)
[ M™idk 1 1
(2n)" k2M?% —2p - kM% + p? — m? + 0+ K2M?% — M? + i0+
(4.156)

From Eq. 4.156 we see that the first fraction does not contribute to the overall factor
MPi for any ;. It will be expanded in (positive) powers of (/NCZM 26 _2p - kM %)
except for o; = 0. For 0 <o; < 1, we rewrite the second fraction as

1 1 1 1 M>%
— — =——= (1+~ > (4.157)
M2 (kz — M220 i0+) M?% |2 4 0+ k2 + 0+

On the other hand, if 1 <a; we rewrite the second fraction as



200 4 Chiral Perturbation Theory for Baryons

1 1

— 1+ KM% 2400, 4.158
M? (l2M?>=2 — 1 + i0*) ) ( )

M2(

In both cases one obtains integrals of the type [ d"k kM .. k" as the coefficients of
the expansion. However, such integrals vanish in dimensional regularization.
Therefore, the only nontrivial terms in the sum of Eq. 4.155 correspond to either
o; = 0 or o; = 1. Thus we obtain

H(p?,m*, M*;n) = HO (p*,m*,M*;n) + HO (p*,m?, M*; m), (4.159)
where

H(O) (p2’ m27M2; n)

< [ d%k 1 1 (4.160)
Z 2\J
= —1 (M ) / n72 2 - 2 B -+ By . 1D
= (2n)" k p -k +p* —m? +i0F (k2 4+ j0+)

and
H(l)(pz,mz,Mz;n)

L M i (—1yM / 'k (PM—2p k) (4.161)
P -m i S (2 —miory ) 2n) R 1ot

A comparison with the direct calculation of H shows that the dimensional-counting
method indeed leads to the correct expressions [28]. While the loop integrals of
Eq. 4.161 have a simple analytic structure in p> — m?, the same technique can be

repeated for the loop integrals of Eq. 4.160 when p?> —m? — 0, now using the

2

change of variable k = (p*> — m?)" k with arbitrary nonnegative real numbers 7y;.

4.7 The Delta Resonance

So far we have discussed the lowest-lying states in baryon ChPT with particular
emphasis on the nucleon in the two-flavor sector. However, it is a well-known fact

that the A(1232) resonance [I(J*)=3(3")] plays an important role in the
phenomenological description of low- and medium-energy processes such as
pion-nucleon scattering, electromagnetic pion production, Compton scattering, etc.
This is due to the rather small mass gap between the A(1232) and the nucleon, the
strong coupling of the A(1232) to the nN channel, and its relatively large photon
decay amplitudes.

In ordinary baryon ChPT the effects of resonances are implicitly taken into
account through the values of the LECs. A close-by resonance such as the A(1232)
may then result in a rather slow convergence for observables sensitive to the
quantum numbers of the given resonance. Therefore, it seems natural to ask
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whether the chiral effective field theory can be extended to also include resonances
as dynamical degrees of freedom. One thereby not only hopes to improve the
convergence by essentially reordering an infinite number of higher-order terms
which contribute to higher-order LECs in the standard formulation, but also to
extend the kinematic range of the EFT. If one succeeds in defining a consistent
expansion scheme one may even be able to perform calculations of processes
which involve center-of-mass energies covering the resonance region and thus
study properties of the particular resonance.

As in the baryonic sector, a consistent expansion scheme was first developed in
the heavy-baryon approach (see, e.g., Refs. [12, 34, 38]). More recently, the dis-
cussion has focussed on a manifestly Lorentz-invariant approach (see, e.g.,
Refs. [8, 33, 51]). In a Lorentz-invariant formulation of a field theory involving
particles of higher spin (s > 1), one necessarily introduces unphysical degrees of
freedom [46, 53]. Therefore, one has to impose constraints which specify the
physical degrees of freedom. A detailed treatment of systems with constraints is
beyond the scope of these lecture notes (see, e.g., Refs. [16, 31, 35]) and we
restrict ourselves to a basic introduction.

4.7.1 The Free Lagrangian of a Spin-3/2 System

The Rarita-Schwinger formalism [53] allows for a covariant field-theoretical
description of systems with spin % The field is represented by a so-called vector
spinor denoted by ¥* (u =0, 1,2,3), where each W* is a Dirac field. Under a
proper orthochronous Lorentz transformation® x* = A*,x", the Rarita-Schwinger
field has the mixed transformation properties of a four-vector field and a four-
component Dirac field,

P () = AS(A)P (x),

where S(A) is the usual matrix representation acting on Dirac spinors. For a

relativistic description of spin % we need 2 -4 = 8 independent complex fields,

where the factor of two accounts for the description of particles and antiparticles,

and the factor of four results from four spin projections in the rest frame. In other

words, we need to generate 8§ complex conditions among the 4 - 4 = 16 complex

fields of the vector spinor in order to eliminate the additional degrees of freedom.
The most general free Lagrangian serving that purpose reads [46]

Ly =V, (AW, (4.162)

where?*

2 det(A) =1 and A% > 1.

24 Tt is common practice to denote both Lorentz transformations and the tensor describing the A
with the same symbol A.
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A (A) = — | (i@ — ma)g"" +iA(y*D" 4 9"0")
+% (A2 + 24 + )" @' + ma(BA2 +3A + 1)y* |, (4.163)
with A # —% an arbitrary real parameter and m, the mass of the A.*> The
Lagrangian introduced by Rarita and Schwinger [53] corresponds to A = —%. From
the Euler-Lagrange equation,
0% 0%
— 2 _ a 72 = O
ov, ‘oo,%¥,
——
=0
we obtain the equation of motion (EOM)
A"(A)Y, = 0. (4.164)
In addition to the EOM, the fields P* satisfy the equations
(ig —mp)¥* =0, (4.165)
7, P =0, (4.166)
0,¥" =o0. (4.167)

Each of the Eqs. 4.166 and 4.167 generate four complex (subsidiary) conditions.
Therefore we end up with the correct number of 16 —4 — 4 = 8 independent
components. Note that Eq. 4.165 does not reduce the number of independent
fields: given that the subsidiary conditions hold, it may rather be interpreted as the
equation of motion.

Exercise 4.18 Consider the Lagrangian of Eq. 4.162 for A = —1.

(a) Derive the EOM.
(b) Contract the EOM with y, and verify

200, V¥ — 2i @), P" — 3may, P =0 (4.168)

for solutions of the EOM.
(c) Contract the EOM with 8, and verify

mpO,V* —mp @y, P* =0 (4.169)

for solutions of the EOM.

%5 Note that m, denotes the leading-order contribution to the mass of the A in an expansion in
small quantities.
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(d) Substitute Eq. 4.169 into Eq. 4.168 and verify Eq. 4.166,
7, " =0, (4.170)

for solutions of the EOM.
(e) Substitute Eq. 4.170 into Eq. 4.169 and verify Eq. 4.167,

0, " =0, (4.171)

for solutions of the EOM.
(f) Substitute Eqgs. 4.170 and 4.171 into the EOM and verify

(ig —mp)P* =0.
Hint:

YO = 28

While, using the same techniques, the results may also be verified for general A,
the actual calculation is more elaborate.

For the application of dimensional regularization with n space-time dimensions
the generalization of the Lagrangian is (see, e.g., Ref. [52])

Ly =V, A"(A,n)¥,, (4.172)

where

A“(A,n) = — { (if — ma)g" + iA(yD" +770")

+ [ - 1)A% 24 + 1]y
ma 2 v
+( 2)2[”(”— 1A% +4(n — 1)A + n]yy }, n#£2. (4.173)
"

In the special case of A = —1, Eq. 4.172 does not explicitly depend on n.
The free Lagrangian of Eq. 4.172 is invariant under the set of transformations

4a
P IVMVVTV’
An — 8a 1
Talvdey 7T

(4.174)

which are often referred to as a point transformation [49]. The invariance under the
point transformation guarantees that physical quantities do not depend on the so-
called “off-shell parameter” A [49, 58], provided that the interaction terms are also
invariant under the point transformation.
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4.7.2 Isospin

So far, we have only discussed the transformation properties under the Lorentz
group. In order to address the transformation properties under SU(2); X
SU2)r x U(1)y, we first need a convenient representation of the isospin group
SU(2)y. Once we have found such a representation, we will generate a realization of
SUR); x SUR2)x x U(1)y by applying the procedure discussed in Sect. 4.1 [13, 15].

The A(1232) resonance has isospin / =3 and comes in four charged states:
AT AT, A%, and A™. In the following we make use of the isovector-isospinor
formalism, i.e., we consider the A states as the [ :% components of the tensor
product of / =1 and [ :% states. Let X and Y denote Hilbert spaces carrying
isospin representations with / = 1 and [ = %, respectively. Elements of X and Y are
written as

! 1

3
D=3l = 32 1altm. b= 30 f5r).
i=1 m=—1 r=—3

-

For |x) we have displayed both the Cartesian and spherical decompositions.?®
Later on, the complex components will be replaced by the vector-spinor fields of
the previous section. Under an SU(2) transformation V the vectors |x) and |y)
transform according to the adjoint and fundamental representations, respectively.
For the components x; and y, this means

EY
I
(]~

1
Dij(v)xjv DU(V) = ETI‘(‘E,‘V’L’I‘VT),
1

~.

o=l

ylr = VisYs-

©
Il
|
l—

Exercise 4.19 Consider an infinitesimal SU(2) transformation

. T
V=1- 18‘,3&.
In the adjoint representation the infinitesimal transformation reads

D=1 —ig,T",

26 The Cartesian notation is convenient for displaying final results in a compact form while the
spherical notation is used to apply angular momentum coupling methods. Recall

x_1 = (¥ — ix2)/V2, xo = x3, and x4y = —(x1 + ix2)/V2.
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where the 3 x 3 matrices 729 are given in Eq. 1.68. Verify that D;;(V) defines the
adjoint representation.
Hint: Tr(t,75) = 20ap, [Tas W] = 2i€apcTe-

Now consider an element of the tensor product Z=XQ®Y,

Sy el = 3 Y erime

i=1 r,__ m—flrf__

1

—F). 4.175
pr) @s)
Using the Clebsch-Gordan decomposition, the tensor product may be decomposed
into a direct sum, Z = Z;® 2. The i 1sosp1n-— states live in the first space and we

therefore need pl‘O]eCthD operators P% and P% projecting onto the corresponding
subspaces. The basis states of Z; and Z, are given in terms of the uncoupled basis

by”’
K) > mZIrZ(lm >|17m>';r>, (4.176)

'() > m;rz(l’" )|1vm>’%7r>7 (4.177)

where (ji,my;j,my|J, M) are Clebsch-Gordan coefficients. The corresponding
projection operators for Z; and Z; read

(e
(1)) (1) ] wrm

3
2

Py= 2

M=-3

, (4.178)

27 We now follow common practice in physics and omit the ® symbol.
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1 . .
for the basis states, the matrix representation fiph of P% with respect to the spherical
basis reads

1— T3 _\/LE(TI — l"Cz) 0
1 1 . .
En =3 | —va(m i) L —J5(n i) |. (4.180)
0 —\/ii(ﬁ + i17) 1+ 13

Exercise 4.20 Verify Eq. 4.180.

(a) Insert Eq. 4.177 into Eq. 4.179. Make use of the Clebsch-Gordan coefficients
1 11 1 1111 1
1,0, —=|z—= ) =—( L0252 ) =—%=
< ) 52’ 2'27 2> < i 72’2 272) \/§7
11.1 111y 11.1111_2
T2 22°2) o222 2) V3
The remaining Clebsch-Gordan coefficients vanish because of the selection
rule for the projections.

(b) Express terms of the type |1,m)(l,m’| in terms of 3 x 3 matrices. For
example,

0 00 0
11,0(1,00={1](0 1 0)=[0 1 0
0 00 0

(c) Finally, express terms of the type |%, r> <%7 r | in terms of Pauli matrices and the
unit matrix 1. For example,

=)o 0= 8)-toeo

With the transformation matrix

—L i

V2 V2
T = 0 0 1
L i

V2 V2

the transition to Cartesian coordinates yields the matrix representation &2 of P%,

] 1 1 1 i‘E3 —l"Cz
e=T&,T= 3| ™ 1 it |, (4.181)
l"Ez —i‘L'l 1

or in compact notation
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g = %m,. (4.182)
Note that the entries of 5% are 2 X 2 matrices acting on the isospinors y,. Some-
times it may be helpful to also specify the isospinor indices rs of f%. For example
g’%“‘%% = % Either by explicit calculation or using the property of projection oper-
ators, f% + 5% = 1, one obtains the matrix representation of the second projection
operator,

3 1

For a vector |A) of the subspace Z;,

3
= 3 13 3
|A) = E AM§7M>A .§7§>+"'7

M=—3
the scalar product ((1,m|(3, r|)|A) generates the component (—)mz%r of the state

|A) in terms of the Clebsch-Gordan coefficient (1,m;1, r|3, M) and the components
Ay Reexpressing the spherical components in terms of Cartesian components, we

then obtain, in terms of the projection operator 5% of Eq. 4.183,

% ~ 1 %AO—A++
=75\ A — A )

. LAO+A++
égzj:_L V3 7 (4.184)
] \/z A7+\/L§A+

3 2( At
3% = 3 A0 |

This phase convention agrees with Ref. [58] but is opposite to Ref. [34].

4.7.3 Leading-Order Lagrangian of the A(1232) Resonance

In the above discussion, the components of the vectors were complex numbers
which we now interpret as fields by adjusting the notation accordingly, i.e., z;, —
W;, etc. We suppress indices referring to the Lorentz-transformation properties
until the very end. Under SU(2)y these fields transform as™®

28 We return to the repeated-index summation convention, because the ranges of summation
should now be clear.
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¥, ¥, = Dy(V)Vi ¥

A realization of SU(2); x SU(2)r x U(1)y is then obtained as in Sect. 4.1: we first
replace V by K(L,R,U) of Eq. 4.8 and then promote global transformations to
local transformations (see Sect. 4.2). Moreover, we take into account that the A
has baryon number +1. The field components therefore transform as [58]

Y, (x) — ‘I’;yr(x) = exp[—i®(x)| A jj 5[V (x), Vr(x), U(x)]¥;s(x), (4.185)

where
X 1
A jjrs = ETr(TiKTjKT)KrM (4.186)

with K defined in Eq. 4.8. The corresponding covariant derivative is given by
(Du¥);, = Dyijrs s,
gu,ij,rx = a,uéijém - 2i8ijkr,u,k5rs + 5ijru,rs - ivif)a‘ijérsa

where we parameterized the chiral connection I',, of Eq. 4.13 as I',, = I', x 1.
The leading-order Lagrangian is given by [34]%°

L =v,ENEw, (4.187)
where
AR == [P = ma)g™ +iAG D" +7'D")
t §(3A2 +2A+ 1)7" Py’ + ma(3A% 4+ 34 + 1)y
+ %ﬂ%g’” + %(v"u" +u'y")ys + %3“/” #ysy" |- (4.188)

Similar to the case of the QCD Lagrangian, Eq. 4.187 represents an extremely
compact notation. The vector-spinor isovector-isospinor field ¥ contains 4 -4 -
3.2 =096 fields ¥, ,,;,, where u denotes the Lorentz-vector index, o the Dirac-
spinor index, i the isovector index, and r the isospinor index. The projection

operator 53 is responsible for the fact that only the isospin—% component of the
isovector-isospinor field enters the Lagrangian. In comparison with the free
Lagrangian of Eqgs. 4.162 and 4.163, we notice that the ordinary partial derivative
has been replaced by the covariant derivative. In addition, terms involving the
chiral vielbein of Eq. 4.16 have been constructed. Note that at first sight there
seem to exist three independent structures of this type. Application of Dirac’s
constraint analysis [16] shows that the Lagrangian of Eq. 4.187 only leads to a

2 We have explicitly included the projection operator in the definition of the Lagrangian.



4.7 The Delta Resonance 209

consistent theory provided certain relations hold among the coupling constants g,
82, and 83 [66]

4.7.4 Consistent Interactions

We have seen in Egs. 4.166 and 4.167 that the free Lagrangian describes a system
with constraints. The same is true for the Lagrangian of Eq. 4.187, which now also
contains interactions with pions and external fields. The interesting question arises
under which conditions the interacting system still has the correct number of
dynamical degrees of freedom.

Applying a method described in Chap. 1 of Ref. [16], one may analyze the
theory including interactions within the Hamiltonian formalism. For a finite
number of degrees of freedom an outline of the method is as follows (for a more
detailed description see, e.g., Refs. [16, 31, 35]). Let us consider a classical system
with N degrees of freedom ¢; and velocities §; = dg;/dt described by the Lagrange
function L(q, ¢). Here, we assume that L contains the ¢’s at the most quadratically.
The Hamilton function is obtained using the Legendre transform

where the p; are the canonical momenta defined by

0L(q,q)
i =—F———, i=1,..,N. 4.190
p % i (4.190)
Since H is a function of ¢ and p, the velocities ¢; have to be replaced using
Eq. 4.190. If, according to Eq. 4.190, this is not possible because

opi
det A =0, with A; = a—’,’, (4.191)
gy

we are dealing with a singular system [35]. With a suitable change of coordinates,
the Lagrange function can be written as a linear function of the unsolvable new
velocities ¢:. In the following the new coordinates are again denoted by g;. Let the
unsolvable §; be the first n velocities ¢y, .. ., g,. The so-called primary constraints
occur as follows. The Lagrange function L can be written as

L(g,4) = Y Fi(@)di + G(g,dns1s - an); (4.192)
i=1
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from which we obtain as the canonical momenta

Fi(q) fori=1,...,n, il
Pr= Sledelo) forj=p+1,...,N. (4.193)
The first part of Eq. 4.193 can be reexpressed in terms of the relations
¢.(q,p) =pi —Fi(q) =0, i=1,...n, (4.194)

which are referred to as the primary constraints. Here, ¢; ~ 0 denotes a weak
equation in Dirac’s sense, namely that one must not use one of these constraints
before working out a Poisson bracket [16]. Using Eq. 4.189, we consider the so-
called total Hamilton function [16]

HT(va) = Z quj(p7Q) - G(%Qnﬂ(Pv‘])a .. «»C'IN(P»Q)) + zn:)“iqsi(qvp)
i=1

Jj=n+1

— Hgp)+ > idh(a.p), (4.195)
=1

-
where the A’s are Lagrange multipliers taking care of the primary constraints and
the §;(p, q) are the solutions to Eq. 4.193 for i = n+ 1,...,N. The constraints ¢,
have to be zero throughout all time. For consistency, also (Z)i must be zero. The
time evolution of the primary constraints ¢; is given by the Poisson bracket with
the Hamilton function, leading to the consistency conditions

{0 Hr} = {0 HY + > Ji{dh. ¢} = 0. (4.196)
j=1

Either all the A’s can be determined from these equations, or new constraints arise.
The number of these secondary constraints corresponds to the number of A’s (or
linear combinations thereof) which could not be determined. Again one demands
the conservation in time of these (new) constraints and tries to solve the remaining
A’s from these equations, etc. The number of physical degrees of freedom is given
by the initial number of degrees of freedom (coordinates plus momenta) minus the
number of constraints. In order for a theory to be consistent, the chain of new
constraints has to terminate such that at the end of the procedure the correct
number of degrees of freedom has been generated.

The application of this program to the Lagrangian of Eq. 4.187 leads, after a
lengthy calculation, to the following relations among the coupling constants [66]:

1+ 24 + 3A?
& =Ag1, &= 5 8 (4.197)
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In other words, what seem to be independent interaction terms from the point of
view of constructing the most general Lagrangian [34], turn out to be related once
the self-consistency conditions are imposed.

The Lagrangian of Eq. 4.187 with the couplings of Eq. 4.197 is invariant under
the set of transformations of Eq. 4.174 for n = 4. However, this invariance is an
outcome of, rather than an input to the constraint analysis. Demanding the
invariance under the point transformation alone is not sufficient to obtain the
relations of Eq. 4.197.

The effective Lagrangian of Eq. 4.187 is also invariant under the following
local transformations

W i(x) = Wi (x) + Tio(x), (4.198)

where o, is an arbitrary vector-spinor isospinor function. This is due to the fact
that we use six isospin degrees of freedom ‘¥, ;(x) instead of four physical isospin
degrees of freedom. The quantization of the effective Lagrangian of Eq. 4.187 with
the gauge fixing condition 7;'¥,; = 0 leads to the following free-A Feynman
propagator’

3 A
Skiap(P) = EpSE (P), (4.199)
where

ny ﬁ+mA ) 1
) =~ " -2

) 1 Y y 2
Py’ + N (" =7"p") - —217"19”]

p> —m} +i0* 3 3m3
1 1+A A I+A wev oy A
3mi1+2A{L+2A'”A ST L4 LA eyl &
In particular, choosing A = —1 results in the most convenient expression for the

free-A Feynman propagator.
The leading-order 7NA interaction Lagrangian can be written as

_ 3 ' B '

s =8P, + 2" ), ¥ + He,, (4.200)
where we parameterized u, = u,;7;, and g and 7 are coupling constants. The
analysis of the structure of constraints yields

3A+1
7= 2+ . (4.201)

Again, the interaction term of Eq. 4.200 with the coupling constants g and Z
constrained by Eq. 4.201 is invariant under the point transformation of Eq. 4.174.

% With this choice we associate a factor S} (p) with an internal A line of momentum p.
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A simple estimate of the couplings g; and g of Eqgs. 4.187 and 4.200, respec-

tively, is obtained as follows. Consider the z component of the third axial-vector
current in the nonrelativistic quark model [59],

Az = ; O'z(i)fsz_(i)'

The evaluation of A, 3 between quark-model spin-flavor states of the nucleon and
the A yields:

1 1 5
<p7§|Az,3‘p7§> 7657/17
(a7 o) =335
+ 1 IN_25_4 58
<A ,2|Az’3‘p,2> = 3\/5 = 5\/5 7

By comparing the ratios with the corresponding matrix elements originating from
Egs. 4.17, 4.187, and 4.200, one finds [34]

9 3
~gy &= gﬁgA. (4.202)

81:5

Note that Eq. 4.202 is only a model-dependent estimate for the size of these
couplings. In the spirit of EFT they have to be treated as independent LECs [34].

In summary, the lowest-order Lagrangian for the description of the pion-
nucleon-Delta system is given by

Pt = Lo+ LN+ 2N 4 20 (4.203)

where the individual Lagrangians are given in Eqs. 3.77, 4.17, 4.187, and 4.200,
respectively. This Lagrangian contains in total seven LECs: F' and B from the
mesonic sector, g, and m from ffftllg, g1 and my from 5/52, and g from the TNA
interaction Lagrangian.

Perturbative calculations including the A(1232) resonance may be organized
by applying the “standard” power counting of Refs. [17, 64] to the renormalized
diagrams, i.e., an interaction vertex obtained from an ((¢") Lagrangian counts as
q", a pion propagator as ¢~ 2, a nucleon propagator as ¢!, and the integration of a
loop as g*. Here, g generically denotes a small expansion parameter such as, e.g.,
the pion mass. Note that this does not apply to the J expansion, which is discussed
below. The rules for the A propagator are more complicated. If the A propagator is
part of a loop integral it counts as g. The same is true for tree diagrams of channels
where no real resonance can be generated such as, e.g., the u-channel A-pole
diagram in pion-nucleon scattering. On the other hand, in a resonance-generating
channel, such as the s-channel A-pole diagram in pion-nucleon scattering,
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we dress the A propagator by resumming the self-energy insertions. We count the
dressed propagator as g >, because the self energy starts at (/(¢*). In the so-called
small-scale expansion the mass difference 6 = ma — m is also counted as ((q)
[34]. In a different counting [S1]—the so-called § expansion—one introduces a
single small parameter, 6 = (ma — m)/A, where A~ 1 GeV stands for the “high-
energy scale” (nucleon mass or chiral-symmetry-breaking scale A,), and regards

the ratio My /A as (0(5°).
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Chapter 5
Applications and Outlook

5.1 Nucleon Mass and Sigma Term

In this section we will address the quark-mass expansion of the nucleon mass.
Starting with a calculation to @(¢*) in HBChPT, we will recover the result of
Eq. 4.93 for the nucleon mass. We will then extend the discussion to (¢/(¢*) in the
EOMS scheme. Next, we will consider the nucleon mass within a framework
containing the A resonance as an explicit dynamical degree of freedom. Finally,
we will discuss some aspects of a two-loop calculation up to and including ©(g®).

5.1.1 Nucleon Mass to O(q*) in the Heavy-Baryon Formalism

As an application of the heavy-baryon formulation, we calculate the nucleon mass
to ((q?), the lowest order at which loop diagrams contribute. The calculation
proceeds analogously to the one in Sect. 4.5.3. We will see how the power
counting is automatically satisfied in the heavy-baryon formalism when using
dimensional regularization in combination with the modified minimal subtraction
scheme (ﬁg) of ChPT." The physical mass is given by the pole of the full heavy-
baryon propagator

o Pv+ _ Pv+
vk, —X(p) +i0t  v-p—m—X(p) +i0t’

Gy (k) (5.1)

where we have used the decomposition of the nucleon four-momentum
p = mv +k, (see Eq. 4.95).

' The existence of a consistent power counting in HBChPT relies on specifying the
renormalization scheme. See Sect. V of Ref. [53] for a discussion of this point.

S. Scherer and M. R. Schindler, A Primer for Chiral Perturbation Theory, 215
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Exercise 5.1
(a) Determine the tree contributions "°(p) to ((¢?). The relevant terms of the
second-order Lagrangian are given by”

D2
Lov=N, —%+01Tr(x+)+---./\/'v. (5.2)

The first term originates from the 1/m correction of Eq. 4.113. The term
proportional to c¢; is the analogue of the c; term in the Lagrangian of Eq. 4.66.
In terms of Sect. 4.5.1, we treat Eq. 5.2 as part of a basic Lagrangian. There
are no contributions to "¢(p) at ((¢*).

(b) Using the leading-order Lagrangian of Eq. 4.114, show that the Feynman rule
for an incoming pion with four-momentum ¢ and Cartesian isospin index a is
given by

—=28, - q14; (5.3)

and that for an incoming pion with ¢, a and outgoing pion with ¢, b by

v-(g+4q)

4F2 EabeTe- (54)

As in the case of Exercise 4.10, the second Feynman rule implies that the loop
diagram of Fig. 5.1b vanishes.

(c) Calculate the loop diagram of Fig. 5.1a. Note that, for convenience, we have
chosen a slightly different momentum assignment. Show that the self-energy
contribution is given by’

n

. 393 cwer: 4n [ d"q quq
o Zloop — _ _AS,uS\ 4 n/ Y .
) = T ST | oy @ T 0n) - (y + ) + 0]
(5.5)

2 The corrections of first order in 1/m in Eq. 4.113 contain a piece of the type
1 = 2 2
—./\/V[(v-D) -D ]NV.
2m
Using the field redefinition [65]

iv-D  g,S,-u
4m 4m N,

N\;H{lJr

the term containing v-D can be eliminated. As in the case of the two-flavor mesonic

Lagrangian at (g*) (see Exercise 3.25), one finds equivalent parameterizations of 5/53\), (and
also of the higher-order Lagrangians) in the baryonic sector.

3 In the remaining part of this section, we adopt the common practice of leaving out the projector
P, in the propagator and (possibly) in vertices with the understanding that all operators act
only in the projected subspace.
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Fig. 5.1 One-loop q q
contributions to the nucleon _ - ,A \
self energy ;7 N \ I'
/ \ ,
kp kp +4q kp kp kp
(a) (b)

The nucleon propagator at leading order is given in Eq. 4.115.
(d) The tensor integral can be parameterized as

4 [ d'q 4.9y
1/14 /( I3

21)" (¢> = M? 4+ i0")(v- ¢+ @ + i0*)
- VHVVC2O((/07M2) + gquZI ((1),M2),

where w =v -k, Contracting with v*v" and g"', show that the integrals
Cao(w, M?) and Cy1(w, M?) can be determined from the equations

Cao(w, M?) 4 Cay (0, M?) = —l(0) 4+ &* Ty (0; @),
Czo(a),Mz) + nCy (CO,MZ) = MZJRN(O; CO),
where

d"q 1
In 0) =i 4—n ,
(0) = in / 2n)" ¢ — M? + i0+

d"q 1
Jon(0; @) = ip™" - .
w(0;0) = ik /(2n) (@ —M2+i07)(v-q+w+i0")

Hint: ¢g"'g,, = n and

4 d"q q Al d"q 1
4—n u 4—n

=0 =0
" / QY@ -—mr+ior / 2n)"v- g+ w+i0"

(e) Using the results above, as well as S, - v =0and S? = (1 — n)/4, verify that
the loop contribution to the self energy is given by

3 2
Sloop () — —%[(Mz — 02) Ty (0; ) + I(0)]. (5.6)
(f) The explicit expression for I,(0) is given in Eq. 4.87, and
» M? 1 »
Jon(0;0) =<—|R+1In —1 —|——\/M2—wzarccos(—ﬂ)+0(n—4)

- 82 F 472

for w* <M?, where R is given in Eq. 3.111. Verify that the expression for the
self energy is given by
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2(}?) _ Ztree(p) + Zloop(p)
2

k 392 3
=L _4eM? - 9 5 ((M2 — a)z)zarccos(—g).
2m (4nF) M

e fen)] Joe-nf) e

(g) To determine the nucleon mass, we need to evaluate the self energy for p on
the mass shell, which corresponds to

p = myv.

Show that this condition corresponds to w = v - k, = my — m, so that

my = m+ Z(myv)

2
o= U M S (). (5.8)

2m
Given that ZI°P(myv) is at least ((M?), this implies that my — m = O(M?).
Since our calculation is only valid to ((¢*), we can neglect the second term on
the right-hand side of Eq. 5.8 and can set & = 0 in the loop contribution.

Verify the final result for the nucleon mass to ((q°):

~ 3ngaM’
2(4nF)*

my = n — 4—C1M2

The loop contribution is of @(q®) as predicted by the power counting. It is
therefore not necessary to perform any additional finite subtractions. It is
exactly this feature which distinguishes the heavy-baryon formulation from the
original, manifestly Lorentz-invariant approach of Ref. [83] discussed in
Sect. 4.5.3. Both calculations make use of dimensional regularization with the
modified minimal subtraction scheme of ChPT, but only in the heavy-baryon
case does this renormalization condition lead to a consistent power counting.
The result for the nucleon mass agrees with the expression of Eq. 4.93,
obtained in the manifestly Lorentz-invariant calculation with the additional
subtraction.

5.1.2 Nucleon Mass and Sigma Term at ((g*)

We now turn to a full one-loop calculation of the nucleon mass at ((¢*) in the
EOMS approach [76]. In addition to the loop diagrams of Fig. 4.4 and the tree-

level contribution originating from ¥ fj\),, we need to consider the diagrams shown

in Fig. 5.2. Note that & 7(3& does not generate a contribution to the TNN vertex.



5.1 Nucleon Mass and Sigma Term 219

k k
/// —’-\\\ IA\\
\ \
/ \ \ i
> @ > + CI) O O + @
zyee b Z

Fig. 5.2 Contributions to the nucleon self energy at (/(g*). The number n in the interaction blobs

refers to & 5:}3 The Lagrangian & 533 does not produce a contribution to the NN vertex

Therefore, a diagram with the topology of the first diagram of Fig. 4.4, where one
of the two vertices is replaced by an (/(g*) vertex, does not exist. The tree-level
contribution at ((g*) reads

e — o M*, (5.9)

where &; = 16e3g + 2e115 + 2¢116 is a linear combination of ¢/(¢*) LECs [72], and
the subscript 4 denotes chiral order four. In order to facilitate comparison with
Refs. [10, 76], let us denote the loop contribution of the first diagram of Fig. 4.4
by 2,

301 . 4 / d"k 1 1
S, = A b ; « . (5.10
| o s e o e w0 10

Applying Feynman rules, we obtain for the two one-loop contributions of Fig. 5.2

TP =%, 4+ %, (5.11)
where
3g2 d"k 1 2 1
Y, = —4M? e =24 4-"/
b 3" | ar s\ o) Ve e v o
ox
= —4M?c; =2 5.12
cra (5.12)
M? e\, ., d'k 1
T =3—(2¢c1 —cy — == )it ; : 5.13
F2< aTeTe n)l“ /(2n) 12— M2+ i0+ (5:13)

In general, the chiral orders assigned by the power counting will not hold until the
corresponding subtractions have been performed.

The renormalization of the loop diagrams is performed in two steps. First, we
render the diagrams finite by applying the modified minimal subtraction scheme of
ChPT (Mg) We choose i = m for the ’t Hooft parameter. In a second step, we
then perform additional finite subtractions for integrals which contain nucleon
propagators with the purpose of imposing the power-counting scheme. In fact,
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in order to apply the MS subtraction in practical calculations, we do not actually
need to explicitly write down the corresponding counter terms. We simply subtract
all loop diagrams and tag the coupling constants with a subscript r indicating the

MS scheme.
The nucleon mass is determined by solving Eq. 4.80,

my —m—X(my) =0.

Using the MS-renormalized expressions for the integrals of Eq. 4.87, we obtain
for the mass in the MS scheme,

394

2 391%}“ M3
2P

1+ 8c,m)M? —
m(l+ 8emM” =5 e

3 9124) 4 M
+32T[—2F,%<8C1r—6'2r—46'3r—7 M~ In ;

394, 3
3212 F2m 12872F2 %

my =m—4c1,M2 +

+ (1 + 4c,m)M* + ( - é1,>M4 +0(M°), (5.14)

@9

where “” refers to MS-renormalized quantities. When solving Eq. 4.80, we
expanded the results of the loop integrals and consistently omitted terms which
count as O(/%) in the loop expansion, i.e., terms proportional to (g, /F)*, as well
as terms proportional to (clr)z. The third term on the right-hand side of Eq. 5.14
violates the power counting because it is of (¢/(M?). It receives contributions from
both X, and X,

In order to perform the second step, namely another finite renormalization, a

given MS-renormalized diagram is written as the sum of a subtracted diagram
which, through the application of the subtraction scheme described in Sect. 4.6.3,
satisfies the power counting, and a remainder which violates the power counting
and thus still needs to be subtracted. For the case at hand, we determine the terms
to be subtracted from X, and X, by first expanding the integrands and coefficients
in Egs. 5.10 and 5.12 in powers of M?,  — m, and p* — m?. In this expansion we
keep all the terms having a chiral order which is smaller than what is suggested by
the power counting for the given diagram. We then obtain

subtr 39/2\r MZ _ (P2 — mZ)Z] + 3ClrgflrM2

r.a+b 32 2 F%

s m) = 507 = )|

(5.15)

4m 82 F?

Equation 5.15 specifies which parts of the self-energy diagrams at ((¢*) and O(q*)
need to be subtracted. We fix the corresponding counter terms so that they exactly
cancel the expression given by Eq. 5.15. Since the most general Lagrangian
contains all the structures consistent with the symmetries of the theory, it also
provides the required counter terms. Finally, the renormalized self-energy
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expression is obtained by subtracting Eq. 5.15 from the MS-subtracted version of
Egs. 5.10 (see Eq. 4.88) and 5.12 and replacing the MS-renormalized couplings
with the ones of the EOMS scheme. We note that the MS-subtracted version for )
needs no further subtraction because it already is of 0(g*).

The correction to the nucleon mass resulting from the counter terms is calcu-
lated by substituting p = my in the negative of Eq. 5.15. Recall that Eq. 5.15 has
to be subtracted. We thus obtain the following expression for the contribution to
the mass,

393,
32n%F?

Amg, = m(1 4 8ci,m)M?, (5.16)

where the subscript c.t. refers to counter term. Comparing with Eq. 5.14, we see
that the subtraction term of Eq. 5.15 indeed cancels the power-counting-violating
contributions in Eq. 5.14. Finally, we express the physical mass of the nucleon up
to and including order ¢* as [128, 162]*

M
my = m+kyM?* + koM® + ksM* In (—) + kyM* + O(MP), (5.17)
m
where the coefficients k; in the EOMS scheme read [76]

303 3

_ _ _ 2
ki = —4cy, k= _327'CF27 ks = _7327'52F2m(gA — 8cym + com + 4C3m),
39,2 3 .
k= L HAam) + g e~ a (5.18)

A comparison with the results using the infrared regularization [10] shows that
the lowest-order correction (k; term) and those terms which are nonanalytic in the
quark mass m (k, and k3 terms) are identical. On the other hand, the analytic k4
term (~ M*) is different. This is not surprising; although both renormalization
schemes satisfy the power counting specified in Sect. 4.5.2, the use of different
renormalization conditions is compensated by different values of the renormalized
parameters.

For an estimate of the various contributions of Eq. 5.17 to the nucleon mass,
we make use of the numerical values of Eq. 4.65 for ga, etc., and the parameter
set of Eq. 4.67 for the c¢;. Note that using the physical values for g4 and F,
instead of their chiral limit values is consistent up to the order considered here,
as g4 = gy[1 + O(M?)] and F, = F[1 + O(M?)]. As has been discussed, e.g., in
Ref. [10], a fully consistent description would also require to determine the low-
energy coupling constant ¢; from a complete ((g*) calculation of, say, ©N

* In our convention, ks is larger by a factor of two than in Refs. [128, 162], because we use
In(M /m) instead of In(M?/m?).
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scattering. One obtains for the mass of nucleon in the chiral limit (at fixed
my % 0):
m=my — Am
=(938.3—-74.84153+4.7+1.6 —23+4)MeV
= (882.8 £4)MeV, (5.19)

with Am = (55.5 £ 4)MeV. Here, we have made use of an estimate for
eiM* = (2.3 £ 4) MeV obtained from the ¢ term (see below). Note that errors due
to higher-order corrections are not taken into account.

Sigma terms provide a sensitive measure of explicit chiral symmetry
breaking in QCD because “they are corrections to a null result in the chiral
limit rather than small corrections to a non-trivial result” [150] (see, e.g.,
Refs. [93, 159] for a review). In the three-flavor sector, the so-called sigma
commutator is defined as

ap(¥) = [Qaa(%0), [Qab (x0), # o (¥)]]; (5.20)

where Q4. = Ogr. — Oy denotes one of the eight axial-charge operators of Eq. 3.9
and

Hg = G Mq = (i + dd) + mss

is the chiral-symmetry-breaking mass term of the QCD Hamiltonian in the isospin-
symmetrical limit. Using equal-time anticommutation relations (see Egs. 1.103
and 3.20), Eq. 5.20 can be written as [132]

Ao [2
Oap(x) = Zl(x){?, {?h, ﬂ} }q(x), (5.21)
yielding for the flavor-diagonal pieces,

o11 = 02 = g33 = m(uu + dd),
n+mg,_

Op = Os55 = 2m (uu +55),
m+mg

066 = 077 = > (dd + SS)7 (522)

1 -
ggg — g[n%(ﬁu + dd) + 4ms§s],

038 = 083 = ﬂ(ﬁu —dd).

V3

Exercise 5.2 Verify Egs. 5.21 and 5.22.
In the following, we restrict ourselves to the two-flavor case. In terms of the
SU(2), xSU(2)g-chiral-symmetry-breaking mass term of the QCD Hamiltonian,

Hg = i+ dd), (5.23)
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the pion-nucleon sigma term is defined as the proton matrix element

o= ﬁ (D, )| #(0) p(p,5)) (5.24)

at zero momentum transfer.” The sigma term may either be obtained by explicit
calculation or through the application of the Hellmann-Feynman theorem.

Exercise 5.3 Consider a Hermitian operator H (1) depending smoothly on a real
parameter 4. Let |«(4)) denote a normalized eigenstate with eigenvalue E(1),

H(2)|2(2)) = E(4)|a(4)),
(a(A)]ee(A))y = 1.
Verify the Hellmann-Feynman theorem,

(oo

a(z)>. (5.25)

In the present context, we multiply Eq. 5.25 by 4 and perform the substitutions
A — i,
|ee(2)) — IN(m)),
E(2) — my(m),

0H 04 qcp . -
Note that M? = 2Bin and thus [83]
amN
=M 5.26
o e (5.26)

The quark-mass expansion of the ¢ term reads

M
G:GIM2+O'2M3+O'3M41H(—) —i—()'4]144—‘y-@(1\45)7 (527)
m
with
o1 =—4c1, o z—gg‘% g z—#(gz—Scm—i—cm—i—%m)
1 15 2 647'CF27 3 167‘52F2m A 1 2 3 ’
3 [36% 2y C3m .
04:m ?"‘Clm(l"‘ng)—T —261. (528)

5 In the linear sigma model with explicit symmetry breaking (see Sect. 2.4), the double com-
mutator oy (x) is proportional to the sigma field. This is the origin of the name sigma term.
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Fig. 5.3 Contributions to the nucleon self energy to (¢/(¢*). The number n in the interaction blobs
refers to 3,(1']’3 and QSZA. The A is represented by a double line

Exercise 5.4 Using the coefficients k; of Eq. 5.18, verify Eq. 5.28 by applying the
Hellmann-Feynman theorem of Eq. 5.26.

We obtain (with ¢; = 0 in Eq. 5.28)
o= (74.8—-229—-94—2.0)MeV = 40.5MeV. (5.29)

The result of Eq. 5.29 has to be compared with, e.g., the dispersive analysis
o = (45 4+ 8) MeV of Ref. [84] which would imply, neglecting higher-order terms,
—2&;M* =~ (4.5 & 8) MeV. Note that c; has been estimated in terms of an (/(¢*)
tree-level calculation of nN scattering, whereas a fully consistent description
would require determining c¢; from a complete ((¢*) calculation.

5.1.3 Nucleon Mass Including the Delta Resonance

In this section we discuss the result for the nucleon mass to order ¢°> within the
EFT of Sect. 4.7 including the A(1232) resonance as an explicit degree of
freedom. We will make use of the small-scale expansion, treating both the pion
mass M and the mass difference 6 = mp —m as O(g). We will fix the renor-
malization condition such that ¢ denotes the mass difference in the chiral limit
between the pole mass of the A and the nucleon mass. However, as will be
seen in Eq. 5.34, we do not identify the parameter m with the nucleon mass in
the chiral limit.

The relevant Feynman diagrams for the self energy are shown in Fig. 5.3. At
0(g*), we obtain a constant tree-level contribution —4¢;M? to the self energy,
where ¢; refers to the coupling constant in the theory explicitly including A
degrees of freedom. The EOMS-renormalized one-loop contribution resulting from

Z}\O,(’p of Fig. 5.3 is given by the same expression as in Sect. 4.5.3,

3giM?
32nF?’

NP (B = my) = (5.30)

Finally, the EOMS-renormalized one-loop contribution of the A resonance
resulting from =V of Fig. 5.3 reads [98]
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NP (P = my)

2 2 2
8 3 2 - 2 32 [0V M
= ey |39 + 60M>(1 + 2561m) + 96(5° — M) ln<7M
2
—ﬁ(zf —3M%5) In (A—4> (5.31)
T m

Combining the tree-level result at ((¢g*) with the ((g*) one-loop contributions
results in the following expression for the nucleon mass:

L SGMP g 3 S1p2 -
my =m—4ciM” — A + TSy 350 + 60M~(1 + 25¢,m)
1+ 96(5> — m?) 1 (O VO M Vo' — M
M
2
g 3 M
- W(za —3M%8) In (E) +0(q"). (5.32)

The nonanalytic part of Eq. 5.32 agrees with a covariant calculation in the
framework of infrared regularization [21]. The analytic terms differ because of
different renormalization conditions and a different choice for the interaction
terms.

By explicitly including the spin-3/2 degrees of freedom, terms of higher order in
the chiral expansion have been resummed. In order to obtain a numerical value for
these terms, let us expand Eq. 5.32 in powers of M.

Exercise 5.5 Consider M < 6 and introduce x = M/J. Verify

3-VE - V52—MZ> 5 [m(f) ()2

(52_M2)‘71n< - . . +—+@(x4)].
(5.33)

Using the result of Eq. 5.33, we match the terms of orders M° and M? in
Eq. 5.32 to the corresponding quantities of the EFT without explicit spin-3/2
degrees of freedom (see Eq. 4.93). Taking into account that there are no tree-level
A contributions to ¢; [10], we obtain

o g2 (m) 35g25°

m=m+ "25) T 2882 F2

.34
3n2F? (5.34)

_ . 5¢%6 g% m
er =& = (L+5em)is + S (%)), (5.35)
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where, for the purpose of this section, m denotes the nucleon mass in the chiral
limit and c; refers to the theory without spin-3/2 degrees of freedom. Using
Egs. 5.34 and 5.35, the nucleon mass of Eq. 5.32 can be rewritten as

3giM3
32nF?

my = m—4c\M* — + iy, (5.36)
where 7ty is of order M* and contains an infinite number of terms if expanded in
powers of M /0.

In order to obtain an estimate for 71y, we make use of g = 1.127 as obtained
from a fit to the A — nN decay width [98],6 and take the numerical values

ga=1267, F,=924MeV, my=m,=9383MeV,

(5.37)
M, =M, =139.6MeV, my=1210MeV, 6 =mp — my.
Substituting the above values in the expression for my results in
my = —5.7MeV. (5.38)

We recall that the analysis of the nucleon mass up to and including order M* of
Eq. 5.19 yields (882.8 4+ 74.8 — 15.3) MeV = 942.3 MeV for the first three terms
of Eq. 5.36. In other words, the explicit inclusion of the spin-3/2 degrees of
freedom does not have a significant impact on the nucleon mass at the physical
pion mass.

Applying the Hellmann-Feynman theorem in the form of Eq. 5.26 to the
nucleon mass, we obtain for the pion-nucleon sigma term to order ¢°,

99iM?  5¢%(1 + 5¢,m)SM>

= — 46 M* —

=T T 4872 F?

(5 — Mz)%le 0 V& M\ gom? (M (539)

— n n{—|. .
2n2F? M 272F2  \m
Again, expanding Eq. 5.39 in powers of M and using Eq. 5.35, we rewrite ¢ as

9gi M3

= —4eM* - 324 G 5.40

’ “ 64nF? to (5.40)

where G is of order M* and contains an infinite number of terms if expanded in
powers of M /0. With the numerical values of Eq. 5.37 we obtain from Eq. 5.39

&=—102MeV, (5.41)

while the first two terms of Eq. 5.40 yield (74.8 — 22.9) MeV = 51.9 MeV. These
numbers have to be compared with the empirical values of the sigma term

S The quark-model estimate of Eq. 4.202 yields g = 1.075.
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extracted from data on pion-nucleon scattering: 40 MeV [38], (45 £+ 5) MeV [84],
and (64 + 7) MeV [151]. Equation 5.41 indicates that the explicit inclusion of the
spin-3/2 degrees of freedom plays a more important role for the sigma term than
for the nucleon mass. However, one has to keep in mind that the sigma term only
starts at order M? and thus, on a relative scale, is automatically more sensitive to
higher-order corrections.

5.1.4 Nucleon Mass to 0(q°)

In the previous sections we discussed the nucleon mass up to and including ¢(g*).
Using estimates for various low-energy couplings, we found good convergence at
the physical pion mass. However, the convergence of the chiral expansion of a
physical quantity is also of interest when unphysical values of the parameter M are
considered. Lattice QCD presents a numerical approach in which correlation
functions are calculated from the QCD Lagrangian by discretizing space-time
[47, 87, 99, 160, 184]. One of the factors that determine the amount of resources
required to perform these calculations is the size of the quark masses, with small
quark masses corresponding to higher calculational costs. While lattice QCD has
made tremendous progress towards calculations performed at the physical quark
masses, in general calculations have been performed at a series of unphysical
values. Observables at the physical quark masses are then extrapolated. Since
chiral perturbation theory corresponds to an expansion in the quark, or equiva-
lently the pion, mass, it is a crucial tool in performing these extrapolations. The
range of pion masses that can be used for reliable extrapolations is determined by
the convergence properties of ChPT [174].

So far only a few calculations in the baryon sector have been performed beyond
0(g*). These include the calculation of the nucleon mass in the heavy-baryon
formalism to fifth order [136], and a determination of the leading nonanalytic
contributions to the axial-vector coupling constant g4 at the two-loop level using
so-called renormalization group techniques [22]. In the following we will discuss
some aspects of the chiral expansion of the nucleon mass up to and including
0(g%) in the reformulated infrared regularization scheme, based on the work of
Refs. [170, 171]. According to the power counting, only tree-level and one-loop
diagrams have to be considered in a calculation up to (¢(¢*), while starting at
0(g°), one also has to take into account two-loop diagrams. As the calculation of
all diagrams is too involved to be presented here in detail, we will focus on a few
relevant aspects and explore some implications.

Before discussing details specific to infrared regularization and our power
counting, we give a brief description of the renormalization of two-loop diagrams
in general. The discussion follows Ref. [43]. In order to keep track of the number
of loop integrations, we make explicit the dependence on 7, where each power of i
corresponds to one loop integration. At the two-loop level, one has to distinguish



228 5 Applications and Outlook
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Fig. 5.4 Two-loop diagram with corresponding subdiagram and counter-term diagram

between overall divergences, which occur when both loop momenta become large,
and so-called subdivergences, in which only one loop momentum is large while
the other remains finite. As an example, consider the diagram in Fig. 5.4a. If one
loop momentum is kept fixed, the integration of the other momentum corresponds
to a one-loop subdiagram as shown in Fig. 5.4b. This subdiagram can contain a
divergence, which has to be subtracted with a counter term of order % (Fig. 5.4c).
Since we are working at the two-loop level, i.e. O(/?), there are so-called counter-
term diagrams, in which one vertex corresponds to a counter term, see Fig. 5.4d.
Taking into account the sum of a two-loop diagram and all its corresponding
counter-term diagrams ensures that any remaining divergence is local and can thus
be absorbed into counter terms in the Lagrangian.

In the calculation of the nucleon mass in baryon ChPT we have to ensure that,
in addition to subtracting all divergences, the resulting expressions satisfy the
power counting and the relevant Ward identities. To demonstrate the subtleties
involved, consider the example of a two-loop integral H that can be written as the
product of two one-loop integrals H; and H,’

H = HH,. (5.42)

The chiral order of the two-loop integral is simply the sum of the chiral orders of
the two one-loop integrals. Each of the one-loop integrals can be separated into an
infrared-singular and an infrared-regular part, and we obtain

H =1L +1LR, + R, +RR.. (5.43)

As discussed, we need to add the contribution of counter-term diagrams. The sub-
traction terms for the one-loop integral H; are given by its infrared-regular part R;.
The unrenormalized counter-term integral is thus

—RH,, (5.44)

with an analogous expression for the other counter-term integral. Previously, when
going to the limit n — 4, it was only necessary to discuss terms of order
1/& and %, where ¢ = 4 — n. However, if the integral H, contains divergences,
these can be multiplied by terms ~ ¢ in the subtraction term R;, resulting in finite
contributions. It turns out to be crucial for the preservation of chiral symmetry to

7 Note that not all two-loop integrals can be decomposed in this way. However, this special case
is sufficient for our considerations.
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include in the subtraction terms not only divergent and finite terms, but also all
terms of positive power in ¢. A detailed discussion can be found in Ref. [171]. The
properly renormalized expression for the two-loop integral H'" has the particularly
simple form

H" =11, (5.45)

where the ~indicates that all additional divergences in the infrared-singular parts
of the one-loop integrals have been dropped (see Sect. 4.6.2).
The chiral expansion of the nucleon mass up to ()(¢°) is given by

M M
my = m+ kiM?* + koM? + ksM* In (;) + kaM* + ksM° In (ﬁ) + keM?
M M
+ kyM® 1n? (—) + kgM® 1In (—) + koM®. (5.46)
U U

The lengthy expressions for all of the coefficients k; are given in Ref. [171]. While
we refrain from displaying them here, we want to discuss a few aspects and
implications. The coefficients ks and k¢ are given by

k :i(]@f _3)
ST 10243 AN PA T )
3 [, mF L. . 321F?
ke = 2563F4 - — 81 (315 — 21;) — o (2d16 — di3) |-

Note that while k5 receives contributions from a number of diagrams with various
low-energy couplings, it only depends on the parameters of the lowest-order

Lagrangian, i.e. g, and F. The term ksM° In (%) is the leading chiral logarithm at

two-loop order, and its value is constrained by renormalization group equations
and thus only depends on the lowest-order constants [39]. The coupling ks on the
other hand depends on the mesonic LECs I3, I4 of the Lagrangian at (/(¢*), and the
baryonic LECs d¢, d; of the Lagrangian at (/(¢*). Also note that the coefficient ks
has to be the same in all renormalization schemes.

How do these higher-order contributions affect the convergence of the chiral
expansion? Unfortunately, most of the coefficients cannot be evaluated numeri-
cally as the values of various LECs are not known. However, as seen above, ks
only depends on the axial-vector coupling constant g, and the pion-decay constant
F. While their values should be taken in the chiral limit, in order to get an estimate
for higher-order contributions, we choose to evaluate them at their physical values
ga = 1.2694 and F, = 92.42MeV. Setting u = my, where my = (m, +m,)/2 =
938.92MeV, we obtain ksM° In(M /my) = —4.8 MeV at the physical pion mass
M = M+ = 139.57MeV. This corresponds to approximately 31% of the leading
nonanalytic contribution at one-loop order, k,M?. As mentioned above, the con-
vergence at unphysical values of the pion mass is also of great interest. Figure 5.5
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Fig. 5.5 Pion-mass
dependence of the term
ksM® In (q—{) (solid line) for -0.1
M <400 MeV. The dashed S
line shows the term koM 3 )
for comparison -

g -0.3

g

-0.4

0.02 0.06 0.1 0.14
M? [GeV?]

shows the pion-mass dependence of the term ksM> In(M/my) (solid line) in
comparison with the term k,M> (dashed line) for M <400 MeV. Chiral extrapo-
lations are considered to be applicable in the shown pion mass range [54, 141]. We
see that already at M ~ 360 MeV the fifth-order term ksM> In(M /my) becomes as
large as k,M?3. This comparison does not present a strict study of the convergence
properties of the chiral expansion, as not all contributions at a specific chiral order
are considered. For example, we have not taken into account the contributions
from k¢M>, which might cancel parts of the ks term. However, these results
indicate the importance of higher-order terms at larger pion masses, and they are in
agreement with the convergence estimates determined with other methods
[54, 141].

5.2 Nucleon Electromagnetic Form Factors to (¢)(¢*)

As mentioned in Sect. 1.4.2, the matrix element of the electromagnetic current
operator,

J(0) = Su()puls) — 3dWpd(y),

evaluated between single-nucleon states is related to the nucleon electromagnetic
form factors. Imposing the relevant symmetries such as translational invariance,
Lorentz covariance, the discrete symmetries, and current conservation, the nucleon
matrix element of the electromagnetic current operator can be parameterized in
terms of two form factors,

(N, s O0)IN(p, s)) = u(p',s) | FY (Q*)y" +12mq‘ 2(0%) |ulp,s), (547)

P
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where ¢ =p' —p,0%> = —¢?, and N = p,n.® In principle, a third form factor
Fév (Qz) proportional to g* exists which, however, vanishes for on-shell nucleons
due to current conservation as well as time-reversal invariance. The Dirac and
Pauli form factors F) and F) are normalized such that at Q> = 0 they reduce to
the charge and anomalous magnetic moment [in units of e and the nuclear mag-
neton e/(2m,)], respectively,

F{(0)=1, F}(0)=0, F50)=1.793, F5(0)=—1.913.
In the actual calculation, it is more convenient to work in the isospin basis (s for
isoscalar and v for isovector)

F =F +F, FY=F —F, i=12, (5.48)

L

so that the electromagnetic form factors may be combined in a 2 x 2 matrix as
follows,
Loy, Lo .
F; = EFf " +§F,-< 1y, i=1,2.

Experimental results are commonly presented in terms of the electric and magnetic
Sachs form factors Gg(Q?) and Gy (Q?), which are related to the Dirac and Pauli
form factors via

2

Gy(Q%) = FY (0% FY(Q%), Gy(Q*) =FY(Q%) +Fy(Q*), N=p,n

4m;
In the nonrelativistic limit, the Fourier transforms of the Sachs form factors are often
interpreted as the distribution of charge and magnetization inside the nucleon. For a
covariant interpretation in terms of the transverse charge density see Refs. [43, 143].

As they are experimentally well-studied, the description of the electromagnetic
form factors provides a stringent test for any theory or model of the strong interac-
tions. As baryon ChPT is a low-energy approximation of QCD in the one-nucleon
sector, one would expect ChPT calculations to show good agreement with data.
These have been performed in the early relativistic approach [83], the heavy-baryon
approach [15, 71], the small-scale expansion [18], the infrared regularization [119],
and the EOMS scheme [79]. These calculations have in common that they describe
the form factors for momentum transfers up to around Q* = 0.1 GeV? (see Fig. 5.6),
which corresponds to a small expansion parameter of g ~ 350 MeV, in agreement
with the breakdown of the chiral expansion of the nucleon mass. While the complete
calculation of the form factors even up to only (’(¢*), the first order at which loop

8 Since we discuss the form factors in the space-like region, here we adopt the convention of
taking Q> = —¢? as the argument of the form factors as is common practice in the context of
electron scattering.
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Fig. 5.6 The Sachs form factors of the nucleon in manifestly Lorentz-invariant chiral
perturbation theory at @(q*). Full lines: results in the extended on-mass-shell scheme; dashed
lines: results in infrared regularization. The experimental data are taken from Ref. [75]

diagrams enter, is somewhat involved, we will discuss a few features of the calcu-
lation in a manifestly covariant renormalization scheme in the following exercise.

Exercise 5.6 Diagrams contributing to the electromagnetic form factors to ¢/(¢*)
are shown in Fig. 5.7. There are, in fact, additional diagrams with an insertion of
the vertex proportional to ¢; from 3,(33 in the nucleon propagator. These can be
included in the calculation of the shown diagrams by using m, = m — 4c;M? as
the mass in the nucleon propagator instead of the lowest-order mass m (see
Sect. 10 of Ref. [10]). Evaluating the diagrams, we obtain the invariant amplitude
A , which is related to the matrix element of Eq. 5.47 by

M = —iec,(N(p',s")|J*(0)|N(p,s)), (5.49)

where ¢ is the polarization four-vector of the virtual photon. Note that a calculation
of diagrams to ()(¢”) determines the Dirac form factor to (/(¢°~') and the Pauli
form factor to ((¢g”~2), as both the polarization four-vector ¢ and the four-
momentum transfer g count as small quantities, and the I matrices y* and
" as 0(q°) (see Eq. 4.19).

To consider a coupling to an external electromagnetic four-vector potential (see
Eq. 1.165) we set

By = o/,

vﬂzrﬂzlﬂ:—eﬂuj, u 2

in the Lagrangians.

(a) Using the Lagrangians of Eqgs. 4.17 and 4.66, as well as the relevant terms of
the third-order Lagrangian,’

- -
20— g [D“, +}D"{f +He. + —ld7‘P(6“v<“?)D”{’ Y He -,
2m a4 m w

® The Lagrangian corresponds to the one of Ref.[72] with the replacements
F:v —>f;: and TT(F+) — 4\/%?

ny
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Fig. 5.7 Diagrams
contributing to the nucleon
electromagnetic form factors
to @(g*). Nucleons are
denoted by solid lines, pions
by dashed lines, and the wavy
line stands for a coupling to
an external electromagnetic
four-vector potential
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show the following Feynman rules:

qs
P P
qs
p P’
qs

P P

1
—iesuy“i(ﬂ + 1),

1
egy G“VqVE (2c6t3 + 7 1),

. 1 1
iegy (qu“— q"q-P) (2md61:3 + md7ﬂ> ,
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(b)

(©)

(d)

(e)
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where P* = p'* + p*.
Hint: The field-strength tensors are given by

— s + + +
V'E“ auv avV,S)a f‘uv - quuvu +u fR,uvuv

with fg,, and f7,, defined as the two-flavor versions of Egs. 3.66 and 3.67,
respectively.

Show that the form-factor contributions from tree-level diagrams to ((¢*) are
given by'®

1
Fi(Q%) = 5(1] + 13) — ¢*(det3 + 2d71),
F2(Q%) = 2mycets + mycrl + ¢*(dets + 2d71).

(5.50)

Hint: Use p* = g"’p, and 7"y’ = g" — ig"” to show that""

u(p") P u(p) = a(p") 2myy* — ic* g )u(p).

Also verify that g - P = 0 for nucleons on the mass shell. In Eq. 5.50, we have
replaced a factor my/mby 1 because the difference is of higher order in the
contribution to the form factors.

As an example of a loop diagram, we consider diagram (7a) of Fig. 5.7. Verify
the Feynman rule

q k,a

v leeuz YHY5€3a6Tp.

Show that the invariant amplitude .# of diagram (7a) is given by

2

M = —iee,u(p") 9a

Sasearsint™ [ s KSr ! = DAL 35u(p)

where the nucleon and pion Feynman propagators are given by

1 p+m
S = =
F(p) g—m+i0t  p?—m?+i0t’
1
M) = e or

In order to avoid tensor integrals of higher rank, verify that

10" Since we work in the isospin-symmetric limit we set m, = m, = my.

"' In the following, spin and isospin quantum numbers as well as isospinors are suppressed.
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¥=—S'(p' —k)+ (F —m),

and use this relation to show that the invariant amplitude can be written as

92 d'k 1
M = = feeu(pl)y it / Qn) | k2 — M2 +i0"

B m3, — m*
(0 — k)* — m2 +i0F] (k2 — M2 + i0+)

(my +m) K .
[(p) — k)2 — m? + i0F] (k> — M? + i0+)} (p).

+

Hints: Make use of the Dirac equation, u(p’)p’ = myu(p’). {y*,7s} =0,
2
ys = 1.
(f) Using the integrals of Exercise 4.10, show that

2
M = iesuu(p/)zglﬁzu{ln - (mlz\, — mz)INn

my +m

+ sz

[Iy — I + (m}y — m* + M?) I }V”M(P),

where
INT[ = INﬂ;(—p,, O)|p;2:m[2v.

The integrals I, Iy, and Iy, are given in Eq. 4.87. The unrenormalized con-

)

tribution of diagram (7a) to the isovector form factor F, " is then given by

my +m

my

2
v) &8
Fi ) = ﬁ{ln - (m,zv — mz)INn +

[Iy — I + (my, — m* + M?) Iy, ] }

In order to obtain the results in infrared regularization, one has to replace all
integrals by their infrared-singular parts. Replacing the physical nucleon mass
with its chiral expansion, we see that in a calculation of the form factors to
0(q*), the term proportional to m% —m? is of higher order and can be
neglected, while it has to be taken into account for calculations of ¢(¢*) and
higher. Setting the ’t Hooft _parameter p = m, in the EOMS scheme no addi-
tional subtraction beyond MS is necessary, because the MS-renormalized
expression in combination with the polarization vector is of (¢/(¢*). This cor-
responds to the order assigned to the renormalized diagram by the power
counting.

The results for the remaining diagrams are given in Refs. [79, 119]."? Once all
diagrams are evaluated and the wavefunction renormalization constant is taken

12 Note that different notations for the loop integrals are used in the literature.
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into account, both isospin components of the Dirac form factor F; produce the
correct values at Q%> = 0, namely, the isoscalar and isovector charges of +1.

Figure 5.6 shows that a calculation at the one-loop level using nucleon and pion
degrees of freedom only is not sufficient to describe the form factors for
0?>>0.1GeV? and that higher-order contributions must play an important role.
Moreover, up to and including ((¢*), the most general effective Lagrangian
provides sufficiently many independent parameters such that the empirical values
of the anomalous magnetic moments and the charge and magnetic radii are fitted
rather than predicted. We will now discuss how introducing additional dynamical
degrees of freedom may improve the description of the electromagnetic form
factors. We will focus on the inclusion of the vector mesons p, @, and ¢, because
the importance of vector mesons for the interactions between photons and hadrons
was established already a long time ago. In the original vector-meson-dominance
picture (see Ref. [163]) the coupling of a virtual photon to the matrix element of
the isovector current operator between hadronic states is dominated by a yp°
transition, propagation of the p°, and a subsequent (strong) transition induced by
the interaction with the p°.

In ChPT, the contributions from vector mesons, as well as other heavy particles,
are included implicitly in the values of the LECs. Symbolically, this can be
understood from the expansion of a vector-meson propagator,

1 1 2 2\ 2
14+ 4 <q> +cﬂ(q6)1,

c—y |

where My is the vector-meson mass, in combination with the relevant vector-
meson vertices. The contributions from the expanded propagator are included
order by order in the ChPT couplings. It was shown in Ref. [119] that the inclusion
of vector mesons as explicit degrees of freedom in an EFT results in the resum-
mation of a subset of higher-order contributions that turned out to be important for
the description of the nucleon electromagnetic form factors. However, no diagrams
with internal vector-meson lines were considered because a generalization of
ChPT which fully includes the effects of vector mesons as intermediate states in
loops was not yet available. The EOMS scheme [76], the reformulated version of
the infrared regularization of Ref. [168], and the extension of infrared regulari-
zation of Refs. [36, 37] all provide a framework to systematically include vir-
tual vector mesons in the domain of applicability of baryon chiral perturbation
theory [78]. This means that there is a power counting that predicts the relative
size of diagrams, even for those including internal vector-meson lines.

In Ref. [169] the electromagnetic form factors were calculated with p, @, and ¢
mesons as explicit degrees of freedom. While originally vector mesons were
described in terms of antisymmetric tensor fields [62, 81], Ref. [169] employs the
vector-field representation, which was shown to be equivalent in Ref. [63] pro-
vided certain conditions hold. In this formalism, the p meson is represented by
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Fig. 5.8 The Sachs form factors of the nucleon in manifestly Lorentz-invariant chiral
perturbation theory at ¢(¢*) including p, ®, and ¢ mesons as explicit degrees of freedom. Full
lines: results in the extended on-mass-shell scheme; dashed lines: results in infrared
regularization. The experimental data are taken from Ref. [75]

p! = pl'z;, and the w and ¢ mesons by w* and ¢*, respectively. The coupling of
vector mesons to pions and external fields is at least of ©(g) [63],

L3 = ~Fy Te(p" ) = Foe 1) — o f) + -, (5.51)
where the vector-meson field-strength tensors are given by
pit = Vlp" = V'pt, VHp" =0"p" + [T, p'],
with T'* the chiral connection of Eq. 4.13, and
o =00’ —d'w", " =0"¢p" — 0"

The lowest-order Lagrangian for the coupling to the nucleon is given by

1 _
I=5 > VY, (5.52)
V=p,0,¢

and the (O(g) Lagrangian reads

1 _
Low=5 > Gv¥e"V, Y. (5.53)
V=p,w,p

The coupling constants fy, gv, and Gy, with V.= {p, w, ¢}, are not constrained by
chiral symmetry and have to be determined by comparison with data.

The inclusion of additional degrees of freedom also requires additional power-
counting rules, which for the vector mesons state that vertices from % 7(:‘,) count as

0(¢*) and vertices from 3% as ((q'), respectively, while the vector-meson
propagators count as (/(¢°).

Calculations of the form factors in both the EOMS scheme and in infrared
regularization [169] result in an improved description of the data even for higher
values of Q?, as expected on phenomenological grounds (see Fig. 5.8). The
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Fig. 5.9 Feynman diagrams
including vector mesons that
contribute to the
electromagnetic form factors
of the nucleon up to and
including 0(g*). External-leg
corrections are not shown.
Solid, wiggly, and double
lines refer to nucleons, (I) (H)
photons, and vector mesons,
respectively. The numbers in
the interaction blobs denote
the order of the Lagrangian

from which they are obtained.
The direct coupling of the 0 9 0
photon to the nucleon is \_/

obtained from ,,‘fg:,& and _?512,3 (HI) (I\"T)

parameters of the vector-meson Lagrangian of Eq. 5.51 for the coupling to
external fields have been taken from Ref. [63], and those of Egs. 5.52 and 5.53 for
the coupling of vector mesons to the nucleon from the dispersion relations of Refs.
[101, 142]. The small difference between the two renormalization schemes is due
to the different treatment of regular higher-order terms of loop integrals. Numer-
ically, the results are similar to those of Ref. [119], which indicates that contri-
butions from diagrams with internal vector-meson lines are small. In fact, in
infrared renormalization diagrams that do not contain internal pion lines vanish,
which is the case for all vector-meson loop diagrams to (¢)(¢*), shown in Fig. 5.9.
One could therefore interpret these results as providing a firmer theoretical basis to
the vector-meson-dominance model, in which only tree-level couplings are con-
sidered. It should be noted that, in a strict chiral expansion in terms of small
external momenta g and quark masses m, at a fixed ratio mq/qz, up to and
including ()(¢*) the results with and without explicit vector mesons are completely
equivalent. Contributions from vector mesons as explicit degrees of freedom are
compensated by different values of the LECs common to the theories with and
without vector mesons. On the other hand, the inclusion of vector-meson degrees
of freedom in the present framework results in a reordering of terms which, in an
ordinary chiral expansion, would contribute at higher orders beyond ©(g*). It is
these terms which change the form factor results favorably for larger values of Q°.
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Note that this re-organization proceeds according to well-defined rules so that a
controlled, order-by-order calculation of corrections is made possible.

5.3 Advanced Applications and Outlook
5.3.1 Chiral Extrapolations

As mentioned in Sect. 5.1.4, chiral perturbation theory is of interest to lattice QCD
calculations since it predicts the quark-mass dependence of physical observables,
while lattice QCD calculations are routinely performed at unphysical quark masses
and results have to be extrapolated to the physical point. In return, lattice QCD in
principle provides a way to determine the low-energy constants of ChPT from the
underlying theory. However, ChPT as described in the previous sections is the
effective field theory of continuum QCD in an infinite volume, while lattice cal-
culations discretize space-time with a finite lattice spacing a and are restricted to
some finite volume V. In addition, the symmetries of the discretized version of
QCD are different from those in the continuum. This is most easily seen for the
case of rotational symmetry, which translates into a hypercubic symmetry on the
lattice. In addition, the implementation of chiral symmetry in lattice formulations
of QCD is a complex and well-studied problem. Therefore, ChPT should in
principle only be used for extrapolations in the quark masses after the lattice QCD
results have been extrapolated to the continuum and infinite volume limits.
A different approach is to formulate effective field theories that amount to mod-
ifications of ChPT to systematically take into account the effects of symmetry
breakings, finite lattice spacings, and finite volumes. These have been studied for a
variety of lattice actions, including the partially-quenched and so-called mixed-
action approaches, in which different masses and, in addition, different discreti-
zations, respectively, are employed for valence and sea quarks. Introductions to
applications of ChPT to lattice QCD can be found, e.g., in Refs. [5, 94, 174] and
references therein.

5.3.2 Pion Photo- and Electroproduction

Besides pion-nucleon scattering discussed in Sect. 4.3.2, electromagnetic pro-
duction of pions on the nucleon is one of the most prominent examples of the
application of baryon ChPT. A particular advantage of this type of reactions is the
fact that very precise experimental data are available close to production threshold
(see Ref. [61] and references therein). The special interest in neutral pion photo-
production at threshold arose from the fact that experimental data [12, 135]
pointed to a large deviation from predictions for the s-wave electric dipole
amplitude Ey,; based on current algebra and PCAC [48]. In Ref. [13] an
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explanation for this discrepancy was given: pion loops, which are beyond the
current-algebra framework, generate infrared singularities in the scattering
amplitude which then modify the predicted low-energy expansion of Ey; at next-
to-leading order [(’(¢*)]. For an overview of numerous subsequent activities, see
Ref. [24]. The so-called Adler-Gilman relation [3] provides a chiral Ward identity
establishing a connection between charged pion electroproduction at threshold and
the isovector axial-vector current evaluated between single-nucleon states (see,
e.g., Refs. [77, 164] for more details). Via this relation, the axial form factor has
been investigated in terms of pion electroproduction experiments [129]. A sys-
tematic difference between the values for the axial mass M, extracted from such
experiments and neutrino scattering experiments was explained in heavy-baryon
chiral perturbation theory [16]. It was shown that at (/(¢*) pion loop contributions
modify the momentum dependence of the electric dipole amplitude from which the
axial mass is extracted. These contributions result in a change of the axial mass of
AM, = 0.056 GeV, bringing the neutrino scattering and pion electroproduction
results for the axial mass into agreement (see Ref. [20] for further details).

5.3.3 Compton Scattering and Polarizabilities

Based on the requirement of gauge invariance, Lorentz invariance, crossing
symmetry, and the discrete symmetries, the famous low-energy theorem of Low
[130] and Gell-Mann and Goldberger [91] uniquely specifies the low-energy
Compton scattering amplitude up to and including terms linear in the photon
momentum. The coefficients of this expansion are expressed in terms of global
properties of the nucleon: its mass, charge, and magnetic moment. It is only
terms of second order which contain new information on the structure of the
nucleon specific to Compton scattering. For a general target, these effects can be
parameterized in terms of two constants, the electric and magnetic polarizabil-
ities o and f, respectively. The predictions of HBChPT at ((¢*) [15], generating
the leading 1/M,, singularity, are surprisingly close to the empirical values (see,
e.g., Refs. [61, 108, 173] for an overview of the experimental status). These
predictions contain no unknown LECs, i.e., they are given in terms of the pion
mass, the axial-vector coupling constant, and the pion-decay constant. Higher-
order calculations have been performed in the heavy-baryon framework [6], the
¢ expansion including the A resonance [103], and a covariant calculation
including the A resonance [125]. For a discussion of how to extract the neutron
polarizabilities see, e.g., Ref. [154] and references therein. Generalizations of the
static polarizabilities o and f in terms of dynamical polarizabilities are discussed
in Ref. [95].

Including the spin of the nucleon introduces, at third order in the photon
momentum, four so-called spin polarizabilities y,, y,, 73, and 7, into the Compton
scattering amplitude [158]. In a heavy-baryon calculation at ((g*) [17],
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the nucleon spin polarizabilities are isoscalar, i.e., the same for proton and neutron,
and behave as 1 /M,zr.13 As for the spin-independent polarizabilities o and 5, at
0(g*) the nucleon spin polarizabilities are entirely given in terms of pion-nucleon
loop diagrams and are thus expressed in terms of M, g4, and F. Full one-loop
calculations to (ﬁ(q4 ) have been performed in Refs. [90, 181]. No new LECs,
except for the anomalous magnetic moments of the nucleon, enter at this order, but
the degeneracy between proton and neutron polarizabilities is lifted. Unfortu-
nately, the next-to-leading-order contributions turn out to be very large, calling the
convergence of the expansion into question [181]. Predictions for the nucleon spin
polarizabilities including the A(1232) excitation have been discussed in
Refs. [103, 105, 149]. For a comparison with experimental results we refer the
reader to Refs. [61, 108, 173]. The status of dispersion-theoretic analyses can be
found in Ref. [60].

5.3.4 Virtual Compton Scattering

In virtual Compton scattering (VCS) one or even both photons are allowed to be
virtual. The corresponding amplitude for the proton may be tested in reactions
such as e p— e py,yp — pete ore p — e pete .'* The possibilities to
investigate the structure of the target increase substantially if virtual photons are
used since (a) photon energy and momentum can be varied independently and (b)
longitudinal components of the transition current are accessible. For the nucleon,
the model-independent properties of the low-energy VCS amplitude have been
identified in Refs. [96, 165]. In Ref. [96] the model-dependent part beyond the
low-energy theorem was analyzed in terms of a multipole expansion. Keeping only
terms linear in the energy of the final photon, and imposing the constraints due to
charge-conjugation invariance [58, 59], the corresponding amplitude may be
parameterized in terms of six generalized polarizabilities (GPs), which are func-
tions of the three-momentum transfer of the virtual photon in the VCS process (for
an overview, see Ref. [97]). Predictions for the GPs of the nucleon have been
obtained in HBChPT at 0(¢*) [102, 104] and ((q*) [111, 112], as well as the
small-scale expansion at ((¢*) [106]. While the electromagnetic polarizabilities
o and f of real Compton scattering characterize the global response of hadrons to
soft external electric and magnetic fields, the use of a virtual photon in the initial
state and a real low-energy photon in the final state allows for a local resolution of
the induced electric polarization and magnetization. In Ref. [131] it was shown
that three generalized dipole polarizabilities are required in order to fully

13 The n%-exchange graph driven by the WZW term of Sect. 3.5.3 results in an isovector
contribution which is usually subtracted.

' In principle, the VCS amplitude y*7 — y7 can be investigated in the reaction me — mey
[179].
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reconstruct local polarizations induced by soft external fields in a hadron. These
spatial distributions were determined at large distances r ~ 1/M,, for pions, kaons,
and octet baryons by use of ChPT. For an overview of the experimental status of
generalized polarizabilities, see Refs. [52, 61, 74, 108].

5.3.5 Isospin-Symmetry Breaking

In these lecture notes we always assumed isospin symmetry, i.e. m, = my.
Moreover, the electromagnetic interaction, breaking isospin symmetry, was always
treated in terms of external fields, i.e., without loop corrections involving virtual
photons. Besides the mass differences within isospin multiplets of a given
strangeness (see, e.g., Figs. 3.3 and 3.4), there are various dynamical manifesta-
tions of isospin-symmetry breaking. For example, the decay of an # into three
pions can only proceed via isospin-symmetry-breaking effects [82]. Cusp effects
such as in neutral pion photoproduction on the proton close to threshold [12, 19,
70, 172] or K — 37 decays [6, 33, 41, 42] are generated by the nucleon and pion
mass differences. The inclusion of virtual photons in mesonic and baryonic chiral
perturbation theory was discussed in Refs. [180, 145] and [144], respectively. An
additional inclusion of virtual leptons allows for a full treatment of isospin-sym-
metry-breaking effects in semileptonic decays of pions and kaons [117]. In the
baryonic sector, the general two-flavor pion-nucleon Lagrangian including both
virtual photons and leptons was constructed in Ref. [177]. There have been
numerous investigations concerning isospin-symmetry breaking in both mesonic
and baryonic sectors and we refer the interested reader to Ref. [161] for a recent
overview. Finally, one is often interested in separating electromagnetic and strong
contributions to a physical quantity. However, as discussed in Ref. [85], the
splitting of the Hamiltonian of QCD + y into a strong and an electromagnetic piece
is ambiguous due to the ultraviolet divergences generated by photon loops.
A systematic method for the “purification of physical matrix elements from
electromagnetic effects” has been proposed in Ref. [85].

5.3.6 Three-Flavor Calculations

In the mesonic three-flavor sector many calculations have been performed at the
two-loop level and fitted to experimental results (see Ref. [29] for a comprehen-
sive overview and Ref. [30] for an update). In comparison to the two-flavor sector
including pions only, the number of physical observables is considerably larger in
the three-flavor case and, due to the presence of different masses in the loops,
calculational effort and difficulty increase. Since m, > m,, my, the convergence is
expected to be slower and higher-order terms are expected to be more important.
Three-flavor ChPT seems to work fairly well in most cases but there also appear to
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be exceptions such as the o parameter of the Dalitz plot for # — 37° [30]. In the
baryonic three-flavor sector, the convergence properties are more controversial
(see Refs. [17, 24] for a review). For example, the results for the individual
contributions to the masses of the baryon octet differ strongly depending on which
renormalization condition is applied and which approximation is chosen for
keeping or neglecting higher-order terms in a given framework [34, 57, 67, 122].
The slow convergence is a combination of various circumstances: in the baryonic
sector the chiral order increases in steps of ()(q) as opposed to (/(¢*) in the
mesonic case; the ratio of the kaon mass to the chiral-symmetry-breaking scale,
Mg /(4nFy) =~ 0.42, is rather large raising some doubt on the validity of a per-
turbative treatment at low orders; in some channels resonances such as the
A(1405) and X£(1385) lie below the NK threshold. For calculations of other
observables such as magnetic moments or electromagnetic form factors see, e.g.,
Refs. [92, 100, 120, 138]. Alternative methods of discussing properties of hype-
rons include two-flavor chiral perturbation theory [178] and chiral unitary
approaches (see below).

5.3.7 Chiral Unitary Approaches

The extension of chiral perturbation theory to higher energies as described in
Sects. 4.7 and 5.2 consists of the explicit inclusion of particular additional degrees
of freedom in the Lagrangian. This method relies on a perturbative expansion of
physical observables, and the domain of applicability is governed by the existence
of an underlying scale such as the mass difference to the lightest state not included
in the Lagrangian. A different approach to study the impact of chiral symmetry on
phenomena of the strong interaction at higher energies is based on constraints
provided by the unitarity of the S-matrix, see, e.g., Refs. [109, 110, 139, 148]. At
low energies, chiral perturbation theory is used to describe meson-meson and
meson-baryon interactions. These results are then non-perturbatively extended to
higher energies while implementing exact unitarity and possibly further constraints
by causality and electromagnetic gauge invariance. These methods have been
applied to meson-meson and meson-baryon scattering in the SU(2) and SU(3)
cases as well as meson photo- and electroproduction (see, e.g., Refs. [35, 80, 118,
133, 147] and references therein).

5.3.8 Complex-Mass Scheme

In Sect. 5.2 we saw how the inclusion of virtual vector mesons generates an
improved description of the electromagnetic form factors, for which ordinary
chiral perturbation theory does not produce sufficient curvature. So far the inclu-
sion of virtual vector mesons has been restricted to low-energy processes in which
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the vector mesons cannot be generated explicitly. One would also like to inves-
tigate the properties of hadronic resonances such as their masses and widths
[107, 184] as well as their electromagnetic properties. Since the main decay of the
p meson involves two pions with vanishing masses in the chiral limit, loop dia-
grams develop large imaginary parts for energies of the order of the p-meson mass.
These power-counting-violating contributions, being imaginary, cannot be absor-
bed in the redefinition of the parameters of the Lagrangian as long as the usual
renormalization procedure is used.

An extension of chiral effective field theory to the momentum region near the
complex pole corresponding to the vector mesons was proposed in Ref. [55], in
which the power-counting problem was addressed by applying the complex-mass
scheme (CMS) [1, 2, 49, 50, 176] to the effective field theory. The CMS originates
from the Standard Model where it was developed to derive properties of W, Z,, and
Higgs bosons obtained from resonant processes. In the CMS, complex gauge-boson
masses are used in tree-level and loop calculations, necessitating the introduction of
complex counter terms in the Lagrangian. In the framework of EFT, the method has
been applied to the quark-mass expansion of the pole mass and the width of the
p meson, which are of particular interest in the context of lattice extrapolations
[123, 124], as well as the chiral structure of the Roper resonance [56].

5.3.9 Chiral Effective Theory for Two- and Few-Nucleon Systems

The extension of the methods described in the previous chapters to systems of two and
more nucleons was first suggested by Weinberg in Refs. [182, 183]. Interactions
between two nucleons arise from the Lagrangians of the pion and one-nucleon sectors
via one- and multiple-pion exchanges, supplemented by NN contact interactions. The
existence of nuclear bound states such as the deuteron implies that loop contributions
are not necessarily suppressed in the two- and few-nucleon sectors, as one cannot
obtain bound states by considering only a finite number of scattering diagrams.
Weinberg therefore suggested to apply the power counting to an effective potential,
which is defined as the sum of all diagrams that do not contain purely nucleonic
intermediate states. The potential is then iterated with n-nucleon intermediate states
to generate an infinite number of diagrams. In the two-nucleon case, the effective
potential consists of all two-nucleon-irreducible diagrams, and observables can be
calculated using the Lippmann-Schwinger or Schrédinger equations.

It has been argued that while this approach might produce phenomenologically
satisfactory results, there are issues whether and how the theory can be properly
renormalized [113]. An alternative was proposed in which pions are treated per-
turbatively [114, 115]. However, it was shown that the resulting expansion has
problematic convergence properties [73, 88],'> and the correct implementation of a

15 See Ref. [9] for a different approach to include pions perturbatively.



5.3 Advanced Applications and Outlook 245

chiral EFT program for two and more nucleons is still being debated (see, e.g.,
Refs. [8, 31, 69, 89, 146, 152] and references therein).

In addition to the two-nucleon sector, three- and four-nucleon interactions have
been studied in the chiral effective-field-theory approach, and a number of few-
nucleon observables have been calculated based on these interactions. For a recent
review and an extensive list of the relevant literature see Ref. [68]. A pedagogical
introduction is given in Ref. [153].

If one only considers energies well below M2 /m, it is possible to construct a
different EFT in which pions are integrated out and the only dynamical degrees of
freedom are nucleons interacting via contact terms. This pionless EFT reproduces
the results of the effective range expansion, while also allowing for the consistent
coupling to electromagnetic and weak external currents (see, e.g., Refs. [7, 14,
157] and references therein). Calculations in light nuclei up to A = 6 have been
performed within the framework of pionless EFT [116, 175].

Chiral perturbation theory has been a very active field in the last 25 years.
Readers who wish to supplement this monograph with additional literature or who
are interested in the present status of applications are referred to lecture notes and
review articles [17, 23, 24, 28, 29, 32, 40, 44, 51, 64, 66, 86, 121, 126, 127, 134,
137, 154-156, 166, 167] as well as conference proceedings [4, 25-27, 45, 140].
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Appendix A
Pauli and Dirac Matrices

A.1 Pauli Matrices

The Hermitian, traceless Pauli matrices 7; (i = 1,2,3)" are the generators of the
group SU(2). They are given by

(01 O /10
T = 1 0) Ty = i 0 ) 13 = 0o —1)

and satisfy the commutation relations

—~

A1)

[1i, 7j] = gk, (A.2)
where ;. is the completely antisymmetric tensor. Furthermore,
=1 (A.3)
The anticommutator of two Pauli matrices is given by
{ti, 7} = 2041, (A4)
and therefore
7,1 = gtk + 051 (A.5)
Two useful relations are given by
%rm =1, = -1, (A.6)

where we have summed over repeated indices. From Eq. A.5 we obtain for the
trace of the product of two Pauli matrices

TI'(T,'TJ') = 251] (A7)

' We adopt the convention to use the notation 7; for Pauli matrices in isospin space, while o;
denotes Pauli matrices in spin space.
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A.2 Dirac Matrices

The Dirac matrices satisfy the relation
Py =281 (A.8)

There are several different representations of the Dirac matrices, see, e.g., Ref. [1].
Independent of the chosen representation, further important properties of the Dirac
matrices are given by

O =1, ¢)’=-1, "= 6)=-" (A9)
The chirality matrix > is defined as
vs =7 =iy, (A.10)
and
PP =0, (02 =1 () =7 (A.11)

It is common to define a quantity ¢ as
L : :
o' =2 (" =) (A.12)
The generalization of the Dirac matrices to n dimensions as needed in dimensional
regularization results in

,}),U-,y“,yu = (2 - n)ny
Y = 48+ (= 4, (A13)
Yy = =200+ (4 = n)yy.

A number of further useful relations can be found, e.g., in Ref. [1].

Reference

1. Borodulin, V.I., Rogalev, R.N., Slabospitsky, S.R.: CORE: COmpendium of RElations.
arXiv:hep-ph/9507456



Appendix B
Functionals and Local Functional Derivatives

Here we collect a few properties of functionals and local functional derivatives
which are used in the main text (for a thorough discussion, see Ref. [1]). Local
functional derivatives are natural generalizations of classical partial derivatives to
infinite dimensions. For the purpose of illustration, let & denote the set of all
functions j: R" — K (K=R or C). If necessary, we may require additional
restrictions such as continuous functions j, smooth functions, integrable functions,
and so on. A real (complex) functional is a map j— Z[j] from Z to R (C), which
assigns a real (complex) number Z[;j] to each function j. A typical example is
given by an integral of the type

Flj = [ e,

with g an integrable function. We choose the convention of writing the arguments
of functionals inside square brackets. Moreover, let j be a function of two sets of
variables, collectively denoted by x and y. Then F[j(y)] denotes a functional which
depends on the values of j for all x at fixed y. Finally, a functional may depend on
several, independent functions j;.

In the following we consider a definition of partial functional derivatives based
on the Dirac delta function,

5o R" — R,
YU x=dy(x) = 0" (x —y).

In terms of the Dirac delta function the partial functional derivative is defined
as

SFLA) _ . FIf + 28]~ FIf
5f(y) T 0 & )

(B.1)
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Note the analogy to the partial derivative of an ordinary function,

07(x) _ . flx-+ee) —f(x)

0x; e—0 &

As discussed in Ref. [1], experience shows that the definition of Eq. B.1 leads to
the same results as a rigorous mathematical approach.

Partial functional derivatives share basic properties with ordinary partial
derivatives, namely,

@CL(X) (o F1lf] + o Fa[f]) = oy ‘ZEE;] + o 5(;? [’;] (linearity),
SF\[f] SElf]
3 (x )(Fl[f]Fz[f]) 5 x )Fz[f] [f] 0 (product rule),
0 P =70 5 1 = ()] (etain )

An important rule for the local functional derivative of a function is

of (y)
of (x)

=0"(y —x). (B.2)

Exercise B.1. Verify Eq. B.2.
Hint: Define f(y) as the functional

) = Fylf] = / =5y — ()

and apply the definition of the local functional derivative.
Analogously we have

og(f(y))
of (x)

=0"(y —x)g(f(v))

and
Fef»)) &
5f(xk). . 5f(x1)

One of the prime applications of functionals and partial functional derivatives is
the generating functional of Green functions. As a simple, pedagogical illustration
let us consider the Green functions

Gn(x1,y ..o, xn) = (O|T[p(x1). . .p(x)]|0)

of a real scalar field operator ¢ whose dynamics is determined by a Lagrangian .#.
In very much the same way as the element a, of the series (ag, aj, as, . ..) may be
obtained from the generating function

y—xi)...0" (v —x1)g® (F»)).
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1 2 1 3
fx)=ap +a1x—|—§a2x —|—§a3x + o

by calculating the derivative

d"f
dx"

(x:()) = dp,

the generating functional for the Green functions G, is given by
exp(iZ[j]) = (0|T exp {i/d“xfext(x)] |0)
— 141 [ ) 016 (:)/0)
o 4 .
+ ZE d*xy. . dxig(x1). . () (O] T[p(x1). . . (xx)]|0),
="

where
gexl = ](x)¢(x)

Remarks
1. Many textbooks use the nomenclature Z|[j] for our exp(iZ[j]) and Wj] for our Z[j].
We follow the convention and nomenclature of Gasser and Leutwyler.

2. Note that j represents a function and can thus be taken out of the matrix element,
e.g.,

(OIT[j(x1) b (x1)j (x2) b (x2)]]0)
= (O] (r1) p(x1)j(x2) p(2) O () — x3) + j(x2) p(x2)j(x1) (x1) O (x — x0)][0)
= j(x1)j(x2) O (x} — ) (0] (x1) b (x2)[0)
+j(61)j(x2) ©(x3 = 27) (0] (x2) b (1) 0)
= J(1)j(22) (01T [ (x1) p(x2)]]0)-
3. The underlying dynamics is hidden in the fact that both the ground state and
Green functions depend on the dynamics in terms of the equation of motion.

As an example, let us discuss how the Green function G;(x;,x;) results from
evaluating the second partial functional derivative,

2 0% exp(iZ[j])
5j(x1)5j(x2) j:().

In order to obtain a nonzero result, the number of and, in the case of several
different (combinations of) fields, type of partial functional derivatives must match

Ga(x1,x2) = (0[T[p(x1)p(x2)]]0) = (i)
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the number and type of fields in the Green function of interest. In the present
context this means that

Lo / d*5() (0 ()]0)

contain too few terms and

ik

i . .

m d*x;. . .d4xk1(x1). - J () {0|T[p(x1). . .p(x)][|0), k>3,
too many terms, because j is set equal to O at the end. Therefore, the Green
function G,(x1,x;) is obtained by the second partial functional derivative of the
generating functional.

Reference

1. Zeidler, E.: Quantum Field Theory I: Basics in Mathematics and Physics. Springer, Berlin
(2006)



Solutions to Exercises

In the following we provide solutions to all exercises. We strongly encourage the
readers to solve the problems on their own and to only use these solutions to check
their own work. There are often several ways to solve an exercise, and our
calculations simply represent one possible solution. While we sometimes omit
intermediate steps, our hope is that readers who have worked through the exercises
can easily follow the solutions outlined here. In certain cases we have deliberately
not chosen the shortest available explanation to allow readers with a wide range of
backgrounds to follow the solutions given here.

Problems of Chapter 1
1.1

Tr([/bav ib]/bc) = Zlfuder(id/bc) = 4lfubd5dc = 4lfabc :>fabc = ETr([/lav /Lb]ic)

1.2 fupe = —fpac is Obvious, because [A,, Ay] = —[Ap, A4)- Using the cyclic property
of the trace, the remaining relations follow from
Tr([Aa, Ap)Ae) = Tr(Aahphe — Apdate)
= Tr()ub}v(.)va — )vc}vb/la) = Tr([/lb, )L]/La)

1.3
4
TI‘({}W7 )\,b})\,c) = _5ab Tr(1] )vc) +2dader()\,d/ALc) = 4dabc
3 ——
=0
1 .
= dype = ZTI’({)V,I, Ab};yc).
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The d symbols are totally symmetric because

Tr({A, B}C) = Tr({B,A}C)

t(ABC + BAC) = Tr(BCA + CBA)
(
(

r({B, C}A)

T
T
Tr(CAB + ACB) = Tr({C,A}B).

1.4

2 2
Tr(ia/lb}vc) =Tr|( =01 + hapala | 2c| = =0uw Tl"(/lC) +hapa Tr(/ldic)
3 3 N—— N——
=0 = 204c
= 2hahc7

2
Tr();a/lb)nc/ld) =Tr |:)va/1b (§ Ocdl + hege ig>:|

2
= —0cd Tl‘(iaﬂvb) + Nede Tr(}ua/lh)ve)
3 N—— M~ N——
= 25ab = heca = 2hape

4
= g 5ab5c‘d + 2habehecda

Tr(AaAbiclale) = Tr {zaz,,;vc (i Sacl + hdefxf)}

4 4
= ghabc(sde + hdef (5 5ab56f + 2habghgcf)

4 4
- ghabcéde + géabhcde + 2habf hfcc‘,’hgd‘?'

1.5

i
Dygs — D) qp = [aﬂ +igs (UveiﬂUT + g—sauUUTﬂ Ugs

. o
= 0,Uqy + Ud,qy +igsUst, U'U qf+lg3;a”U U'U g
:1] i :1]

= —G#Uqf
= U(0y +igsAu)qr = UDygy.
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1.6
Gy =0yt — Oyl + igs|. A, A

0, <UJZ/VUT + iavUUT) ~ 9, <UJZ/MUT + ia,,UUT)
83 &3
+ g [U(;zf,lUT +-Lo,uut, U, Ut + ia‘,UUT}
83 83

=0,Ut, U + U8,/ U + Uet,0,U" +—0,0,UU" +—0,U0,U"
S e N et N e’ 83 83
(1) 2) 3)

@) G)
—3,Uet Ut — Ud,ot U — Ut ,0,U" ——0,8,UU" ——8,U0,U"
—_— Y Y

83 g3
6 7 8
(6) ™) (8) & 00)

+igs[Us Ut Ust U — U/, UT,0,UU"]
(11) (12)

i

— [0, UU", U, U] [0,UU",0,UU"].
|

83
(13) 0%
Make use of:
(4)—(9) =0,
—(12) = U, U, UU! +3,U0U' U< U
=i
= (8) +(6),
—(13) = [U«#,U",0,UU") = ~U.«/,0,U" —3,U/,U"
=—-03)— (1),
—(14) = —Jo,UU', 0, UV
83
= —9,uUte,uUt + —0,UUd,UU!
83 &3
= Lo,U0,U" — Lo,U0,U"
83 83

— (10) - (5).
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We thus have

= (2) = (1) + (11) = U(Quety — 0yt + ig3[A y, 4, U = U%,, U

1.7
! 1 ty _ pt
PR:E(“ +75):§(ﬂ+V5):PRa
1 1
PL:%(H —v5)=15(ﬂ—v§)=PL
PR+PL:§(1]+75)+§(1] —v5) =1,
1 1 1
Pizz(ﬂ +75)(1 ‘H’s)zz(ﬂ +2”/5+V§):§(ﬂ +7s) = Pr,
1 1 1
Pizz(ﬂ —7s5)(1 —“/s)zz(ﬂ —275+V§):§(ﬂ —7s5) =P,
1 1
PP = 1(1] +75) (1 —7s) = Z(ﬂ - /%) =0.
———
= P, Py
1.8
PRM :1<1]2><2 1]2><2)\/E(X+> :\/E<X+> —u
T2\ T pan pan -
1 1]2><2 _1]2><2> ()( )
Pru, == VE( "] =0,
L 2<—ﬂ2x2 3% yan
l a
Pait. _<ﬂ2><2 1]2><2>\/E‘( pa- ):O’
2\ Toxa Ta2 ——

1 o .
PLM_—< 1]2><2 1]2X2>\/E_< 17 ) = U_.
2\ Tl Tax —X-
1.9 We start from I' = (Pg + P.)T(Pg + P;) and make use of {I',ys} =0 for
I'eTy and [T',ys] =0 for T' € T, to obtain

I'el') : PRI'Pr =1TP,Pr =0, P I'PL=TPrP. =0,
FEFQZPRFPLZFPRPLZO, P, I'Pr =TP,Pr=0.

Sandwich between g and q using gg = Prq, q. = PLq, gr = qPL, and g, = gPkg.
1.10
Q.(t) = /d3x12(t75c’).

For a time-independent infinite volume

dQ.(t) [ 5 0J0(1,%)
dt _/dx or
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Assuming that the current density J,(z,X) vanishes faster than 1/r2

r = |¥| — oo, we make use of the divergence theorem as
/d%ﬁ-fu:/dﬁ.fa = lim Rz/dQé,ja —0.

0 —
— / d> MJFV-L(;,)?) = / d>,J"(1,X) = / AL
or a Oeg
=0 for 0% =0.

1.11 (a)
0 = 2@5@ +£’ia 5D,
= —m* D [—&(x)]| Dy — m* D,e(x) D,
=0
— W@ + DI { D [—e(x)] Dy + Dre(x)D; }
=0
+ 0"® 0, [—¢(x)D2] + 0" Dy0, [6(x) D]
= 0,8(x)(—0"D, @, 4 @, 0" D).

(b)

0¥

00,

Y
O¢

JH = = 0,0'D, — "D, Dy,

0 = = 0.

1.12

[ (1), Di (1, ¥)]
. / T (1, B0, (1, 5), D (1, 5)]

261

for

- _itu;lf/' / d3x<ni(tvf) [(D.i(t?)_é)a (Dk(tv)_;)] + [Hi(t’f)’q)k(t’y)] (Dj(tvz))

=0 = —i5’ (X — ¥)oq
= —14 5P (t,¥).
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262
1.13

100).0(0)) = -
(1.52)
=t [y (1B 00,9, T D0

o+ (1, 3) [0, ), @12, )]0, )

/ AL (1, )0 (1, 7). T (1, 35D 1, 5)]

(152)
~tagton / sy (111, 3)i6° (3 — )30, 5)

T (1,3) [0 (7 — )]0u(1,7))
it, ijlb ki / & (Hi(l,f)(bl(t,f)éjk - Hk(l‘,)_c')q)j(t,)?)éio
= 71'/d3x<Hi(t,f)la7Uth1q)](l,)?) - Hk(l‘,)_c))lh_’kltmqu)j(l‘,)_c‘))

_i(ta,ijtbjk - tb,ijta.jk) / dSXHi(t,f)q)k(t,f).

1.14 (a) In the following, the ellipses refer to terms of higher order in ¢

P(if — my)W
‘i’[ igj(x ] "0, — mN){ [1] — isi(x)%] ‘I—‘}
- [11 +igi(x ] [ﬂ e )E} (i — my)¥ + q’y”@ﬂsi(x)g‘l’ .

(i — my) W + Oyéi(x )‘i’y”%‘}’+...7

I
-El

l(aﬂcbiaﬂcp,. — M20,D;)

_{a

— M2[®; + gigjea (x)D;] [D; + eqpen (x)Di }

i T &igjea (%) ©;]0" [D; 4 eipren (x) Dy

1
= E(GH(I);@“(D,» — MTZE(I)I(I),) + smjausa (x)CI)j@“(I),- + - *y

= 1(6H(I),-6"CD,» — MTZI(D,(D,) =+ 8,jk6,,6i(x)(1)j6“d)k =+ - ‘y
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fig‘i’ysi) -TY
— —ig¥ [1] n i.sb(x)%”} Ps[®; + ergjec (X)) [11 i, (x)—} P
= —ig‘i‘ysc_ﬁ - TV

— ig Py @i (—i)eu0) 2

T
2 + SiCjSC(X)(DjTi + isb(x)gb(l),-r,} v —+ .-

— —ig‘i’ysfﬁ -2 — igWys {—%(D,«sa(x)(rira — TaTi) + igjta (x)d),-r,-] |

= —lgqj“/s(_ﬁ T — lgqjys [(Disa(x)s,-ajrj + siajsa(x)@ri]‘}’ —+
= —ig‘i’ySC_ﬁ TV A+

The variation of the Lagrangian thus reads

0 = aMSi()C) (‘PV‘”%‘P + siik(l)ia“fl)k> .

b
®) [ab, cd] = abed — cdab

=abcd + acbd — acbd —acdb + acdb + cadb — cadb —cdab
=0 =0 =0
= abcd + acbd —acbd — acdb + acdb + cadb —cadb — cdab
=a{b,c}d = —ac{b,d} ={a,c}db = —c{a,d}b
=a{b,c}d —ac{b,d} + {a,c}db — c{a,d}b.

Tl,r(t7f)lyﬁ~,s(tvf) ) ‘P;’t(tyy)‘}’(;’u([’y)}
(1.79,1.80,1.86) .
= L D { (00, W (5) Wi (0.3)

0 { L (0,), Wi (13) 9, 0.5)
ams e B o
= ‘Pl,r(t,x)‘{’,g,u(t,y)é (x—y)éﬂ;,ést—‘I’;t(t,y)‘l’/;vs(t,x)é (X—3)0us0m-

(©)
: Ay = / ¥l (%) o (%f) ) (\ij(x)amasl%,u (x) — ly;t(x)(sm-(smly,j,s(x))

-[ew(ii-Fmo

= igjjk / dPT (x)%‘}’(x).
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(d)
[ab, cd) = abcd — cdab,
=abcd —acbd + acbd —acdb + acdb —cadb + cadb —cdab
=0 =0 =0
= abcd — acbd + acbd — acdb + acdb — cadb + cadb — cdab
= alb,cld = aclb,d| = [a, c]db = cla,d)b

=alb,cld + aclb,d] + [a,c]db + c|a, d]b.

(e)

[ (£,%)T1;(2,X), @, (2, 5) I, (2,5)]
(1.82,1.83,1.88)
= (Dk(taf)[Hl(tvf)vQm(tvy)]nil(t7§)+(Dm(tv)_;)[(Dk(taf)ann(tay)}nl(t’f)
(1.81)
= —iQ(t, )L, (£,5)0° (X — 3)Opm + iy (£, 5)T;(£,%) 0 (% — 7) Ot

()
Bij = — igij&imn / A [ @ () TL, (%) 3y — Dy ()T (x) S
_ / P[0 (0)T1, (x) (BB — 330um) — PonCOTL () (531 — S1ndy)]
— / [, ()T, (x) — 8,0 (¥)TTe (x) — By ()T (x) + 3,y ()T ()]

:isijk/d3x8k1m®;(x)Hm(x).

We made use of
&ijkeim = OitOjm — Oim0ji.
1.15 The A matrices are suppressed as they are not relevant for the argument.
(1.38)
VE=qry'ar + qu"a. = @'q,
_ _ _1 1
A" =qry"qr = 4u"qL = a5(1 = 5)7"qr = 5(1 +75)7"qr
= (1] +75)qr —qv" (ﬂ —75)aL = 47759
%/_/ ﬁ,_/
= 5(11 +rs)g = E(ﬂ —Vs5)q
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1.16 Make use of P% = Pg and P Pg = PxP, = 0.

[Ora> Orp)
—» Aa — — A —
= / dxd’y [61*(t,X)PR%q(t,x),qT(t,y)PRqu(t,y)]
oL o Aa . o Abla o
= [ @ @-5) (¢ 0D PE a0 ) -4 5P a0
_ / drq!(1,7) Py [;2 ﬂ 4(1%)
:l:fabc/d3XqT(t,£)PR%q(taf)
:ifachRw
[QLa;QRb}
o P 2
:/dedSy [qf(t,x)PL?q(t,x) (t y)PR?bq(t ¥)
_ 3 3 3 /- — T j. )\.b s T
= | dxd’yo’(X—5)| q'(t,¥) PLPr— Pilr~ 54(t.5) —4'(1, y)PRPL PrPL> 2q( X)
=0 =0
[OL.ka, Qv]

S la ;. . .
= / dxd’ {qT(tyx)PL,REQ(t,x),q*(t,y)q(ay)}
3B 3= [ i p. ta ot p fa
= [ &xdyo’(X—-¥)| q (I,X)PL,REQ(W)—CI (fJ)PL,R?CI(EX)

=0.

1.17 Since .# is diagonal, we only need to consider /gy, 43, and Ag:

M =myly + m3 A3 + mglg,

1 1 /2 . )
o = () = 32 m) = ks,

2 2
1 m, — my
=-Tr(A3.#4) =
ms ) r( 3 ) 2 )

e Cigott) = Ly 4 mg — 2my) = 2T
me = — 8 M) = — my +— mg — 2my) =
B AV ‘ V3
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+ T4 (y)D(x) D' (2)O(yo — x0)O(x0 — 20) + DI (2)D(x)J*(y)O (20 — X0)O(x0 — Yo)
+ T ()@ (2)D(x)O(yo — 20)O (20 — X0) + BT (2)J" () D(x)O (20 — ¥0)O(yo — Xo).

D(x)J"(y) @' (2)O(x0 — y0)O (0 — 20) + @)@ (2)J"(y)O(x0 — 20)O(20 — yo0)

T[@(x)J" (y) @ (2)]

1.18

266

g 8 £ 8
£5 888 %
~— ~— — — _
230858 &
S~
=28 A% %
Ll
(=}
/m\/%\(V\,(,/w/vuO\_
®c0¢0®®0
—_— =~ o~ =
RO
$588 =0
e T3 3
yX/.%\(V\/ ~
RS e RN N
\/)\)\TIQOZ
= 22 = o=
SN~ 9 5
+ + + + 5
=2 223 8§
ZwUJYXJqN
____+0
2882832
N AN S
S220 1%
=) s o &
=V T &3S
| I @ o
c 58 g2 %
£ 22 8723
S @ @ < -
= = = X )
_/%\(V\,/W(x\vww\
- o O
.@\J)\J/\@/N\\.@/
— PO
V/./7I~\X(y(\
S = /.@u.\O Z o
~ g = 2 =
AN N D=
XVA((VAX
S ST T RS
SIS IS - =
[ N N e =

“qr.

qr —4qLY

ary"

—qL

~—

" ysar +auv" vsqc

~—~—

“ar + qLy"qu,
=dqr

qry
qry

[6*(v = x) = &* (v = 2)|{OIT[@(x) @7 (2)] 0).

1.19 (a) Make use of Eq. 1.38:
"q

qy
77s5q

+ 0P (2)8(v0 — 20)O(20 — x0) — D! (2)J°(3)3(z0 — ¥0)O(yo — X0)] D ()
q

+ @ (2) [~ D (x)I° () O (20 — ¥0)S(x0 — Yo) + J° () @(x)O (20 — ¥0)3(yo — 20)]
5y = 0)D(x) D' (2)O(x0 — 20) — 5*(y — 2)P(x) D' (2) O (xo — 20)

+ 64y — 1)@ (2) D(x)O (20 — x0) — 5*(y — 2)®' (2)(x)O(20 — x0)

=0'(y = )T[@)P'(2)] - 8*(y — ) T[P(x) D' (2)].

= 06" (x,3,)

Thus
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(b) Make use of Eq. 1.38:

49 = 4rqL + qLqr,
q9Ys9 =4qr Vsq9L +4L Vsqr = —4qrRYL + qL4R-
~~ ——
= —qL = QR

Thus

q(s — iysp)g = qu(s — ip)ar + Gr(s + ip)qs.
1.20 Using

LLiTi LERiTi
‘IL’_’(ﬂ —1 3 )QL» QR’_’(H - )CIR7

one obtains

iTi 1iTi
0L ext = 1qRY [T vu} qr +1iqLy [ R }QL
. 1iTi
+ iqry"ys [ > au} qr + iqr)" Vs[ 2 au} qr
lQRTSCIL + lé]LS 2 CIR - lQLTSCIR + lCIRSTCIL
_  ERiTi _ ERIiTi _ et _ ELiTi
~qRYsTP4L + qL7sP~5 4R ~ qLYs™ 5 PYR + aRVsP— 4L
0%,
a Ru — ext
BN aSRl
= IgRYy [2 v#} qr + iqry")s [E au} qr
T T _ T _ Ti
- lQRESC]L + IQLSEQR - C]R“)’sEPLIL + QLVSPE‘IRv
0%,
a Lu — ext
=i aCLt
=1iqLy [5 Vu] qr. +iqry"ys {2 au} qr
_ T T _ T _ Ti
- lQLESCIR + lé]RSZCIL qL)s 2P6]R + QRV5P261L~

For the divergence of the vector current make use of Eq. 1.38:
0. V# =0,R!' +9,L!

i
>P}Q~

T;
=iqy [2 Vy}ﬂ"’“]’/ Vs [5 a/t:|q 4{2 }C] 5]/5{2

For the divergence of the axial-vector current make use of ysgr = ggr and
vsqr = —qr and of Eq. 1.38 to rewrite
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qrY"qr — qu7"qr = 47"7sq;
qrY"7sqr — quy"vsqr = @v"q,
qrqL — qL4r = —q7s4,
qrYsq9L — qLYsqr = —49.

Thus
Al = B,R! — 0,LY
_— {Tiv] _’_i,y[fl’a} Lia {Tis} _’_,{Ti }
= 1q) ~ V5 Au ) ) Y .
Q/Vszauq Q/z,;q Q/sz 6]6]21761
1.21 Insert
Vu:_e&/u%’ a, =0, s=ml, p=0,

into Egs. 1.169 and 1.170, respectively, and make use of

Ti T 73 . T;
] = et [33] =it

to obtain
_ 4T
VI = *63ij€&’uqy“§jq = —eyjesl Vi,

_ Tj T ~
0,A} = —edd yexiq)" “/55161 +2miqys5q = —ed uesifA; + P

Problems of Chapter 2

2.1

2

~ A
V= —(£Dy + ') + 7ED0+ @)

ERSE

J
5(PF + 2000 + %) + 7(® £ 4000 + 6D 0" + 4Dy D" + ).

Make use of (D(z) = —m?/J. and consider powers of @':

2
@5 + Z(Dg =

Y
Dy = _Zcpg,

m
2
2
2

R
A

2

A

~ const :
4

D +
’ A 3\ 2 3 _ 30 93
~ @ (£20)) + Z(i4q>0) = +m’®y + ID] = FAD) + 1D) =0,

~O T e = - —
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- A 1 A
=V = L0 o (—2m?) D £ D" + L,
4 2 4
2.2 Define x = ®;®; > 0 and determine minimum of

m A,

[}

A
V’(x)=%+§x:0 = x=-

The solution is indeed a minimum, because V" (x) = % > 0. As a result, constant
fields with |@pis| = /=22 minimize ¥ (®;, Oy, D3).
2.3 Insert @3 = v + 5 into the potential,

- y) 2
’V:%[(DZHDZ (r]+v)2}+ﬂ(l)%+d)§+(r]+v)2}
02 a2 2 @+ @2 4P 4 2y 0?)
7( + @5+ 42y + V) + Z( T4+ @+ 0"+ 2y +v7)
m 2 e 2 22
7(cI> + @5+ 17+ 2y + V) + Z((I)chI)ann)
i
+= {((I)2+CD2—|—11)(2nv+v2)+(2r]v+v2)2}.
Make use of v = —m?//. and consider powers of ®7 + @3 and :
2 o.om A
N(Dl—i—(I)z:?—l—Ev :0,
2 ]
~ i %—l—%vz + W = —m?,
~nmPv4 0 =0,
A
~Const:m7v2+£v4:—zv4.

- 1 :
= 5(_zmz)ylz + Jvp (QJ% +®; + ’72) + ‘

2 A
Z(@F @3+ 7) =2

2.4 For notational convenience rename ®3 — @, d)g()) — @, and (Dgl) — ®;. The
criterion for an extremum reads

V(@) = AD° + m*® +a = 0.
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Ansatz (D) = @) + a®; + O(a?) =

i [(Do + Cl(D] + 0([12)]3 +m2[(1)0 + a(I)1 + 0(612)] + a — 0

= O} + 3a0;®; + O(a?)
0(a°) : 2@} + m*®y = 0.
@y = 0 corresponds to maximum and ®y = ++/—m?// correspond to the two
minima without explicit symmetry breaking.

O(a) : 37a®}®, +m*a®; +a =0,

5

or, using ®f = —m? /2,

1
_3m2(I)1 + m2®1 +1=0 = &, = 5
2m

For both values of @, corresponding to the two minima without explicit symmetry

breaking we find
(@) = i\/_—szanLO( %)
- i a2 T

We determine the values of the potential by explicit calculation:

V(D)) = V(D + a®; + O(a?))
= 7" (Do) + a®; 7" (®g) +0(a*)
——
= 0(a)
= ”V((Do) =+ 0(612)
= 770(Dg) + ady + O(a?)
1 (—1712)2 —m?

=— + ?).
YR ;LaJrO(a)

Problems of Chapter 3

3.1 (a) The Feynman rule for a vertex is obtained by evaluating i.%;, between
states. Plane waves, normalization factors, and (possibly) spinors are dropped at
the end. The rule may also be applied to momenta which do not satisfy mass-
shell conditions.
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A
(0liZ ()|, d) = (0|5 (x)9*(x) |0, & ) = —id,
2
since two possibilities to contract ¢ fields.
(b)
Mgy = —i i (il = —p— L
) 2_M2 0t Cs— M2 40t
(p1+p2) +
i i
M) = =i (mid) =~
®) (01 — p3)> — M2 + 0+ t—M? +i0*
i i
My = —if (—id) = —P————.
“ M(Pl —pa)’ = M2 40+ ) u— M? 4 i0+

(c) For {s, |t], |u|} < M? we can expand

i o 1 o 1410 {s,t,u}
{s,t,u} — M?> +i0t le_{%_«é“}_i(ﬁ_ M? M? '

(d) Feynman rule:

"2 .02
54 AN — iran :31/1
(polide* () lpg) = () = i(A) =

from which one can read off ..

3.2
[Ova, Ovb] = [Ora + OLa> Ors + Q1)
= [Oras Orb] + [Qra; Q1) + [OLa, Orb| + [Oras Ors)
= ifathRc + 0 + 0 + iﬁleQLC
= ifabc(QRc + QLC)
= iﬁlchVc-
3.3

[Qva, Oap) = [Ora + OLa» Orw — OLs)
= [Ora, Orb) — [Qra» Orv) + [O1a> Orb| — [OLa; QL)
= ifabeOre + 0+ 0 — ifupc Orc
= ifupe(Ore — OlLe)
= ifabc Qac,
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[Q4as Oav) = [Ora — OLa» Orw — OLb)
= [Qra;> Or] — [Ora> Qb)) — [QLas Oro] + [QLa, OLs)
= ifabcOre + 0 + 0 + ifapc OLc
= ifupe(Ore + OLe)
= ifabcOve-
3.4 Note: ysPg = Pg and ysPp = —Py.
Sa = q/aq = qrAaqL + qLiaqR
= QRUI]:’)WULQL + QLUZiaURCIRa
Py = iq)siaq = iGR)sAaqrL + 1GLY5%aqR
= —igraqr +iqrlaqr
— — igrUbaULqr + iqLU)} aUrgr.

35
8 b3 + %‘f’s b1 —idy  ba—ifs
d) = Z (rba)ua == d)l + l(,bz _¢3 + \/quss ¢6 B l¢7
a=1 ¢4 + l¢5 ¢6 —+ l¢7 *%QSS
LA o
= V2o -+ \/Lg'i V2K° |,
V2KT V2K -3y
ie.

n’ = ¢3, =P
1 1

ot :ﬁ(¢l —ipy), m :E((bl + i),
1 1

K" :72(¢4_i¢5)a K‘:ﬁ(¢4+i¢5),
1 _ 1

K° = ﬁ((ﬁs —i¢7), K = ﬁ((f’ﬁ + i)

3.6
Tr(d,UU")
P D N2 L ihia i i$)%i
. (i%+,au¢z¢;é¢zau¢+l%<z¢> +z¢§;§t¢+<l¢> l@u%.-.) Ut
o . ) e SN2
~Tr ia;;bU*+laﬂ¢l¢2;§:dna”¢m+la”¢(l¢) JFZ(JSL3G?HFQ§?[¢+ ) b yyis...
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au(f) 1 u¢ ¢ a;l¢1( )
0U+ F FO Ul+i Fy 2 Fg

2
=T ii@j’(ﬂjt (’5%(;@ +--->UT

—

Oup
—Trl i (]
T Fo —UU

=Tr IM:|
L Fo

:%Tr(/\a)
Fy

=0.

*: [¢,U'] =0 and cyclic property of trace.

3.7 (a)
F?B

F2B
Lop =T (MU + UMY = =0

Tr[.4(U' + U],

where
o9 e ¢
Fy 2F} 6F3 24F}
o
Fo 2F; 6F; 24F}
o> ¢ )

_|_

+...7

With ¢ = ¢, u:

2 _
35 =+ O

and analogously for $* term.

(b)

(; b+ dia) = FZM% 2¢2+...> . (¢o+%¢z+--->xa]
0
1 1
]Tg(l“qbo + ¢ola) + F_g(ia¢2 + $rla) + O(F—g),

et B’ B+ 9] = %mé + Qo + BRathy + 6300)

0
1
+0 F6
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(©)
Tr[ M (Lapy + Pola)] = Tr[ M (2ad, + Ibla)l oy

4
ot (o0 + 20

4
= g(mu + mq + mg) o, + 4(madaps + mgdaps) Py,

where we used Tr(4,) = 0, Tr(A,45) = 204. Set a = 1 and use dip3 = 0,d18 =
di180p = %5;;11

=[SOt mat ) ] b = 20m,+ o)

Since we want ¢ to minimize # g, we set Tr(...) = 0= 2(m, + my)dy = 0.
For nonvanishing quark masses therefore ¢, = 0.
(d) With ¢, =0

)““ 5 Aa o 2/la 3)\11
] (s gt Pt It it i)
= Tr[ M (Zar + $2/a)],
and calculation for ¢, as above for ¢,.
3.8
F2B N
o ==2Te (U + UMY
F}B
=T 4(UT+ U)]
F}By e
=——Tr| M1 —=+---
(-
F}Bo(m, ) B
—20 o(m +md+m)__0Tr(%¢2)+.__.
2 2
We need

Tr( M $*) = mu($?)y) + ma($?)yy + ms(d7)s3-

2
(") = (¢3 +%¢8> +(P1 —io)(P1 +ihy) + (Ps — ips) (s + igs)

= Gt by + 3 0 0+ 014 0d
2
()= 01+ 1620 — ) + (54 b )+ — i) 0+ )
= B G 0 - bid+ 30+ 0+ 03
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i ; . . 4
()33 = (9 + i6h5) (9s — iths) + (b + i6h7) (g — ihy) + 567
4
= 0L+ 65+ b + 97 + 505
Note: One could also start with ¢* expressed in terms of physical fields.

— %Tr(,/%q’)z)
B

= 2 (my + ma) (3 + 3+ $3)

. -~ ma) sy

+

O m) (@ 62) + (g m (@ 3) 3 (ma g + 4m,)

1 B
= —Bo(m, +my)n"n — EBO(m” + mg)n°n® — —O(mu — mg)n'y

V3

o 1om, 4
— Bo(my + my)KTK~ — Bo(mg + mg)K°K® — EBOWWZ.
3.9
D,A= 0,A—irA +iAl,

— 0,(VRAV]) — i(Vrr,Vh + iVRO,VE) VRAV] + iVRAV] (VL V] + V.0, V)

= 0,VRAV] + Vid,AV] + VA0, V]

— iVRr AV] + VR0, VLVRAV] +iVRAL V] — VrAD, V]
N e
— —0,VRAV]

= Vr(0,A — ir,A +iAL)V]
= Vr(D,A)V].

3.10

Tr[(D,D,U)U"] = Tr[(3,(D,U) — ir,(D,U) + i(D,U)l,)U"|

=9, Tr[(D,U)U'] —Tr[(D,U)d,U"|
=0
— iTr[ry(D,U)U'| + iTr[(D,U)1, U]
= —Tr[(D,U)(d,U" +iU'r, —il,U")]
= —Tr|(D,U)(D V)]
= —Tr[(d,U — ir,U + iUL)(D,U)']
= =0, Tr[U(D,U)1| +Tr(UB, (D, U)' + (ir,U — iUL)(D,U)']
=0

= Tr[U(D,D,U)".
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3.11 (a)

Solutions to Exercises

'+ V2nt o V2K*
¢p=| Voo —n"+dm V2K
- 0 2
\/EK \/QK —ﬁr]
0+ %”I V2n~ V2K~
= \/57'5Jr -0+ %r] \/EK' 0
+ 0 2
\/ZK \/EK %r]
= ¢’

(b) Verify: (AT)" = (A”)T,

(©)

(d)

n=1:AT=A"
n—n-+1: (AT)n—H — (AT)nAT _ (An)TAT _ (AA")T _ (AnJrl)T.

.qS) - 1(1‘)" )
U=expli=—)] = il
p(FO ;n' 0 ¢
S L) W= (L) = o
— —— — i _
n:On! FO n:On! F()
rH:v/l—i—aHn—)—vz-kaZ:_[Z,
lu:\/u—aﬂl—)—vz—aZ:—rz,

7= 2Bols +ip) = 1,

: T
7' =2Bo(s —ip)—yI".

DU =9d,U —ir,U +iUl,
=0, U" —i(=I)U" +iU"(—r))
=0,U" +i(ul)" —i(r,U)"
= (D, U)".
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(e)
[D U(D"U) } HTr{(DMU)T[(D”U)T}T}
_Tr{(DuU)T{(D"U)q }
- Tr{ [(D#U)TD,,U] }
- Tr[(D*‘U)TD U}
_ Tr[DMU(D”U)q,
Tr(x U + Uy) HTr(XTUTT cur T*)
= Tr(xTUTT + Uy )
_ Tr{(Uu) +(XTU)T}
=Tr(U'y + 7'U)
= Tr()(UT + U/T)
® Tr [DH U(D"U)'D,U(D" U)*]
HTr{ p,U) (D"U)" (D,U) (DVU)TT}
:Tr[ (oo (D,U) (D"U)TT}
- Tr{ U)'p,UD'U)'D,U) }
:Tr[ U)'D,U(D"U)'D U}
:Tr[D v)'p"u(D,U) DU }
= Tr[-U"(D,U)U'D"U(-U")(D,U)U'D'U]
= Tr[(D,U)U"(D*U)U'(D,U)U'(D'U)U"]
= Te[DU(DV) DUD'V)|.
3.12
2 2
IZ"Tr[D U(D"U) } %Tr[(@HUJriUlH)(@“UT —il'uh]
2
=+ i&Tr(UzMa“ Ut -1 UtdU
4 ——
=-o,U'U

= TTr(l MUTU) +

)_|_...

277
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3.13 (a)

Ijtv“( V) ﬂv = 07 (*)
{’ypa yS} = 07 (**)
ﬁp"u‘ (Dus i) = =MV (Dus ). (3 % %)

iy, (Py) (v + Pu) )77 (U= 75) Vi (Pras S1e)

() _
=1, (p‘,)pupy"(ﬂ — V5V (Pus Su)
(%) _
= Uy, (pv) (1 + VS)PMPVPVW (Pm Su)

(%)

—Myly, (p‘,)(ﬂ + VS)VW (pm sﬂ)'

O (00t 2, (= 15 (51

X [ty (py) (v + P) 7" (T = 5) vy (P s’
= mzﬁvu (Py) (N + 95)vier (s 810 Vi (Ppes 51 (1T = 75 )u, (pv)
= szr [tay, (Py) ity (D) (0 + 95) Vi (P S1) Ve (Ppes 1) (T = 75)]

szr[ I+ 35— ) 2

1 9
- szI' |:2ﬂ1 1] + VS ﬁ,u mu)%m}

- szr[ﬂ (T+7s) p/u my)(1+7s f/t)]
=mTr[§,(1 + 95) (B, — muys £)]

= T [y By — muBy)s $ut ByysPu — mubyisys 5l
- mﬂTr [ﬂvl”/u N

= 4mz(pv “Du— MyPy - Sy).

+: Only even number of gamma matrices.
Make use of four-momentum conservation:

P=Putpy=p =M, =p,+2p,-p,+p; =m,+2p,p,
M2 —m?
:pu'pv:%~

1 m2 mypy - s
A 202 uPv " du
ce = m#Mﬂ[ (1 2) ——7% ]
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(c) Sum over muon spins:

1 1 m2 mypy - Sy —1 m;zt
2\ ) | T e

R

279

The first term does not depend on the spin projections and simply yields a factor
of 2. The second term adds up to zero. This is most easily seen in the rest frame of
the muon (p, -s, is a Lorentz scalar) where the spin four-vector is given by

SurR = (07 S"ﬂR)Z

va “Sp = _ZﬁvR'yﬂR =0.

B +5.r

Integration with respect to the unobserved neutrino yields

8n M2

[Py d&py
dl' = —GpV,,Fom M| 1 ——5 (M, —E, —E,).

E,.E,

Now consider

d3pl PzdPudQu
‘5(M, — E, — E,) = "75(%—,/ 2 4 p2
/ E,E, ( u v) / E.E, m, + py

Make use of

/ e fx) Z \g

where g(x) is supposed to have only simple zeroes for x = x;. Here,

g(x) =My — /m2 + x> —x.

The zero is given by

with
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2
PyApudy R
2 2 2
i x% E,(xo) _ 47xg =4nMn_m”L:2n | _m_g '
EH(XQ)X() EM(XQ) + Xxp EH(XO) + xo 2M, M, Mn

The final result for the decay rate is given in Eq. 3.89.

3.14
(a) We need to investigate the behavior under ¢ — —¢ or U < U':

2 2R
& = I%Tr(a,anﬂUT )+ #Tr(UT +U)

UUt F 2

= 5 Tr(0.U'0"0) + BmTr(U+ U') = .

b .
® U:ﬂ+£_1i’2_’i)3+1¢4
F 2F? 6F* 24F4 ’
1¢* 1

F 2F 7T 6F3 ' 24F it
We need to collect the terms containing 4 fields. Contribution from second term:

F’B 1 1¢° B s
il " = Tr(ugh).
2 r[ (24F4 +24194*)} 2apr AP)

Since both 3,U and 0"U' are O(¢), we only need their expansion to third order:

0t 10,09+ dp0ud i 009" + ¢ + §°0 w

U =ip-—3 F2 6 F3 o
Ut _ia“_¢_la“¢¢+¢@“¢ la“¢¢ + ¢ P + ¢* @"¢>
F 2 F? 6 F3
We obtain

FZZTr(aNUa*‘UT)
P [(u_¢ 10,09 +¢0u¢p 16;4¢¢2+¢a,1¢>¢+¢>2a¢ )
4

F 2 F? 6 F3

" 0P 10"¢p+90"¢ i0" P’ + o pop+¢° 6”¢>
"F 2 F2 *5 F3
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=t T O B 40,590 +0,06°079)

(0006 +60,9)(" 9+ 40"9)

—5@¢&&%+¢@@¢M¢+&@@M¢)+

Under the trace two distinct orderings:

4 T 0,0100°6) + - = 2o Tr((6,0,0119.,0') +

(c) Insert ¢ = ¢;7;. Making use of

[}, 0ud] = 2iejjd:0uT,
Tr(txty) = 20k,
EjjkElmk = 5i15jm - 5im5jla

¢2 = ¢i¢ia

we obtain

1
zﬁzzﬁﬁ%wﬁﬁ&m@y¢‘*mﬂ¢¢¢¢

6F2(¢ 0" $0u0;0; — ¢:;0,¢;0"d;) + W¢i¢i¢j¢jv

where M? = 2Brih.

(d) The Feynman rule for Cartesian isospin indices a, b, ¢, and d is obtained from

“1.%#”. For example,
<pca C;Pd, d|¢iaﬂ¢ia#¢i¢j|pm a; P, b>

results in 24 combinations of combining 4 fields with 4 quanta, e.g.,

281
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(Percspa.d|o; 8“‘4)1- ou0; ¢j\pa,a:pb‘,b>

= 8icip! 8ia(—ipau)8jadib = Pa - Pa SabSea-

The complete result reads

R
6F2
+ 04cOba(—ipa + ipc) - (—ipp + ipa)
+064a0pe(—ipa + ipa) - (—ipp + ipc)]

— 4{0u0cal(—ipa) - (—ipp) + (ipe) - (ipa)]
+ SacOpal(—=ipa) - (ipe) + (—ipp) - (ipa)]
+0uadrel(=ipa) - (ipa) + (=ips) - (ip)]} )

2

24F2
- 3—;72{5ab50d[(pa +pb)2 + zpa *Pb + ch *Pd + Mz]
+ SacOpal(Pa — Pe)” = 2Pa - Pe — 2Pb - Pa + M?]

+8aa0vel(Pa — Pa)” — 2Pa - Pa — 2P pe + Mz]}

= i{ (2[5ab55d(—ipa —ipy) - (ipe + ipa)

+ 8(0abOca + OuacOpa + 5ad6bc):|

l
- ﬁ[aahécd(?’s *Pi 7Pi *p? *Pi +M2)
+ 3acOpa(3t — p2 — p* — pi — pi + M?)
+8adpe(3u — p* — p2 — p} — p2 + M)]
— M? — M? u MT

=i 5ab6cd 2 + 5uc5bd 2 + 5ad5bc 2

- ﬁ(&;h@d + GacOpa + 0adlpe)(Aa + Ap + Ae + Ay),

where Ay = p; — M?.
(e)
s+t+u=pa+p) +Pa—pe) + (Pa—pa)
= P2 +2paPo+ Dy +PE— 2P Pe +Pe+ P2 — 2P0 Pa+ D5
2 2 2 2
=3p,+p,+p.+p;+20a o —Pc—Ppa )
= —Pa — Db
=3p2 +pj, + Pl + Py — 202 = i+ pp +pE+ Dl

3.15 At threshold
Sthr — (2Mn)za
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and thus
3M?
A(Sthratthra uthr) = an.
e/ =0
32na8 = T1:0|thr
= [BA(s,t,u) + A(t,u,s) +A(u,s,1)]y,
= [Q’A(S>Z7 u) +A(S>t7 M) +A(tvuas) +A(uvsa t)}thr
_OMZ s+ 1+u—3M7),
F; F
™
= Fz .
o/ =2:

Son = T2,
= [A(t, u,s) +A(u>S7 t)]thr
= [A(t,u,s) +A(u,s,1) + A(s, t,u) — A(s, 1,u)]y,,
M?  3M?
"2 P2
M2
F2

n

3.16 Consider

Ux) = %[a(x)ﬂ +it(x) -7, o(x) =\/F? — 7 (x).

The substitution 7 — — 7 corresponds to U « U'. As in the solution to Exercise
3.14 (a), ¥, is invariant.
In terms of the pion fields, the Lagrangian reads

@, - P [@uol + 0,7 7) (@01 — i85 7
4 F F
F?Bin_ (ol +it-T ol —ift-T
T
+ > r( 7 + 7 )

1
= E(auaa"a + 0,7 - 0"%t) + 2BmFo.
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Making use of

- 0,7
0,0 = — J”,
yields
1. ... %077 0" - 7
gzziaﬂn~a”n+w+2BmF l—ﬁ
1 7.0, o't Bm(7)?
— R 2 N ) i
= 2BmF —|—§6un-6’n—Bmﬂ: + e T +

Note that the dependence of ¥, on the fields =; differs from that on the ¢; in
Exercise 3.14. Nonetheless, both versions generate identical observables. The
Feynman rule obtained from

reads

M= l<ﬁ{lpc *[0cadan(—ipa — ipp) + dcadan(ipa — ipb) + OctOad(iPa — ipa)]

+ lpd ‘ [5cd5ah(7ipa - lPh) + 5da5bc(7iph + lpc) + 5db5ac(7ipa + lP()]
— ipa + [0acOpa(—ipy + ipa) + 0addpe (—ipp + ipc) + Oapdca(ipe + ipa)]
- lpb : [5b65ad(_ipa + lpd) + 5bd5ac(_ipa + ch) + 5ba56d(ipc + lpd)]}

2
_mg(éabécd + 04cOpa + 5ud5bc)>

1
= l<ﬁ{5ab5cd@c ' (pa +pb) +Da - (pa +pb) + PDa - (pc +pd) +Dpb - (pc +pd)}

+ OacOpalpe - (Po — Pa) +Pa - (Pa — Pe) + Pa - (Pa— Pv) +Pb - (Pe — Pa)]

+5ad5thUc'(pa Pd)‘f'l?d (Pb—Pc)‘f'Pa'(Pc Pb) + Db - (Pd_pa)]}
2

M
_ﬁ(éabécd + 5acébd + 5ad5bc)>

_ M2 M2 _ M2
=i |:5ab5c‘d + 5ac‘5bd + 5ad5bcu 2 :l .

In the last step we made use of momentum conservation, p, + pp = p. + pa, and
introduced the Mandelstam variables s = (p, + pb)z, t=ps,— pc)2, and u =

(Pa — pa)*. Comparison with the result of Exercise 3.14 shows that the invariant
amplitudes are identical for on-shell pions.
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3.17 The first part is given by

Tr([¢, 0,¢][,0"¢]) = 48F2¢a 1 PP GaTr( [Aay Ap]  [Aes Aa] )
= 2ifapele = 2ifcar iy

= 12F2¢“a Gpp 0" by favefedr Tr(Aels)
0
= 20,

48F 3

= g Rub b3 e

For the second part we assume isospin symmetry. The mass matrix is given by

2m + my 7
M = 1+
3 V3

We first consider

Tr(¢4) = d)ud)bd)cqsd’rr(/laibic}“d) (]5 ¢b¢ d)d( OapOcd + 2habehecd>

Since ¢, ppp. ¢, is completely symmetric, only the symmetric parts d of h
contribute,

- ¢ ¢b¢ ¢d( abécd + 2dabede(d>

= ¢a¢b¢c¢d|: ab(scd + (51105}1(1 + 5ad5bc - 5ah5c‘d +facefbde +fadafbce) .

Again, the f terms do not contribute due to the complete symmetry of ¢,¢p, b, ,

2 -
= g‘z’ad)bd)cqsd(‘sabécd + 0acOpa + 5adabc) = 2¢a¢a¢bd)b'

The second term reads

Tr((rb‘l/lg) = ¢a d)bd)cd)dTr(;La)‘b;Lcid/lg)

4 4
= Gy PpP:Pa (g hapcdag + 3 Oaphcas + 2habehecfhfd8> .
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The complete symmetry of ¢,¢,¢.¢p, results in
4 4
= gdahcqsad)bd)cd)S + §d6d3¢cl¢a¢c¢d
+ 20,0p P adave(decs + ifeer ) (dras + iffus)-

Upon contraction with ¢,¢,¢.¢, we can replace:

dapeecrdpy = %(5005@" + OarOpe — OapOcf + fucefvfe + fufelbee)dras
- %5acdbd8 + %5bcdad8 - %5abdcd87

dapelecffrag = %(5“51# + OafObe — OabOcf + facefvfe + fafefbee \fas
- % acfbas + %5b¢:fad8 - %5abfcd8 —0,

dapefecrdpas = —daveferedpags = (dpfefeac + dpaefene)das — 0,

dapefectfras = —dapefercfias = (dpfefeac + dpaefebe )fras — 0,

and obtain

4 4
= gdabcd)aqshqsc(rbS + gdcdS(z)aqsa(bcqsd
1 1 1
+2¢,9pPPa (3 Oacdpas + 5 Ovedaas — 3 5ahdcd8>

= 3 DsbubrDedune + 20, B,

We finally obtain

Bo 4\ (2ﬁ1 + ms>Bo
24F§ Tr(,/%(;’) ) - 36F(2) ¢a¢a¢b¢b
(ﬁ’l — ms)Bo 2
# O A (5 ubt s+ b )
3.18 (a)

DU =d,U —ir,U +iUl,
— U — i(—e/ ,Q)U + iU(—est ,Q) = 8,U + iest ,[Q, U],
(D*U)" — (0"U + ie"[Q, U))!
= Ut —ier"([Q, U))!
= 'U" — ie/"(—[Q", U')
= *U" +iest"[Q, U"].
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Under U « Ut

— Ut .
DU =0,U+iest,[Q,U)"= 0,Ul +iest,[Q,U'] = (D,U)",

vy 5V pru.
F} i UoUTFG T it
= JTD,U(D')] = PTrl(D,0)' D" U) =2 Te(D, U (D" V)],
b) F2
(b) ZOTr[DMU(D“U)T}

F2
:ZOTr{(6uU+ier/#[Q,U})(@”U’L—i—ie&/*‘[Q,UW)}

Fs ty Fo ; Nai i
:ITr(auUG”U )+7Tr(6HUle&i”[Q,U | +ie<s,[Q,UIO"U")

F2
—Zoezy/,,tsz/”Tr([Q,U} [0,U"])
2
= -~+ie;z¢'ﬂ%Tr(6"UQUT —"UUTQ+ QU U —UQO U +---
— ; Fg T gt nyrt myrt
—-~-—ze¢2fuITr(—QU HU+Q'UUT—Q U'U I+Q Uty )4
=-0'UU" =-U"U
=2Tr(Q[o"U,U™)

F2 . F2 F2
:ZOTr[aﬂ Uo'u'] - ieﬂMTOTr(Q[a“U, U') —ezaz/ﬂaz/"onr([Q, U)Q,u')).

[6“U,UT] = [ialrij+""ﬂ _l'1?0+...} Zi[a“qﬁ,d)]-i--“

[0, V][, U'] = [Q,ﬂ+i}i+m] [Q,ﬂ —i£)+~--] _%[Q,¢}[Q,¢]+....

33*2‘/’ — _eegz/ﬂ%Tr(Q[aﬂ(f)a })),
ggA—ZQb = —12/ /' Tr ([0, 9][0, ¢)).

(d)

(0%, ¢]
g Vant o VK (204 gm V2nh V2KY
= Var -+t V2K || V2 -+l V2K

— 0 2 — 17 2
V2K V2K —n V2K V2K® T
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() (070 + ) (n° + L) + 20" w4+ 20° KK

20ttt + (—0fn0 + %@“n)(—no + %n) + 20"K°K°

20K~KT 4 20"K°K® + 30"nn

( (n° + \%’1) (0"n° + %6”11) + 27t +2KTO K~
2ot + (—n° + \%n)(—@”no + \/Lga”n) + 2K99"KO

2K 'K 4 2KO0"K® + o'y )

Mntnm —ntofn +OKTKT — KTO*K™
=2 oo Mgt — o otmt + O*KOKO — K9OHKD
OMK~Kt — K- O"Kt + 0"K°K° — KO9+KO

= 257 = —iedt, %(6‘%*717 —n' ' +'KTKT —KTO'K )
- %(a”n_n’L — o't + KK — K°0“K?)
—%(6“K‘K+ — K"K + KK — K°9“K?)

= —ieo/ ,(O'ntn” —ntO'n + KK — KTO'K).
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289
Do o (Frd v v
[0,¢] =10 —3 01 Vo 2+ g V2K°
0 0 — V2K~ V2RO =2
n‘%%n V2nt V2K* 2 0 0
- V2 -+ gmm V2K [0 -} 0
VIK- V2RO % " 0o 0 -1
( 0 V2nt \/§K+)
= | —v2n~ 0 0 )
V2K~ 0 0
0 V2t V2K 0 V2t V2Kt
[0,9]]0. 4] = —v2r~ 0 0 V2= 0 0
—V2K- 0 0 —V2K- 0 0
—2ntn —2KtK~ 0 0
= 0 —2n nt —2n K"
0 2K nt —2K K*
ntn +KTK- 0 0
=-2 0 nnt nw Kt

0 Kot K K*
1
= g Zewﬂw(—zm n —4KtK")

=t A (nTn +KTK).
(e

M = [Fied™ - (p+q+p)|——F5——][Fiec-(p+ p+gq
(e (p a0t 22 )
. =p'+q
1
+ i€8' — /+ N ieﬁl*' —|— —d +2l62 /*'
ies (p =g+l e+ pd )

/
=p' —q
it S G ) e =d o =)
(p+q)° —M? p=dr q) —M>
———’

=S _I/l
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The amplitude is the same for 7 and 7.
(f) Gauge invariance

=pP+tq
&e—q 8/*'(+ +/)(p+ /+/)
u =i g Pt et P +q
2p-q+q¢*
=p —q
/_/\\/ 1\ o/* /
g (p—dq 4P -(p+p —q)
-2 q+q

=i?2d" qg—¢" - (p+q+p —p—p +q]=0.

(g) Crossing symmetry
& (ptgt+p)e-(p+p' +q)

M = ie* |2 ¢ 5
(p+q) —M?
——
=y
e p—q+p)E"-p+p —9q)
(p—q) —M?
————
=u
it g P —d +P)E (p+p —q)
(p—q) —M>
———
=u

& ptgt+p)e (p+p +q)

(p +q)° —M?
=S

3.19 (a) Using

fédzf(z):/yldzf(z)+1ellngo/yzdzf(z)=/_idtf(t)+1elingo/0niRei’dtf(Rei’)

=0

= 2miReslf(z), —(a — i07)],

we obtain

/_OO dko f (ko) = 2miResf(z), —(a — i07)].

o]
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291
Determination of the residue

Resffloh —(a = 10%) = _lim e+ 0~ 0oy
1 1
= 3a- i

We thus obtain

/00 dko f (ko) = ;m
—0o VE + M2 — o+
(b)

/d4k i _/d3k/°°dk1
(u)'k2 =M +i0" ) (2m)’ oo

2m)?

G—k +M?>—i0F
_1/’$k 1
=3/ 1

(©)

/d"lk L, m
(27_5)}171

o 1 00 rn—2
= 2n72n B l"(nl)/o dr :
(d)

[l o

Substitution ¢ = r/M: r = Mt,dr = Mdt

5 00 tn72
=M" dt .
/0 Ve +1
Substitution » = y: dy = 2«dt,dt = dy/(2./y),
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n—2

..:Mnf2/oo dy yz
N NS

1 o T
= —M”‘Z/ ar—
2 0 (t+1)2

we obtain x =1 from x+y=

lZ%—Fy we obtain

_ n=3
From x—l—”2 3
J— n
y =14, thus

Lo (n—1_ n
("3
I I

2 rG)

(e)
/ 'k i PR U U TS B R LA Ut )
Qn)' K —M2+i0"  2m 2250 (5)) 2 VT
1
ﬂM"*Zr(l - f).
(4m)2 2

320 Let ¢ and s denote cos(0;) and sin(0;), respectively, sc denote

sin(0) cos(6,) etc., and ssc denote sin(0;) sin(6,) cos(03) etc.:

ol ol _
& .. 6_92 c Is 0 0
) . sc lecc —lIss 0
J = : : =
. . ssc¢  lesc  lscc  —Isss
614 614
90, sss  lcss  Iscs  Issc
det(J)
c s 0 c s 0
=Isssdet| sc lcc —lIss | +Isscdet| sc lcc —lIss
sss less  Iscs ssc  lesc  Iscc

= Isin(0,) sin(62) sin(03){/sin(0;) sin(07)
x [Icos®(0) sin(0,) sin(03) + Lsin®(0,) sin(0,) sin(03)]
+ Isin(0;) cos(0,) sin(03)[1 cos?(0;) cos(6,) 4 Isin®(0;) cos(02)]}
+ Isin(0,) sin(02) cos(03){Isin(0;) sin(0,)
x [Icos?(0) sin(6,) cos(03) + Lsin®(0;) sin(0,) cos(03)]
+ Isin(0;) cos(0,) cos(03)[I cos?(0;) cos(0,) + Isin*(0;) cos(0,)]}
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= P sin(0,) sin(0,) sin(03)[sin(0;) sin®(0,) sin(03) + sin(0;) cos®(65) sin(603)]

+ Bsin(0,) sin(6,) cos(03)[sin(0,) sin®(0,) cos(03) + sin(0;) cos*(0;) cos(03)]
= Psin’(0,) sin(0,) sin?(03) + I sin?(0;) sin(6) cos*(03)
= Psin®(0;) sin(0,).

Thus

dlydlydlzdly = Pdlsin®(0;) sin(0,)d0,d0,d0s .
dQ

T 2n 2
/dQ:/ do, sin2(0,)/ do, sin(Oz)/ do;
0 0 0

A 1
= Zn/ db, sinz(Hl)/ dcos(03)
0 _

1

T l 1 T
= 47r/ d0, sin*(0,) = 4n [—01 — —sin(291)] =272,
0 2 4 0

321 m=1:

/n dOsin(0) = — cos(0)
0

because I'(1) = 1 and I'(3/2) =T'(1/2+ 1) =1I'(1/2) = /7/2.
Step m — m + 1:

/Onde sin™*1(0) = /7T d0 sin(0) sin™(6)

0

= [ —cos(0) sin'"(@)}: — /On dO[— cos(0)]msin™ " () cos(0)

:m/ dO  cos*(0) sin™'(0).
0 ~——
=1 —sin?(0)

= (m+1)/ desin’"“(e):m/ do sin™1(0).
0 0
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_m_ Var(3)

where, in the last step, we made use of xI'(x) = T'(x + 1).

3.22 (a)
/OO dtf(r) = i/oo dif(it).

2

Thus

(Y = (g =k ) = [(h) = B+ + D) = (=1)P,
1 1 (—1)7¢

-2 +i0)  (CD(E+m2) (Bt M)

d'k (K2) g [d (B
/(27r)” @ty () /(m)” 2+ Mm2)7

(b) Perform the angular integration,

) 3 27'5% 1 o0 l2p+n71
R 1(—)” 4q p )”/0 d[(

T(2) (2n 2+ M2)
) - 2 00 12p+n71
=) (47)iT°(2) /0 NCETII

Perform the radial integration,

<P 1 ()
/0 dlm_iw) T T()

withn — 2p +n and « — ¢,

. \P—q 1 2 p+§7qr(p+%)r(q_p_§)
™ rOre
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323 (a)
f@)=a
= exp[In(a)z]
= exp{In(a)[Re(z) + ilm(z)]}
= expl[In(a)Re(z)] exp[i In(a)Im(z)]
= exp|ln(a)x]{cos[In(a)y] + isin[In(a)y]}
= u(x,y) + iv(x,y),
e u(x,y) = exp[In(a)x] cos[In(a)y],
v(x,y) = exp[In(a)x] sin[ln(a)y].
(b)
Ou/0x = In(a) exp[ln(a)x] cos[In(a)y],
0v/0y = expl[In(a)x] In(a) cos[In(a)y] = Ou/0x
0u/dy = exp[In(a)x] In(a)(—) sin[In(a)y]
0v/dx = In(a) exp[In(a)x] sin[ln(a)y] = —0u/0y.
324 (a
i Li(p) =LI(W) + Ly (ﬁ/> A N Vi
! ! 1672 \ p du 1672p

(b) Making use of

2
we obtain:
M M MM
du — 16m2uF2| 2 6

+ 16[(27;1 + mS)BQ(—ZF(, + F4) + I’;’lB()(—zrg + r5)]}

2
Mn,2

2
= 167I2/1F3{ — 2Boim + §(m + 2my)By
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N 11 1 . 5 3
+ 16| (271 + ms)By (_Zm + g) +mBy (-2& + g) }
1 1
~ 36 G

3.25 Expanding U up to and including terms of second order in the fields yields
the same functional form for both parameterizations (this is not true for higher
orders). Therefore, terms of second order in the fields in the Lagrangian will be the
same for both parameterizations (we have seen in Exercise 3.16 that this is in
general not true for higher powers of the fields).

Let us begin with #$*. Since D,U =3,U = O(¢) and D,y = 9,y = 0, the
terms potentially generating two powers of fields are /3 and ;. Consider

qUT £ Uyt = 2mB(UT £ U).

-2

2—%+0(|$|4)11],

Ul —U= —2i$7'?[1 + 0(|(}5|2)}.

U'+U=

Since Tr(t;) = 0, the /7 term does not contribute.

=2 2

[Te(xU' + U] = {2M2 [2 B % " 0(@'4)] }

-2

- 16M* [1 - % + 0(|<7>|4)] .

With respect to the constant term and the term quadratic in the fields, the /4 term
yields the same functional form for both parameterizations of U,

gfbw —

and an analogous expression in terms of the n; fields.
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Let us now turn to g)gss_ In addition we need to investigate

0. - M
Tr(3,U"UNTr(U' + U) = gw e,
We obtain q_52 ¢ N ¢
GSS2¢ 204
34 ——(l3+l4) ﬁ—’_lMiF

and an analogous expression in terms of the x; fields.

3.26 (a) The self-energy diagrams are shown in Fig. 3.14. The tree contribution to
—i%, is obtained from (p, bi#3?|p, a):

Oab

otr . 5ab I
GL: — iZ{5, (p2)=21<—l3M4ﬁ) = IS () =25 M4F2,

~tree 5ab 14 5ab
GSS: — iz (p*) = ( (h+1s )M4F ) + 2i (M2l = )
Sab

dq
= T () = 2(Is + L) 4F” 2Uyp 2M2F2

The loop contribution for the exponential parameterization is obtained from the
Feynman rule of Eq.3.90 with the replacements (p,,a) — (p,a),(py,b) —
(k,c), (pe,c) — (p,b), and (pg,d) — (k,c) (a summation over c¢ is implied):

4 2 a2 _Af2 EAYERRY?)
l/ﬁl 5“5%w+ S apOec 7A;[+5acgcbw
2 ( ———" ~—~— F ——"

27‘[)4 F2 F2
= 5ab = 35(1}; = 5ah
SacObe + Oapec + Oacdep) (2% + 2k* — 4M? o
3F2( be + Oapec + Bucor) (2p° + U ey v
= 55ab
1 d*k i i
= =d, — —[—4p® — A 4+ M ——————
2 "/ (2n)* 3F2[ P M T +i0+
i0ap 2 2 2 2
4)6F2(74p +M )I(M y 1 an)a
as in Eq. 3.134. In other words
M? 2p?
yloop 2y _ ) 14 2 2
4ba(p)_ abl:_mI(M?“?n)_'_ﬁl(M?:u?n) .
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An analogous calculation with the Feynman rule of Exercise 3.16 for the square-
root parameterization yields

1 [ d*% (p+k)* — M? —M? (p— k) — M?
~ —l 5(1(35 c— o 5& 5CC aacéc - -
2/ (2n)4l l‘vﬁ’ F? + b TR + N F2
= 5,1}, = 3501}) = 5ab
X %
k2 — M2+ 0"

1 d*k i i

=Vw | —=[2p* +2k* - 5SM*|—————
2 ”/(2 )“Fz[ " e o
b - 2 [(MP. 12
2F2(2 —3M ) ( y M 7")'

In this representation
loop /. 2 3 2 2 s o
Z4ba(p )5flb|:2F2 ( ,,Lt I’l) FZI(M , U ,n)]

(b) For determination of M? 7.4 US€

R M? R
LM?> = (I + 90— |M? = I +1 M?>.
: (3+/332ﬂ2) {32 2[3+ n(u )] +/332n2}

Insert 3 = —% and reexpress in terms of integral I = I(M?, yi*, n),
M L
64n2 4
Make use of

M., =M(1+B)+A

for
a. GL, exponential:

m2 (1421 1MZI+21M4
3F2) 6 F2 SR2

a2 A M4 2 1 1 M21
o 32m2F? 3 6 2)F2
N————
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b. GL, square-root:

I 3M? M*
..:Mz(l——>—|— —1 + 25—

2 F? F?
A 301\ M2
=M - M+ -1+ —2) =
3272F? +< 2 2> o
.
=0

c. GSS, exponential:

21 M? 1 M? M*
<1+3 214F2> el T2L+ L)

d. GSS, square-root:

I M? 3M? M*
_ 2
=M (l_ﬁ_zlzlﬁ)‘f'iﬁl‘f'z(h‘i‘lél)ﬁ

I
2 3 4
— M
32n2F?

The result for the pion mass is indeed independent of the Lagrangian and
parameterization used.

327 (a)
7,0) = U0 e = U0t — AW + A WIU0)
= ) + V) i 5+ U0 i) )
+ U'(y)ioaA(x )aa( )+O(A)
= Un(y) + U'(y) { [ioA(x } (y) + O(A?).
T O s

ano an

oA
= 2407_[2/ dOC/d ljklmT [ (ay )U%L]W/Lkglu%bﬂ

d(iaA) 3(iaA)

Y, Ut
+?ZL1U ay, 6"

U1y U 11U 1 + U iU U

UU 1, 1,

0(iaA)
3y

O(iaA)

+ U LU U U=
oy

UJI/Lm + JI/Ll‘?/LleLle/Lllﬂ Uj.
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Both &% and the trace are even under cyclic permutations of the indices
{i,j,k,l,m}. Thus

+0(oA
ano 48 2/ dO(/d4 UklmTr|: (ao;i)U%LjJ?lqulLl%Lm .

(b) Make use of integration by parts:

080 = 48n2 doc / d*e Uk’m Tr (U (oAU 10 14U 11U 1)

, rout
7481[2 / do / dee " Ty a—yi(“A)U %Lj%uﬂ/u%m}
0 L

n : 4 ki | ou
—@/O dOC/deU "Tr UT(OCA)ﬁ%L]ﬂZ/LkQIUQ/Lm}

a(OZ/L] U LU 11U 1)

1
d
o oy

T de™mTe | UT (aA)U } (B.3)
0 L

Consider the individual contributions to the first term of Eq. B.3:

()i=4

YT / do / dxe 41“'" Tr (U (oA U 1 13U 11U 1)

b ghikim Tr[UT AU?/L,J?lLk%LIQ/ Lm}
— 81klm4

487r2

= 48nn2 / d*et P Tr [AU%L;I%LV%LP%LJ UT]

4% SMPGTI’[A vut a#UUTavUUTapUUTaUUUT ]
—1]

n
T 482

= U0, U'Ud,U'U?, U U, U'

— 4;n2 / A" P T (A gy U ry Uy U gy (B.4)
(i) i = 0:
yT) / do / e Tr[uT (A UU U s U 1 1] = O,

because of the boundary conditions A(X,#) = A(¥,#,) = 0.
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(i) i = 1,2, 3:

4snz/ d“/ I Zﬁ"k’"’ oy 1T LU A UL U U] = O,

because of the divergence theorem.
Consider the integrands of the second and third term of Eq. B.3:

out LU
3y %L/@/LkQ/LlJ?/Lm U T)]
= o™ Tr[A( UU! a,UUTakUUfa,UUTamUa,»UT
=1
+Q;UU'QUUQUUT BUU,, UL )]
N———

O(SijklmTI‘ |:A (UWle%Lk%L[WILm

= —9,Ud,, U’
= 07

using an even permutation of the indices from (j, k, [, m, i) to (i, ], k, [, m) in the first
term.

Finally, the last term of Eq. B.3 vanishes due to permutation symmetry of the
trace term. Consider, e.g.,

0 = diUTQU + Utod;U.

Using U Ut =1, the first term can be rewritten as —% ;% 1;- The second term does
not contribute, because the two derivatives are contracted with the epsilon tensor.
We obtain

O(U ;U kU 11U 1)
oy
= —ae™" Te[UTAU (U LU LU U 11U e+ U U U iU 1y
AU LU kU UL L+ U U kU U U L))

eXmTe | UT (aA)U

because the first two terms as well as the final two terms cancel each other. The
final result for 6S°  is therefore given by Eq. B.4.

ano
3.28
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Evaluate the trace:

Tr[20*(Ud,U' — U0 U) - QU'Qd,U + QUQD,U'|
) o) o ()
= Tr|20? K o
{Q( “Fo 'R ¢ Fo e Fy *

6
- —F—ZTr(Qzauqb) +

6i|/ 1 1\° 1 1\’
N —\ 9,7° — 2 (=o0,7°
0 <2NC+2) u +(2NL. 2>( W) |+
__6i6un0
~ N.Fp

Insert into Lagrangian, make use of integration by parts, introduce electromagnetic
field-strength tensor, and rename indices:

&2 6i0,°
Loy = i g070 ot ot ( ] )
o 48 ! N.F,
2 0
n e 0,7
mpaa ,,Q{ ;?/ K1
N 8w 82 Fy
— total derivative — 255070 7 8, o/,
= total derivative —EFS v p #MJF—
2 0
n e s
R T
2 0
n e n
=Nt T T ey

We dropped a total derivative and made use of &'7?0,0,.7, = 0.

3.29 Let us define

2
MY = —; * n v ¢

o=
7'L'F() Nc q1p9205 4n )

where g; and ¢, are the four-momenta of the two photons.

2

2 o2
2 _ Ve n o B uvpo
§ |%| _MuvMM 2F2 N2 5yvx[i‘]1Q25! f q1p920
el

o n?

2
_ 2 229
- nzF%N_sz[(‘II q2)" — 419>

20% n
22 A2
g N;

(611 'Q2)27

because g7 = g5 = 0. The decay rate is given by

1 202 n? dq &g
2M T2 FEN? | 20, (27)° 20, (2m)°

1

r= 2n)**(p — a1 — q2) 5 lar 7).
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The factor 1/2 takes account of two (identical) photons in the final state.

2 3
- Nz/i D itg, 5(g3)0()8* (p — q1 — 42)(q1 - 42)°

T 8 F2Myp
O(2 d3ql 2
= M —_— . J—
e | S a = ] e0te ~ ol - a1
O(2 Mno
Wsz/dQI/ dw1w1 Moo 5((,01 2 )(D%Mﬁo@(Mno — a)l)
s
pr—y gMT[O
B O(zMi() n2
 64m3FI N2’
Problems of Chapter 4
4.1
B B, B, —iB. By—iB 0
5 it T 7 REv IR
B, BitiB, By By BB 3 0 A
Y "F=| v vutw o = T Gk
= Ba+iBs Bo+iBy _. /2B = =0 2A
2 V2 378 - - V6
sr _Bi—iB 50— B, s _BitiB
\/z ) ) \/z 3
By — iBs B — iB;
p ) n= )
V2 V2
o Be+1iB; — _Bs+iBs
V2 V2
A = Bg
4.2

K(L1,Ri, RyULY)K(Ly, Ry, U)
-1 —
= \/RIR,ULIL! Ry \/RyULL\/Ry UL
=1

= \/ (RiIR)U(L, Ly)" 71(R1R2)ﬁ

= K[(L\L,), (R\R,), U].
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43
= i[u' (8, — ir)u —u(®, —il,)u'],
where

u—u' = VeukKt = KuV},

ul —u't = Kut Vi = viulKT,
ru vl = Var, Vi + iVed, Vi,

L1, = Vil V] + Vo,V
i, :i[u’T(au —irlJu' —u' (9, — il;)u'T]
= i[Ku*V;(aH — VRV + Va0 V) Veuk'
— KuV} (@, — iV, LV} + V.0,V VKT } .

Consider last term in second line:

Ku' (8,V})Vauk' = Kul [GM(V};VRuKT ) — V,ﬁa,,(vRuKT)}

= Ku' {GH(MKT) - V;eau(VR”KT)]

= Kud,uk' + KO,K" — Kul Vo, (Veuk'),

where we have used V; Vg =1 and u'u = 1. Analogously for the last term in third
line =

W, = iK [u' (8, — ir,)u] K" + iKQ,K' — iK [u(0, — il,)u'|K" — iK,K" = Ku,K".

4.4

¢ ¢ ¢ _ b+ ¢
utaﬂuz<ﬂ lﬁ—@“r )(;—F £ 32 : )
_ o PP Oubd+ 0ud

2F ' ar? 8F2
_ ud | 9%¢—0upd
hF T el T

2F  8F2 BT VR
_Oub  $%b  0ubd+ ¢
2F ' 4F? 8F?

Qud  $0ud —0udd
T T ’

uauuT = (1] + li — ¢_2 + - ) ( 0 0upd + ¢au¢ )
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—_

(u' 0y + ud,u')
<a;4¢ qS@,qu 0 ¢¢+ 0 ¢ $Oup — Gﬂqﬁd) >

>—*NI

...71

2F 8F? 2F 8F?

2
= W((bau‘ﬁ - 6#4)(]5) +

1
= @‘f’aau(ﬁb(‘fﬂb —TpTa)

1
= W(b OuPp[Tar o] + -+

4F25abc¢ a/ﬁbb@ Tty

u, = z( T@ u— u@,tu )
( ud) ¢au¢ aufbfﬁ 4 Oy 0. — aM) >

F? 2F 8F?

a
Wby

gfri\gN gALPy VSa;t¢ Ta

1
8ubcqjy ¢aa ¢brc

m
gnnNN - 4F2

4.5 Note that
_ _ | 1= 4 -
Yip¥Y = Vig¥ + %‘I’y"(ﬂ@ﬂu + udu )W + E‘I’y“(u'rﬂu + ul, u' )P + ‘I’y“‘l’v,(f),

ng‘i’y“ySu,,‘I’ = i%“i’y“ys (u'duu — udu )W + gf‘i’y“yS(uTrﬂu — ul,u )P,

Tr[D,U(D*U)'| = Tr[(0,U — ir,U + iUL)(3"U — ir'U + iUI")']
= Tr[(d,U — ir,U + iUL,)(3"U' + iU — il'U"))
= Tr(0,Ud"U") + 2iTr(3,UU'r*) + 2iTr(d, U UI)
— 2Tr(r, U UT) + Tr(rur*) 4 Tr(l,").

(a) Electromagnetic interaction:
13
ry = lﬂ = —e&/ui, Vfls) = —E&/H

uTrHu + uluuT = —edd, 13+,

Qb
Bt

Tau—u@uu—l R
F
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ulryu — ul uf

— 712{ ( u' U — ur3uT) fg,szfﬂ(n + [uT,‘c3]u — 13 — u[r3,uT])

- —Eﬂﬂ([u L lu 4 ulul, ) = —gﬂﬂ{[uT, 1), u}

e &; D.Ta
Eﬂlt{[ﬂ 17—}— , T3 ,ﬂJr...}__ﬂ |: ;' —[3}+...

e . ¢, ¢
= IEJZZ#ZISHQ;Z;F'% +--= _F@{,ugSabTad)b +y

Tr(3,UU'r*) + Tr(0,U'UI")
= —%ﬂ"Tr(@HUUTrg +0,UUts) = —%&/"Tr(aﬂU[UT 73))

0,0 ,7a PpT
:—%M”Tr{(l’%%—“-) [1] —z%—!-"',h]}

¢ i
7ﬁﬂuall¢a¢b1‘r(fa [Tb, T3]) +oeee= _ﬁglﬁc% 0 d) d)bTr(TaTC) +-
ie
- *zﬁ?ﬁab&ﬂau%% 4.

- A+
cgyNN = _e\PVlT?“PM;U

Lann = —3—2‘?7”756#¢afa‘{’

e _
LN = _%gmbq’y#?sfth’&/ud)ba

m(fyfm = _eg3ab¢gaﬂ¢b’£{

(b) In nucleonic Lagrangian use

1,

= Znyl(l_gAVS)(W Ty +W,T)¥

__ 8 = + 4z -
= _ﬁvud [P/”(l - gAVS)an + (1 — QAVS)PW#
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In mesonic Lagrangian use

0uP,a
0, U = QnbaTa , U=1+
F
Dy = e Pnbatay
R
R F
F g T+ it TR it ,
= E(—7§> Vudaﬂd)aTI' |:Ta< ) W’u + ) Wﬂ)]

= —Svus[@ 0+ 2o+ @0 - o]

F — e
— —gVudE(al‘n "f/fﬂ + ot “f/#).

(c) In nucleonic Lagrangian use

u=1+--, ul =1+
Make use of
! )
§<rﬂ+lﬂ)+vu
- etan(Ow)Z 5.8 g E—l—etan(@ VZ - -s-—Etan(gW)g
2 W= cos(Ow)” "2 W)=y 3 2

I+ 1 ¢ 3
2 2cos(Oy)” "2
8 .2 1+ 3 1 T3
= Ow)Z )2 — 7, >
cos(Ow) [sm (Ow)Z, 2 2712

::E?Eé%éﬁiﬁg”{5h9(0”0+ [gnz(ew)%]r3},

= etan(Ow)Z

ol =8 5T
o cos(Oy) ™ 27

1= - . -
gmwzjw%m+@muﬁwmwy+%Nww4m—gﬂ'
:L‘i’y“ sin® (Ow) -+ sinz(HW)—l 3 +g—Ay5r3 Y7
2cos(Oy) 2 2 :

__L_Hlf.z _giq g; —u_lgi
N kw@@@”{ﬂl4mﬂ%ﬂ zckﬂ}mv St |nZ).
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In mesonic Lagrangian use

0uPuTa
o U =i+=2=2 d)"r +oe, Ul=14--,
QuUT:—i”(bT“—i—n-, U=1+---.
F
2
Lzn —lF—T QuPa’a i P‘¢ T“m
2 F F
F 1
= —Eaﬂzj)aTr[ra( — M)
= 80,2 T () S
2cos(Oy) 2 """ 2cos(Oy) "
4.6 Make use of
Ou
uy = i(u'duu — ud,u') = _I’:_d) +oee,
0

where now ¢ = ¢ A4
D F

—5Tr(By"s{uw, BY) = Tr(By"ys[, B])

1 ,
— 4—FOBW 75Ba0u [DTr(Zp{Ac, 2a}) +F Tr(Ap[ e, Aa) |

= 4dcah = 4ifcab
1_

= F_,OBbV'uVSBaa,ud)c(Ddcab + ichab)

1 o
~F (dabeD + ifubc F)Bpy"75sBalpu,
0

1
= 3515233'
Tr(Bty 2[ ul®uu + udu, ])

— BB Tr ([, 0], 7))
= ;—‘Bby"BaTr ()Lb Hﬂ - iqj"/LC 4o ia"(i)d“ 4. } 7,1“])

2F, 2F,
= Byy* B, 0, Tr(Ap [Aes Ad] »Ad]) + - -
o BabdubaTe il U ] )
zzifcde/le
|- )
= _@BhV#Ba(pca,ud)dfcde Tr()vh [/Lm ;va]) +
0 ———
:4lfeab

i —
= _ﬁBbVHBa(pca,u(pdﬂ‘defeab +---

i _
= i =~z farfetc B Bad i
0



Solutions to Exercises 309

47 (a)
. I q" Ti
iBULIA) — i) | G0 + 52 Go(0)] 155

= a(p) |§15Ga0) + G35 St

= ia(p') | (F'vs +15$)Ga(t) + ﬁGP(’W"’} %“(p)

= iu(p’) [2myGa(t) + ﬁGP(r)} y5%u(p),
, L

X M Fr _
m(B|Pi|A) — - thN(I)W(P,)VsTiM(P),

T

t MF.
2 1) +—Gp(t) = 2—""G.n(1).
myGa (1) +2mNGP( ) M2 - G (1)
(b) ,
t 4m-g t
2mygy = 5 e = 2mg, (1= ——) + 0(¢%)

where we have used that my = m+ 0(¢*), Fr=F[l + 0(¢*)], M> =M?[1+
0(q*))-

4.8 (a) First show that

stitu=(p+q’+@ —p’+ ¢ -q’
=p+a’+ 0 -p’+@-4)
= dmy +2M; +2p- (g —p' — )
=d4my, +2M> —2p-p
=2my, + 2M.,

from which 7 + u = 2m% + 2M? — s and s + t = 2m3, + 2M? — u.

2my (v — vg) = %(s —u—1t+2M)
= %(28 — 2m12v)

_ 2
=5 — my,
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1
—2my(v+vg) = _§<S —u+t— ZMi)
1
= —5(—2u +2m3)
=u— mlz\,

In the center-of-mass frame, the threshold four-momenta read

-

p# = (mNaO) :pma qﬂ = (MT[76) = q/'u'

o szMn

M2
v‘lhr - -

_sz.

= MTI VB =
ZmN ’ |thr

(b) . _
Tw(p,q;0',4") = 0T (P, 4; P q') — itarctT (P, ;P q'),

Toa(p. =40, —q) = 00Tt (p. —¢'; 7', —q) — itpactT (P, —4';P'. —q).

Crossing symmetry dictates

T (p,a:p',q4) =T (p,—4;p',—q),
T~ (p,q;0'.q) = -T (p,—q';p',—q).
Und —q:
naer g = i V==V, Vp — VB,

so that

s =) = 000)[A° (v, 08) = 34+ 408 () ).

Crossing behavior of Eq. 4.45 then follows from Eq. B.5.

(©
2/31 1 /11 131 2111
0 +\ =/ - I S I I il
(pm|T|nm >_< 3<2’2’+\/§<2’2DT<\/§2’2> \£’22>>
\/§ 3 \/E 1
— Vi Nep
3073
Analogously

2 1 1.5 2
(pr°|T|pr°) = §T% + §T%, (nn"|T|nn™) = §T% + gT%,
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and Lo 1, 1
OIT|pr°) — (nat |T|nnty = T2 — ~T7 = —(pr°|T|nnt).
(prTIpa) = {n [ Tiar) = 373 = 574 = —(pn Tl
4.9 ;
My = giNﬁ(P/)stbm%Tau(P);
_ i
My = gizv“(ﬂ))’s%m?sfbu(l))-

4.10 (a) Only the c; term contributes to self energy at tree level:

i(N|ci4M*P¥|N) = 4ic,M?,

—iZ5 () = dic\M*.

(b) 9
i(N|-S5977352,0, 0P [N, 6, (0) ) = ~fysta,
1
i<N7 (f)b(k/) 4F23cde\PV $aOud. ¥ ‘N’ ¢a(k)> 4_F2(lé + k JeabeTe-

(c) Closing of the pion propagator forces the isospin indices in the Feynman rule to
be the same, i.e., £, = 0.

(d) n
—iZP(p) = pt" / (;Z:y(—g}kma) iSp(p — k)iAp(k)%’;IéVsra
= _,3& e n/ d"k krs( — K+ mkys

4F?2 2m)" [(p — k)* — m? + i0+] (k2 — M2 + i0+)
_ _;3gA;'u47n / d'k K@ —m— Rk

4F @) [(p — k)> — m? + i0+] (k2 — M2 + i0*)

We made use of 7,7, = 31 = 3.
(e)
K —m— B
— (2p-k— gk —mk — KR
=2p kf — (p + m)k* — Kk
—(p =Kk + PR+ R~ (p+ m)k — KR
~(p I+ (PP =)~ [(p— k) — ]
= =+ m) (= M) = (P4 m)M + (P = ) = [ (p — k) —m2 R,
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where we have replaced k> = k> — M? + M? in the first term of the penultimate
line. Inserting this result in Z!°P we obtain the expression of Eq. 4.83.
(f) Contracting

C=ip*" / Ik ky
e Q)" [(p — k)? — m? +i0+](K2 — M2 + i0*)

with p* we obtain

20 — it d"k p-k
pe=i / 2n)" [(p— k)? — m® + 0] (K2 — M2 + i0")
b / d'k —lp =K —p? — K]
g 2m)" [(p — k)* — m? + i0+](k2 — M2 + i0+)

- L 4*"/ d'k (p—k)? —m? — (p* —m?) — (kK —M?) - M?
2 (2n)" [(p— k)2 — m? + 0+ (k2 — M2 + i0+)

from which we can read off the expression for C.

(2) The expression for I} (—p,0) contains the term — 5, which is of ¢(q°).
Combined with the factor M? multiplying the integral, we see that the self energy
contains a term of ()(¢?). Since the power counting predicted the loop contribution
to be at least of ()(g?), we see that renormalization using the MS scheme does not
result in a consistent power counting.

(h) As my —m~ 0(q?) and I, ~ M? ~ ()(¢?), the last line in Eq. 4.88 is at least of
0(g*) and can therefore be ignored. We thus only need the expansion of I}, to first
order. As the function F(Q) is multiplied by a factor of ((g), we only need its
expansion to lowest order. With p? ~ m? we find for the dimensionless quantity
—1 < Q< 1. Therefore,

F(Q) = V1 — Q*arccos(—Q) :g+ 0(Q).

Since p? —m? — M* ~((q*) for on-shell momenta, we can neglect the term
containing the logarithm in I}, and obtain

o 1 | nM+
v lew\ T T )

The loop contribution to the self energy is therefore
3g? 1 7
3 loop = _SAryMm?— [ 1+
P ) = =g 2mM e\ S

_ 3gir M2m_ 3gir
32nF? 32nF?

M3_~_...7

where we made use of my — m~ 0(g?).
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(i) Replace ¢y, = ¢y + dcy:

393, . 391, .
Y M
szt " B T

my = m — 4c;M?* — 46c\M? +

The term violating the power counting is absorbed by the choice

gAl

5
T ogmEr

4.11

, 1 1 1 _1 _
Pl =30 £D5(120) =022+ p ) =502)) =P,
=vV1=1

PrcPy = 5(1% R0 5 ) = 30— ) =0,

. — imvx 1 j
feJrlmV'XPVilP — e+tmv~x%§(ﬂ + f)l{] — e+1mv-x§(f + 1])\1; — :thrtmwxP‘ji\_F.

4.12 (a) First use integration by parts to rewrite

Po,¥ = —0,PW
to obtain
o2\ . .
_6”86,,‘5 = —0u(—iy"¥) = ig¥,
0L ) 9a
LN i — i) — A0,
> |:l (17 iy ) m+ =5y /5“;4} V.

EOM follows as

[i(¢+]7—i)é(s)> —m+

(b) It is sufficient to consider the partial-derivative part acting on the nucleon
field:

ngy“ySuﬂ] :(lD m+—y y5uﬂ>‘l’ 0.

ig¥ = ip[e " (N + A,)]
mp(Ny + Hy) + (N + A
e (i 4+ m) Ny + (i — m) ).

— e—imv~x[

(c) From algebra

YA=2v-A— 4y,
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from which we see that

1
PoA= 5(1] tP)A=2v - A+ AP .
Then

PviAPvi =ztv 'APvi +APVZFPvi
= :l:V . APvi7

PyiAPy; = AP, Py £v - AP,
= AP, £ v AP,

Now use 1 = ¢y and

P = (1)) = S0 £ ) = flh£ 1) = /P

to obtain
PoAP = (£v-A+ AP,£)P.x
=4v- AP, + AP,
=$v-Ayp Pz +AP
——
=FPx
= —v-ApP,z + AP,
= (A —v-AP)Pez
= ,ﬁlP VE -

Use . |
P5Pus = 9550 £ §) = 50 F P)s = Pusys

to rewrite the terms containing Bys in terms of the relations above, e.g.,

Pvi%?spvi = Pvi$Pv$y5 = ELPVZFVS = $Ly5Pvi

and analogously for other expressions.
(d) Project the EOM with P,; and use

l/‘/v :PV+J1/V7 % :szjfva
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e.g.,
Pv+iﬂ/1/v = PV+i¢PV+=/VVa
then use the relations of Eq. 4.105,
- =i-DP, N, =iv-DAN;.
(e) Formally solve Eq. 4.107 for 7,

H, = (2m—|— iv-D— %‘;él%)_l (llDL —%4\/ : uV5>JV‘,.

Insert result into Eq. 4.106.

4.13
VS, = viagsttv = — s — ) = 0.
8181} = 305G — ), 2527 — v}
e (UL RONCE A
= LB~ V) — DR+ )
= i({v‘% PP} — 29t — 29 Pt 4 20,
Consider

Y =" ety
=PV — YT 2V — T
=220+ 2y = {00}
= 2P + 2"k — 2gH".

1 . ,
{S/;S:} e E(Vuvv o g!t\)'
Evaluate left-hand side of commutator,
4 1 v v
[S€7 SL] = Z[VS(V”% - Vlu)? VS(V % -V )]
] )
= Sl = v = v
— 1
=2 Y Y

A o)

315
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= [ 20) = P 2]

Lo, ,
=2V 2 = 207).

4
Rewrite the right-hand side using
yso_m: — __80'1:01,[3O_o(ﬁ7
g g guﬁ
S;lvpago'wﬂ — det gvr gw glﬁ
g g gﬂl?

i
VP G __ VP - 0T
ie"ov,S) = ie avszsa Ve

i
_ W, aToL
= Zs‘ P e ﬁvpa“,;vf

= —%Vp [ 76]ve 87 (878" — 87g") — -]
= *%(V”[V"J] == T+ Y = YD)
= A+ B + 1)
= M = 2) @ = 2 )
= L = 2 ).
4.14 First note that
Ny = Ml
= Wle (14 )y
= e_imv‘qug(ﬂ +70¥70)70
— ¢ imvrgt y(%(ﬂ +§) =e ™Pp,, .
From P,y = P, it then follows that
=i,
Nps My = Mysply = =N pyshy = = NopsHy = Myyshy = 0.
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NN = NP PNy = 20 My Ny =Ny Ny = 20F N Ny — A" Ny
= M = VA

Use y'ysp = —psytp = 288 — viys,
Moyt s Ny = Aoy ysp Ny = 2N SUNG = VEAMys Ny = 2N, S5

Use

I oo 1 - 1 -
o = _Egmp V50p5 = ZEII"P Vs b)pv Va] = EE,UVP VsVpVe

to reduce the problem to the previous one:

T T
'/1/"}0‘”,/(/‘; = ESquaMVSpraM
1 Vpo [/
= 58” P MVSV/)?J%'/VV
1 _ _
— 58#"["7 — J‘/Vysypf’ya,/‘/v + 2v, J‘/vyiyp'/‘/v)

2

1 v 5 v o 5

*8“ pa (J‘/"y5% ﬂ,y /Vv 2Vp'/‘/v"y ’)}JJV ZV e/Vv'}) '})p,/i/‘v)
1 Voo — 4y T V57

—_—Sﬂp ( Z/V\,%}S)p}g% pJVv 5 UJVV)

1 _ _
= ES#WW (_J‘/Vysypyo"/VV + 4VpJVVy0V5‘/VV)
= = oM A 4 268 vy Ny s e

= No6M Ny = & v, M) Tys Ny = 26 v, NaST NG

(/ v I = v
Noa" ys Ny = E«M(V”V =YY )ys Ay
i (7 v \
= E.Afv%(v"v — "y )ys M
i (/ y A7)
= 5%(—#‘%?‘ + 204 Tyt = 20" )ys
i

= M (PP = 291 4 208" — PP 4 29" — ) ps AL

[\

= —%JVV(V”VV =y )yspM

+ 2i(V A s Ay — VNP s Ay
= — M ys My + 4N S Ny — VN SEN)
= N0 ys My = 2i(VALS) Ny — VN SEA).

317
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4.15 (a) Using the Feynman parameterization, the denominator is given by
(%= 2p-k+ (P> —m®) +i0%)z + (kK — M? +i0%)(1 —2)]
= [ —2p ke + (p* — mP)z— MP(1 — 2) +i0*]
2

= [+ ) =2 (k+ )zt (p* = m + M)z = M* + 0"

— [ +2p ke+22p* —2p ke —22p* + (P> — m? + MP)z — M* +i0]’

— [ = 2p* +2(p* — m* + M?) = M* +i0*]

= [ —A(z) +i0*]".

(b) Use the given equation with the exponents p = 0 and g = 2. The integral is
then given by

1 . n n .
H(p27m2aM2;n) = _i/ dz ! F(Z)r(z 2)fA(Z) _ i0+]5_2
0

(c) At threshold p2. = (m + M)* =

AR) = 2(m+M)* — z{(m—i—M)2 — m? +M2} + M?

= 2(m+M)* = 2z(m+ MM + M? = [z(m + M) — M.

For 0 <z<1,A(z) is never negative, therefore can drop small imaginary part.

M

iy @nd splitting of integral allows to rewrite [A(z)]?

Integrand is zero for zp =
as

/01 dz]A()]T* = /OZU dz[M — z(m + M)+ /1 dzlz(m+M) — M]"*

<0

1 n—31%0
mw —z(m+M)]"7|
1

+ mk(ﬂ’l + M) — M]n_3‘

1
2
1

BCEDITETTL

for n > 3.
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(d) Expansion in small quantities corresponds to expansion of 1/(m + M) in M:

L DR S M+M2+
m—|—M_ml+%_m m  m? ’

i.e., only nonnegative integer powers of M are generated. Therefore the infrared-
singular part has an expansion

M M2 Mn72 Mnfl
NM”3<1++...)M”3 et
m m m

while for the infrared-regular part

M M
Nm”_3(1 _ZJ’_W—"_) :mn—S_an—ét_"_MZmn—S_"_._'

4.16 (a)

(m+M)* —m* — M? ~mP42mM 4+ M? —m? - M*
2mM a 2mM -
Dy (x) = 1 — 2Qupex + 2+ 2000 (Qupex — 1) + a’x?

=1 —2x+ 22+ 2mx(x — 1) + 2% = (x — 1)* + 2ox(x — 1) + o2
=[(c= 1) +oaf’ = [(1 + o — 1P,

o0
Ly = K(m; n)oc"73/ dx[Dye (x) — i0+]r2
0

chr = 1 )

-2

= xc(m;n)a" /OOO ax{[(1+ ) — 1]2—1‘0*}%

Integral potentially divergent for large x, where integrand behaves as x"~* =
convergent for n<3.

(b)

(1+o)x—1 d 2
ey a{[(1+o<)x—1}2—zo }

_ (51:;3‘2’; - i) | S IR N )

=[1+a)x— 1]2{[(1 +o)x — 1}2_io+}%73

- {[(1 +o)x — 1]2—i0+}§_2.
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/o dx{[(l +o)x — 1] —lO*}
(Utap-1 d
U Fo)(n—4) dr |
ARG

T

n__

12

{[(1 +o)x — 1] —io+}2

[o¢]

Il
c\g
<

(c) The second expression on the right is proportional to the original integral.
Bringing it to the left we obtain

Z:i/ooo dx{[(l +o)x — 1]27i0+}%72

- [—(ilja‘;zz — i){[(l +o)x — 1]2—io+};2]

oo

0
The expression on the right vanishes at the upper limit for n <3, and at the lower
limit yields 1/[(1 + a)(n — 4)], so that

0 R 1
/0 dx{[(l + a)x — 1]*—i0 } CEDET)

With o = M/m and k(m;n) given in Eq. 4.125

I = k(m;n)o" > 1 B F(Z—%) M3
e = K(m; =31 +a) @nin_3) mtM

(d)
Can(2) =22 —20z(1 —2) + o2(1 —2)* = [z — (1 — 2)]* = [z(1 + &) — o],

Ripe = — Cthr 10+]

ma) [
/ — o]’ — iOJ’}%2
—~ /1 dzlz(m+ M) —M]"™*
1

1
ol )
= —x(m;n) —

= —x(m;n)

m"
00

) [(n Sy EM) - M]na]

n;3 1"(2 _%) mn73 '
(@n)fi(n—3)ym+M

1
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4.17 (a)
n 22 22 -1(3-1) A2
Fl1.2—=4—n'=A) =1 2(_A 2 2=
(7 2 . ) +4—n\ ) (4—n)(5—n) 2+
1 A+6—nA2
2 5-n4

(b) )

©)

@ )

(e) (_A)n73 _ (—A)(—A)78 _ (_A)efﬁln(fA)

= (=A)[1 —eln(—=A) +--]
=—-A+eAln(-A)+---.
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®

r(% - 1)r(3 )= r(1 - E)r(—l +e)
-r(1-)4%

=-r(1-3) 1;((1] f:))

:—%(1+s+~~){1—gr'(1)+~--}[1+sr’(1)+~--}

— - [ 5 e

(_A)Hr(g - 1)r(3 - n)F(g -2 —A)
:(—A)[l—sln(—A)—k---][—%— <1+¥> +} [1—(1—§)A+---}
:AE—&-1+F/§I)}—Aln(—A)—AZE+%+¥] A’In(—=A) +---.

Comparison with (d) shows that terms proportional to A and A? precisely cancel.

4.18 (a) Equation of motion for A = —1:

St P WV
oY, '0,%, (4e,
A=—1

= — (i@ — mp)P" 4+ i(y*0" + 0y, — PPy, — may*y'P, = 0.

(b) Use p,y" =4,

Voo = =iy @Y+ may, P+ iy, O,
+i@y"y — iy P — may, 'y
= iy PP Bmpp, PP+ 400, " — 3ily, W
= —2i0, V" + iy, V" + 4i0, V" — 3igy, " — 3mpy,P*
= 2i0,V" - 2igy, ¥" — 3mpy,¥" =0 (B.6)
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for solutions of the EOM.
©

O+ = —(i — mp)0,W* +i(90, V" + Oy, \P*) — iy V" — mady,'P*
= mAG,}I”‘ - mAfZ'ﬁ))H"PH =0 (B.7)
for solutions of the EOM. For my # 0,

0, " = gy, "

for solutions of the EOM.
(d) Insert into Eq. B.6 =

_3mAV;L\PH =0
and thus (ma # 0)
7, P=0 (B.8)
for solutions of the EOM.
(e) Insert Eq. B.8 into Eq. B.7 =
o,P'=0 (B.9)

for solutions of the EOM.
(f) Insert Egs. B.8 and B.9 into EOM =

(i) — mp)P* = 0.

4.19 In the following, we neglect terms of order &2.
= -Tr(t; Vg V1)

1
2
= %Tr {‘L’i (1] — isa%a) T (1] + ish%b”
1
2
0

Tr(t;t;) + i%aTr(r,-rjra) — iS—“Tr(ri‘cafj)

4
£q
= 0 + l—Tl"(Ta [Tia Tj] )
4 N~
La .
— 5[7 + lZa418g/‘k5ak
= Oy — iea(—ias)
. - ad
= 0jj — italy ;.



=D
(e

V2

V2
3

2
(T

(b)
[1,0)(1,0] =

IL1({1, 1] =

|17_1><17_1| =

2

)+

11
2’2

l)_

2 2
1

i

-_ 0 OO0 O = O O = O = O o = O

11
2’2

(1.1)00,01+ 11,01, - 1D 5~ ) (5.5

N

{823
oy )
e %D
REXS)
()

Tl —%> <% ‘%D

~5L0)(1,1] + |17—1><170|>'§’%><%’ %‘

772
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’ + |1, —1)(1, —1]

o
=
I
© — o

S O O
v

=)
+

jore
oo
)
).

o
=
I

©oc oo~ o

—
-

Il
cCoocoo~O0rO0O—-OCCo oo

()

_|_
o~ /.
[« elNeNoe e No
- o O o O O

11\ /11
2°2/\2'2

)

S O = = O O
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(©)
11 11 n 1 1 11 1 0 1
22/\2°2] |22 2/\2° 2| \o 1) "
11 I 1 0 1 _1( i)
272 27 2 - O O _2‘51 172),
1 1 L1 0 0 _1( %)
27 ) 212 - 1 O _2‘[1 173),
1 1 1 1 0 0 1
5’—5><z’—5 - (0 1> =5~
11 11 1 0 1
N Z 2| = =—(1 .
’2’2><2’2 (o 0) Z(1+ o)
| 0 0 0
1
= fphfg 01 0]|®1
0 0 0
0 0 0 010
V2 T +itn V2 T —ITy
-3 1 0 0]® 2 3 0 0 1]|® >
01 0 0 0 0
5 1 0 0 ; 5 0 0 0 -
— T3 T3
+§ 0 0 0|® 2 3 0 0 0]® >
0 0 O 0 0 1
1 1—13 —%(11 —i1y) 0
:§ —\/Li(TlJrl.Tz) 1 7\%(‘[17!"[2)
0 —%(11 + iTz) 1413

Problems of Chapter 5

5.1 (a) For contact interaction without pion fields, we can replace the covariant
derivative D, — O, and

oy Ny = 0,™ P, ¥ = imv* N, + ™*P,, 0,V
— imv' N, — ip* N, = —ikg.%,.

k2
—iZ™(p) = il + ide M.
2m
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(b) Expand u, and I', as in Exercise 4.4.

N, ¢a(61)> = _ig?ASfj(_iq,u)éabTb = _gFASV *qTlq-

<N’—igFA N, Sy to N

SV
<N, ¢b(q/) _lm Jﬁgdecqsdau(berc'/‘/v N, ¢a(q)>
V! : . v-(g+4
= _lm[gabc(lq:,) + Sbac(_lq;l)]fc = %Sabcﬁ[c'
C
( )_ izloop(p)

_ d'q ¢ i i g
4 A A
= " n _Sv' a . . (__)Sv' a
/(Zn) Fo g it v (k,+q) +ior \ F) T

3G v G .
= 2% gyt / g —
F 2n)" (¢ —M?> +i07)[v - (k, + q) +i0"]

(d) Contracting with vy, using v* = 1:

Ca d"q (v-q)(v-q)
Cao(w, M?) + Cay (0, M?) = ipt* /
20(@, M%)+ Conlo0, M) = il | e M+ 100 (v g + @ 707)
) e @ M0 g+ o+ 0)

=it / d"q v-q
(2n)" ¢ — M? +i0*

=0
_(l)iﬂ4—11/ dnq V-g+w—o
2n)" (@2 =M% +i0%)(v-q+ o +i0t)

e !
- T 2n)" @ — M2+ 0+

i wzi,u“’”/ d"q 1
(2m)" (¢ =M +i07)(v- g+ o +i0T)
= —ol;(0) + &’ Jon (0; ).
Contracting with g, using g"'g,, = n:
Cao(w, M?) 4+ nCy (0, M?) =i 47"/ g <
n =i
20 2 Bl Cny (@ =M+ 00 (v -q+ o+ i0%)

) 4—n/ dnq q2 _M2 —|—M2
=i
# 2n) (E—M2+i0")(v-q+w+i0t)
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4 d"q 1
— l/,t4 n
(2n)" v-q+ o+ i0*

=0
d"q 1
M2- 4—n
M /(2n)”(q2—M2+i0+)(v-q+w+i0+)

= Moy (0; ).

(e) Since S, -v =0, only Cy;(w,M?) contributes. Solve system of equations to
obtain

1

Cz](CO,Mz) :n— 1

[(M? — )Ty (05 ) + ol (0)],

Vv

i.e., factor 1 — n from $*SVg,, = S2 cancels.

(f) Insert the expressions given for the loop integrals, extract a factor of 47 to give
the denominator (4nF )2, and collect the remaining terms.

(®
n_ B ol 4 M - — Wt
pr=mpyt =mt + k= k= (my—my
and with v> = 1 we obtain o = v - k, = my — m. Neglecting the tree-level term
~ (my —m)* and setting @ = 0 in the loop contribution, we find

3ngiM?
2(4nF)*

393
(4nF)

my = m — 4eM? — M3 arccos(0) =m — de/M?* —
——

2

2
52

o A o
QAb (‘xO) = d3_qu (x()a x)ySqu(an X),

H o (x) = q(x)-4 q(x).

—

Make use of Eq. 1.103 with T'y = y5, T2 = 9, Fi =%, and F, = .-

'y = ysy9 = =705 = —TaI.
)
[Oab(x0), #(x)] = —q" (xX)p075 {7” /J}Q(X)-

Make use of Eq. 1.103 with T'y = y5, T2 = 9075, F1 =%, and F, = {%, .4 }:

[T = ysy075s = =79 = —120.
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Gap(X) = [Qaa(x0), [Oan(x0), H s (x)]]
= - |:QAa(x0)a CIT(X)VOVS{%7 /%}q(x)]

=q' (X)”/o{%, {% /%} }Cl(x)
{5 {5} oo,

m 0 0
M=10 m 0],
0 0 my
010 m 0 0 m 0 0 010
{il,%}100)0m0+0ﬁ10 1 00
0 00 0 0 my 0 0 my 0 00
0 m O 0 m O
=|m 0 0)+ m 0 0
0 0 O 0 0 O
2,
1 00
{Z,M}=2[0 1 0),
0 00
1 00
%{),1,{/11,%}}:151 0 1 0),
0 00
1 00 1 00
{do, M} =2l {12,),2}2(0 1 0], %{12,{22,,/%}}:151 01 0],
00O 000
1 00 1 00
{73, M} = 2ml3, {ig,ﬂg}Z(O 1 0], %{13,{23,,/%}}:131 01 0],
000 000

{}4,!%} = (ﬁ’l+ms)),47 {24,/14} =2

b

S o =
S o O

0
0
1
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{ - 1 00
Z{;L47{}'47%}}:m st 000 ’
0 0 1

=)

1 00
{)Ls,ﬂ}:(ﬁ’t-‘rms);g, {i5,)»5}=2<0 0),
0 01

| e (100
Z{;“Sa{}ﬁvﬂ}} :m 2m5(0 0 0)7
001

000
{6, M} = (in+ my) s, {/16,7»6}2<0 1 0),
0 0 1

| e (000
Z{As,{ﬂ.é,/%}}=m2m‘(o 1 0>,
0 01

—

000
{)q,,%}:(rh—l—ms)/%, {17,)»7}:2<0 0),

0
1, . m—+ my
Z{A%{)ﬁaﬂ}}: 2 ( (1) )

0

0

0
1 5 12 1
g s, 3} = 2l =

{/“37 {lg, M}} = I3lg M =

53

0E(J)  d
51 = a1 EW{)a(2)

= HDIa()
_ wﬁ(x)w(m + <oc(/1) ag—f)'“(*)> * <“(A)|H(i)a|%(j :

— B o)+ (o00)| 5 o)
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5.4
2 3 4 M 4 5
my =m+kM?> + koM? + ksM ln<> +kaM® + O(M7).
m

Make use of

Ol
[O8)

oM _o(m?)
oM? M2 2

o (M _13 (M 1
o2 \m) 202 "\ 2 ) T o

M
o6 = M? + 6,M? + 63M* 1In <E> + ayM* + O(M°)

_ 26mN
oM?
3 M\ k
= M? [kl + koM + 2k3sM? In (—) + §M2 + 2kaM* + O(MP)|.
m

o=k, o=t oy=2ks, as= 242k
55
(52 Mz)%:53(1_x2)%: 53 |:1__x2+@<x4):|,
_ 2 _ a2 _ _ 2%
m(é 5 M):lnlé 3(1 x)]
M M
M
= {2 1+x—2+a( 4)
e U
2
— (2 X 4
ln(2>+1n[1+4+6(x )]
2
= f x_ 0(+4
ln(2)+4+0(x)
=
s (6 -VF -Mm2 3 2
2 2\2 — 53 2.2 4 X xX” (o
(5 M)ln< i ) 0 {1 x” + O(x )] [ln(2>—|—4 + O(x )}
2
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1
5.6 (a) From 2

(vw)

_ 1 1
—ie‘I’VQ{#y“E(ﬂ + 13)‘P‘N(p),y(s,q)> = —iesﬂy"i(ﬂ +13).
From 3553, we only need cg and c¢; terms. With choice of external fields we find
T
fL/R;w = _e(a o — av&/u)§ + -
= —e(0uet, =0yl )3 + -+

where the ellipsis stands for terms containing a larger number of fields.
(NG

| . c . .
= —ieia‘” (c(,ra + 3710 [—iguey — (—iqv)e,]

—ig‘i’a’” <C6T3 + %ﬂ) (Ot y — &,&/”‘P‘N(p), V(S»CI)>

1
= esﬂa”vq‘.§(2c6r3 + c71).

In 3533, we can set D,'¥ = 0,'¥ as all other terms contain more fields. Then

i<N(p’)

e v e
= %(d6773 +2d70)(—ip" — ip")(q - eqv — q¢)

(2_’exp(d6f3 +2d71)0" (3t y — By,)0"Y + H.c.> ‘N(p), (e, q)>
m

1 1
= ieg, (qu" —q'q- P) (%d(,u + Edﬂ]) ,

where P* = p'* 4 pH.
(b) Contributions from first- and second-order Lagrangian can be read off as the
Feynman rule is simply .#. For third order use

u(p" )P u(p) = u(p')(p™ + p")u(p)
=u(p")(plg"™ + g"'py)u(p)
=a(p') [ph(y"y" +ia"™) + (9" + ic™)p,|u(p)
=u(p) (" + P — id"q,)u(p)
= u(p") 2myy" — ic" q,)u(p)

and
g P=@p —p)- ¢ +p)=p" —p*=0

for on-shell momenta.
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(c) Take Lagrangian %, yy from solution to Exercise 4.5,

<N(p ‘716—8%6‘11))

), 7(e q)>

14

. Oa
= et A M E3anTh.
HZF/ V5€3a

(d) Apply Feynman rules
_ Y g , . 94
M= u(p')ut /W(f ﬁk%‘ca)lAp(k)lSF(p’ —k) (les# >F! y583ahrh)u(p)
and make use of fys = —ysk and &3,57,7, = 2i73.
©)

= ——m)+ = m)
— =S R+ - m)

leads to the simplification

a(p')yskSe(p' — k) A (k)y*psu(p)
= u(p')ys[—Ar(k) + (' — m)Sp(p' — k)Ap(k)|y"ysu(p)

- a<p’>v5{—Ap<k> (- m)y— P kT ]AF<k>}w‘y5u<p>

[(p — k)* — m? +i0+

(my —m?) + (my + m)k
(" = k)* = m? + i0+]

- u(p')ys{AF(k) + Ar(k) p7"ysu(p)

_ my —m? (my +m)k
= N1 — N Ap(k)y* .
“ ){ (0 —k)* —m2 + 0] [(pf —k)> — m? +i07] rE)rulp)
® )
M = — iec,u(p') %u{ln — (my — m*)Iy(—p',0)
Ol L o M O)F )
ZmN
2
= 1esﬂﬁ(p’)%r3 {In - (m,zv —m?) Iy,
8y Bt o = o ] ),

where Iy, = Iy.(—p',0)|

1202
p=my,
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Problems of Appendix B

B.1

H0) Bl e - R
of(x) &0 €

i 470" @ = 0)[f (2) + 20" (z — )] = [ d"26"(z — y)f (2)

&—0 &
:/ﬁ%y&—ww@—w
= 5"y —x).
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A
Adler-Gilman relation, 240
Anomalous
action, 134, 136, 138
Ward identity, 121, 133
Anomalous magnetic moment, 170, 231, 236,
241
Anomaly, 23, 27, 36, 41, 45, 46, 121
Anticommutation relations
fermion fields, 20
Gell-Mann matrices, 3
Pauli matrices, 251
Axial-vector coupling constant, 152, 158, 159,
227, 229
Axial-vector current, 23, 85
divergence of, 26, 46

B

By, 87-89, 92, 94, 100

Baryon mass, 154, 243

Baryon number conservation, 69

C

Cabibbo-Kobayashi-Maskawa matrix, 45, 97,
153

Canonical quantization, 16, 29, 30

Charge conjugation, 42, 43, 91, 94, 95, 158,
241

Charge operator, 17, 18, 20, 24, 25, 28, 30, 61,
70, 72, 74, 75, 222

21, 92-94

o+, 169

Chiral algebra, 24

Chiral connection, 150, 157, 163, 208, 237
Chiral extrapolation, 230, 239
Chiral limit, 9, 24, 41, 69, 71, 72, 74, 76, 80,
90, 129, 152, 168
QCD Lagrangian in, see QCD Lagrangian
in chiral limit
Chiral logarithm, 64, 129, 139, 229
Chiral symmetry, 1, 12
Chiral transformation properties (local)
baryons, 154
A, 207, 208
external fields, 44
Goldstone bosons U, 91, 150
nucleon, 150
quarks, 43
Chiral unitary approach, 243
Chiral vielbein, 151, 156, 184, 208
Chiral-symmetry-breaking scale, 9, 118, 180,
213, 243
Clebsch-Gordan coefficient, 28, 102,
205-207
Coleman theorem, 71
Commutation relations
angular momentum, 16
boson fields, 20
charge operators, 18, 24, 25
equal-time, 16, 25, 29, 30, 38, 73
Gell-Mann matrices, 3
Pauli matrices, 251
Complex-mass scheme, 243
Compton scattering
nucleon, 36, 240
pion, 104-105, 140, 141
virtual, 241
Constraints, 201, 209, 210
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C (cont.)
Convergence
of chiral expansion, 139, 141, 201,
227-230, 241, 242
of integrals, 109, 120, 185, 188, 198
Coset, 77-79
Counter term, 115-116, 122, 138, 172-173,
175, 177, 179, 191, 192, 194, 196,
220, 221, 228, 244
Covariant derivative
baryon octet, 154
A, 208
electron, 5
Goldstone boson (U), 91, 93
nucleon, 150
quark, 7
vector meson, 237
Crossing symmetry, 105, 161, 162,
164, 240
Current operator, 30, 36, 75, 155, 230, 236

D

Degenerate ground state, 49, 53

J expansion, 212, 213

A (resonance), 200, 224

Dimensional counting analysis, 198-200

Dimensional regularization, 105-115, 122,
126, 175, 192, 200, 203, 252

E
Effective field theory, 65-68, 91, 117, 120,
139, 239, 244
Effective Lagrangian, 117
baryons, 149, 154
A, 208, 211, 212
Goldstone bosons, 83, 87, 94, 121-122,
130-131, 136-137, 138
heavy-baryon, 184
nucleon, 152, 169
vector mesons, 237
Electromagnetic interaction, 5, 44, 46-47, 91,
104-105, 136-138, 152, 170,
230-236, 239-242
EOMS scheme, 192-198, 218, 220-221, 224,
231, 235, 237
Equation of motion
A, 202
Goldstone bosons, 95, 133
heavy baryon, 182
nucleon, 181

Index

Euler’s constant, 111

Euler-Lagrange equation, see equation of
motion

Explicit symmetry breaking, 25, 63, 64, 86, 90,
123, 222

External fields, 33, 40-46, 91, 92, 94, 136

F
Fy, 76, 98, 100
Fermi constant, 45, 66, 97, 153
Few-nucleon systems, 244
Feynman parameterization, 186
Feynman propagator
A, 211
Goldstone boson, 123
heavy-baryon, 184
nucleon, 163
W, 97
Field-strength tensor
fLuvv fRuv ) 92’ 169
f/t\'s uvs 169
QCD, 8
QED, 5, 47
vector-meson, 237
v, 170
Finite subtraction, 122, 172, 179, 192, 219,
220
Finite volume, 239
Foldy-Wouthuysen transformation,
154, 180
Form factor
axial, 36, 158, 240
Dirac, 231, 232
induced pseudoscalar, 36, 158
nucleon electromagnetic, 36, 230-238
Pauli, 231, 232
pion axial-vector, 141
pion electromagnetic, 36
pion vector, 141
pion-nucleon, 156
Sachs, 231

G
Gauge invariance, 5, 8, 28, 105, 240, 243
Gauge principle, 4-8
Gell-Mann and Lévy

method of, 13, 15, 22, 29
Gell-Mann matrices, 2—4
Gell-Mann, Oakes, and Renner

relation, 89, 140

Gell-Mann-Okubo relation, 89
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Generating functional, 32-35, 41, 42,
91, 133, 255
Generators, 16, 18, 20, 25, 28, 29, 56-61, 70,
72,76, 251
Goldberger-Treiman discrepancy, 158
Goldberger-Treiman relation, 155, 157-158,
165, 166
Goldstone boson, 56, 60, 61, 63, 71, 76
mass, see mass pseudoscalar octet
massless, 56, 58-60, 63, 72, 75, 84
number of, 59
transformation properties, 76—82
Goldstone theorem, 59-63
Green function, 28, 31-33, 36-38,
40-42, 150, 254

H
Hadron spectrum, 1, 69-72
Heavy-baryon ChPT, 154, 179-185, 201,
215-218, 227, 240-242
Hellmann-Feynman theorem, 223,
224, 226
Hypergeometric function, 193-195

I
Infrared regularization, 185-192, 197-198,
221, 225, 227, 232, 235-237
Infrared-regular part, 187, 188, 191,
192, 197, 198, 228
Infrared-singular part, 187, 189, 191, 192, 228,
229, 235
Isospin-symmetry breaking, 27, 139, 242

J
Jacobi identity, 3

K
K(L, R, U), 148, 149

L

Lattice QCD, 121, 227, 239

LEC, 65-66, 94, 96, 121, 122, 152, 169, 212,
229, 236

Left-handed fields, 10

Lie algebra, 14, 18, 24, 55, 58, 59

Lie group, 1, 57, 76

Low-energy constant, see LEC

Low-energy theorem, 240
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M
Mandelstam variables, 68, 101, 161
Mass
baryon octet, 72, 154, 243
A, 202
A-nucleon difference, 200, 213, 224
Goldstone boson, see mass pseudoscalar
octet
nucleon, 9, 175, 177-179, 215, 218, 224, 227
nucleon in chiral limit, 152, 222
pion, 132
pseudoscalar octet, 71, 89-90, 123, 128-129
quark, 6, 9, 25, 89
“Mexican hat” potential, 56
Minimal subtraction scheme, see MS scheme
Modified minimal subtraction scheme of

ChPT, see MS scheme
MS scheme, 122

MS scheme, 122, 175, 178, 179, 220, 221
Multi-loop diagrams, 192, 197

N
Nambu-Goldstone mode, 50, 51, 55
Natural units, 5
Noether theorem, 12, 13, 15
Nonlinear realization, 76, 82
Nucleon
magnetic moments, see anomalous
magneti moment
mass, see mass
Nucleon-nucleon interaction, 244

P
Parity, 10, 23, 42, 70, 91, 94
doubling, 70, 72
intrinsic, 83, 133, 135, 138
Partial functional derivative, 33, 35, 41,
253-256
Partially conserved axial-vector current,
see PCAC
Path integral, 29, 33, 68
Pauli matrix, 19, 251-252
PCAC, 27, 47, 140, 239
Pion decay, 96-100
constant, see Fy
neutral, 137
Pion production, 36, 153, 239
Pion-nucleon coupling constant, 19, 156, 157,
165
Pion-nucleon scattering, 160-169, 184, 227
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P (cont.)
Pion-nucleon sigma term, 223, 226
Point transformation, 203, 211
Poisson bracket, 210
Polarizabilities
dynamical, 240
generalized, 241
nucleon, 240
pion, 140-142
spin, 240
Power counting, 66, 92, 117-120, 140,
153-154, 173-175, 212-213,
236-237

Q
QCD
Lagrangian, 6-9
Lagrangian and external fields, 40, 43
Lagrangian in chiral limit, 9-10, 12
mass term, 26
QED, 5, 28, 38
Quantum chromodynamics, see QCD
Quantum electrodynamics, see QED
Quark
charge matrix, 44, 136
heavy, 9
light, 9
mass, 6
mass matrix, 25
Quark condensate, 41, 72-76, 88, 90, 140
Quotient, 77-78

R
Rarita-Schwinger formalism, 201
Realization of a group, 80, 82, 149, 208
Regularization, 105, 115
dimensional, see dimensional
regularization
infrared, see infrared regularization
Renormalization, 66, 115, 116, 121, 171, 173,
191, 197, 218, 224
Right-handed fields, 11
Roper resonance, 244

S
Scattering length
pion-nucleon, 166—169
pion-pion, 90, 102, 138-140
Schwinger term, 38-39
Self energy
Goldstone boson, 123-128, 132
nucleon, 174-179, 215-222, 224-226

Index

Sigma model, 54, 76, 223

Sigma terms, 222-224, 226

Small-scale expansion, 213, 224, 231, 241
Spin matrix S, 183

Spontaneous symmetry breaking, 51, 54, 56,

59, 69, 76, 82
Structure constant, 3, 18
SUQ@), 1-4
Symmetry

chiral, see chiral symmetry

discrete, 42, 49, 92, 152

explicit breaking, see explicit symmetry
breaking

global, 1, 5, 12, 13, 24, 29, 34, 85, 90

local, 5, 7, 34, 42, 90, 150

spontaneous breaking, see spontaneous
symmetry breaking

T

Tensor integral, 189, 217, 234
0 term, 8

’t Hooft parameter, 109

U
U (Goldstone bosons), 79
exponential parameterization, 80, 83, 130,

133
square-root parameterization, 103, 130,
133
\%
Vacuum expectation value, 50, 54, 57, 59, 72,
76, 90

Vector current, 23, 86
divergence of, 27, 46
Vector meson, 139, 236-239

w

W boson, 44-45, 96-97, 153

Ward identity, 28, 32, 34-36, 90, 106, 133
Weinberg-Tomozawa term, 160, 168
Wess-Zumino-Witten action, see WZW action
Wick rotation, 107, 109, 114

Wigner-Eckart theorem, 28, 161
Wigner-Weyl mode, 50

WZW action, 121, 133138

y/
Z boson, 45, 153
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